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Engineered organoids by sequential introduction of key mutations could help modeling

the dynamic cancer progression. However, it remains difficult to determine gene paths

which were sufficient to capture cancer behaviors and to broadly explain cancer

mechanisms. Here, as a case study of colorectal cancer (CRC), functional and

dynamic characterizations of five types of engineered organoids with different mutation

combinations of five driver genes (APC, SMAD4, KRAS, TP53, and PIK3CA) showed

that sequential introductions of all five driver mutations could induce enhanced activation

of more hallmark signatures, tending to cancer. Comparative analysis of engineered

organoids and corresponding CRC tissues revealed sequential introduction of key

mutations could continually shorten the biological distance from engineered organoids

to CRC tissues. Nevertheless, there still existed substantial biological gaps between the

engineered organoid even with five key mutations and CRC samples. Thus, we proposed

an integrative strategy to prioritize gene cascading paths for shrinking biological gaps

between engineered organoids and CRC tissues. Our results not only recapitulated

the well-known adenoma–carcinoma sequence model (e.g., AKST-organoid with driver

mutations in APC, KRAS, SMAD4, and TP53), but also provided potential paths for

delineating alternative pathogenesis underlying CRC populations (e.g., A-organoid with

APC mutation). Our strategy also can be applied to both organoids with more mutations

and other cancers, which can improve and innovate mechanism across cancer patients

for drug design and cancer therapy.

Keywords: gene cascading paths, prioritizing, colorectal cancer, engineered organoids, random walk with restart

INTRODUCTION

The well-known adenoma–carcinoma sequencemodel described a basic carcinogenesis mechanism
of colorectal cancer (CRC) (Vogelstein and Kinzler, 2004; Brenner et al., 2014). The sequential
genetic alterations of APC, KRAS, SMAD4, and TP53 could recapitulate the key features in
transition from normal to adenoma and to initiation and progression of CRC, which promoted the
understanding of pathogenesis in CRCs (Powell et al., 1992; Drost et al., 2015; Chen et al., 2016).
Mutations on these genes could deregulate driver pathways to confer selective growth advantages
and further to drive colorectal carcinogenesis. Tumor suppressor gene APC acted as an antagonist
of theWNT signaling pathway. The inactivatingmutations ofAPC could initiate a benign adenoma
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by activating the WNT pathway (Powell et al., 1992; Roper
et al., 2017; Takeda et al., 2019), which was proved by the
upregulation of β-catenin driven by APC mutations (Matano
et al., 2015). The follow genetic alterations in KRAS, SMAD4,
and TP53 further promoted the transition of adenoma to CRC
by activating EGFR, P53 and TGF-β pathways (Drost et al.,
2015; Chen et al., 2016). KRAS was reported to play driver
roles during the progression from early to intermediate adenoma
stages (Takeda et al., 2019). The activating mutations in KRAS
could activate EGF signaling. The SMAD4 and TP53 mutations
promoted the transition from adenoma to adenocarcinoma
stages (Fearon and Vogelstein, 1990). SMAD mutations reduced
the SMAD protein and inhibited TGF-β signaling pathway.
The mutation in TP53 could overexpressed a truncated TP53
protein which made TP53 lose tumor suppressor roles (Tang
et al., 2019). However, due to the high heterogeneity of genetic
alterations across CRC population, it was inefficient for these
driver mutations to characterize the molecular mechanism of
broad CRC patients. Prioritizing different gene cascading paths
for directing sequential introduction of key mutations were the
pressing problem.

Organoids, as an in vitro 3Dmodels, could closely recapitulate
genetic spectra of original tissues (Morizane et al., 2015). For
example, tumor organoids closely recapitulated the molecular
spectra in CRC (van de Wetering et al., 2015). Introducing key
mutations into organoids other than cells could provide better
manners to examine the influence of driver genes during cancer
carcinogenesis. Directly targeting modification of cancer genes
could produce cancer cells from the mouse primary cells or
in vivo tissue (Ran et al., 2013; Heckl et al., 2014; Platt et al.,
2014; Sánchez-Rivera et al., 2014; Xue et al., 2014). Driver gene-
targeted engineered organoids could grow in hostile medium
while normal intestinal organoids ceased proliferation. We
summarized the recent studies modeling CRC using intestinal
organoids with introducing driver mutations in APC, SMAD4,
KRAS, TP53, and PIK3CA (Table S1) (Cooks et al., 2013; Onuma
et al., 2013; Drost et al., 2015; Matano et al., 2015; Chen et al.,
2016; Nakayama et al., 2017; O’Rourke et al., 2017; Riemer
et al., 2017; van Lidth de Jeude et al., 2017). APC mutations
activated WNT signaling and promoted the growth of intestinal
organoids in medium lacking WNT signaling (Matano et al.,
2015). Intestinal organoids with APC mutations developed into
benign tumors after transplantation (O’Rourke et al., 2017).
SMAD4 mutation-targeted organoids could grew in condition
without inhibitor of TGF-β receptor signaling that was essential
for sustaining the growth of normal intestinal cells (Matano
et al., 2015). Engineered organoids expressing KRAS mutations
could expand in the condition withdrawing EGFR signaling
(Matano et al., 2015). TP53 mutations induced prolongation of
activation of NF-kappaB signaling, and promoted inflammation-
associated colorectal cancer (Cooks et al., 2013). TP53mutation-
targeted organoids could recover in the condition of activation
of TP53 signaling pathway which can induce cell cycle arrest
and apoptosis (Matano et al., 2015). Oncogenic PIK3CA could
regulate cell motility thoughAKT, and PIK3CAmutations played
key roles in reprograming glutamine metabolism in colorectal
cancers (Hao et al., 2016). PIK3CA mutations could induce

cell attachment and motility under cooperation of CTNNB1
(Riemer et al., 2017). Oncogenic PIK3CA could regulate cell
motility though AKT, and PIK3CAmutations played key roles in
reprograming glutamine metabolism in colorectal cancers (Hao
et al., 2016). Sequential introducing different combinations of
these driver mutations could delineate the progression from
normal epithelium to adenoma and carcinoma. Engineered
organoids with APC and KRAS mutations grew into lager
dysplasia without invasive features (Takeda et al., 2019), and
further formed invasive submucosal tumor under condition
of inhibited TGF-β signaling pathway (Chen et al., 2016;
Takeda et al., 2019). These studies implied that engineered
organoids with sequential introducing driver mutations could
provide new clues to exploring developmental mechanisms
of cancers. However, whether these engineered organoids
were sufficient to capture broad cancer behaviors were still
a challenge.

The transformation of normal cells to tumor cells was
the dynamic dysregulated procession of cellular homeostasis,
which was the requirement for the organism function normally
(Rosenfeldt et al., 2013). The activity of biological functions could
reflect the extent of homeostasis. Many functional activity-based
methods were proposed to reveal the disease mechanisms (Lee
et al., 2008; Gatza et al., 2010; Drier et al., 2013). The patterns
of functional activity made tumor disease classification more
precise and built subtype characterizations (Lee et al., 2008; Gatza
et al., 2010). The function dysregulated scores characterized the
deregulated extent of functions in individual samples (Drier
et al., 2013). Measuring the difference of function activity among
different cancer stages could help characterizing the dynamic
progression of CRC.

In this work, from the single-mutant to quintuple-mutant
engineered organoids, we dynamically characterized the function
activities of hallmark signatures andmeasured the biological gaps
between the engineered organoids and the CRC samples. An
integrative strategy was designed to prioritize the gene cascading
paths which could help us to understand the carcinogenesis
mechanism of broad CRC patients with different profile of
genetic alterations (Figure 1).

MATERIALS AND METHODS

Data Collection and Processing
Gene Expression Profiles and Mutation Profiles of

Colorectal Cancer
We downloaded the gene expression profiles (GSE57965) of
adenoma and engineered organoids (Table S3), which contained
five adenoma samples with APC mutation (A-organoid), 1
adenoma sample with genetic modification of SMAD4 deletion
(AS-organoid), 1 adenoma sample of genetic modification of
knocking in KRASG12V (AK-organoid), 2 engineered human
colon organoids carrying four gene mutations (APC, KRASG12V ,
SMAD4, and TP53, AKST-organoids) and 1 engineered human
colon organoids carrying five gene mutations (APC, KRASG12V ,
SMAD4, TP53, and PIK3CAE545K , AKSTP-organoid) (Matano
et al., 2015). The gene expression profile with 20,014 genes
were obtained after removing probes corresponding to multiple
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FIGURE 1 | The overview of the integrative strategy for prioritizing gene cascading path.
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genes and averaging the expression level of multiple probes of
each gene.

We also downloaded the somatic mutation data (level 2) and
gene expression profiles (RNA-seq) of colorectal cancer from the
cancer genome atlas (TCGA). We extracted a mutation profiles
which contained the samples with mutations in at least one of
five genes (including APC, SMAD4, TP53, KRAS, and PIK3CA)
and removed mutation types of silent, intron and 5’UTR. Finally,
we obtained 103 samples with both gene expression profile and
mutation profile (Table S3), in which 54 samples only with APC
mutation, 40 samples only with mutations in both APC and
KRAS, 3 samples withmutations only in both APC and SMAD4, 1
sample with mutations only in four genes (APC, KRAS, SMAD4,
and TP53), and five samples with mutations of all of five genes.

KEGG Pathways and HPRD Protein Interaction

Network
We downloaded the KGMLs of 222 human pathways from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
and Goto, 2000). To get the topological information of these
pathways, we got the corresponding undirected graphs of
pathways and the degrees of genes in these pathways using the
R package iSubpathwayMiner (Li et al., 2009). Only the pathways
in which genes were connected with each other were kept. Finally,
we obtained 186 pathways as the functions to characterize the
biological gaps between organoids and cancer samples.

The protein interaction network was obtained from the
Human Protein Reference Database (HPRD, version 9) (Keshava
Prasad et al., 2009), which contained 9,617 genes and 39,240
interactions among these genes.

Methods
We proposed an integrative strategy to prioritize the gene
cascading path for directing CRISPR-Cas9 to construct colorectal
cancer organoids (Figure 1).

Integrating the Gene Expression Profiles From GEO

and TCGA Using Rank-Based Scores
To joint analysis of expression profiles from GEO and TCGA, we
used the Rank-based scores (Amar et al., 2015) to normalize the
expression profiles of engineered organoids and CRC samples.
18,071 common genes were detected by both GEO and TCGA.
For each sample s, the expression values of 18,071 genes were
sorted in the decreasing order. Rank of highest expressed gene
was 1 and that of lowest one was 18,071. The rank i of gene

g was transformed into rank-based score: Ws(gi) = ie−
i

18071 .
The rank-based scores of genes in the samples were used to
joint analysis.

Identifying Dysregulated Functions in
Biological Gaps Between Engineered
Organoids and Corresponding CRC
Samples
To investigate the potential driver capability of driver
mutations, we characterized the biological distance from

engineered organoids to CRC samples by identifying the
dysregulated functions.

Functional Activity
Functional activity could measure the active status of biological
functions in a specific sample (Bild et al., 2006). For each
sample, we calculated functional activities of 186 functions
using a Normalized Centroid shift method (Yang et al., 2012).
For each function j, we classified the 18,071 genes (G) into
two classes: genes within the function j (Gfunj ) and the
other genes (G/Gfunj ). We calculated the average rank-based
scores NCGfunj

and NCG/Gfunj
, and then the activity score of

function j (FASfunj ) was calculated as the difference between
NCGfunj

and NCG/Gfunj
.

NCGfunj
=

∑

gi∈Gfunj

Ws(gi)

∣

∣

∣

Gfunj

∣

∣

∣

NCG/Gfunj
=

∑

gi∈G∩gi /∈Gfunj

Ws(gi)

∣

∣

∣

G/Gfunj

∣

∣

∣

FASfunj = NCGfunj
− NCG/Gfunj

Identifying Dysregulated Functions With Significant

Activity Difference Between the Engineered

Organoids and CRC Samples
To measure the biological distance from engineered organoids
(S) and corresponding CRC samples (T), we compared the
activities of 186 functions between S and T. For each type
of mutation combination, we calculated the average functional
activities of each function, FASs

funj
and FAST

funj
, for S and T. The

DFASfunj =

∣

∣

∣

FASs
funj

− FAST
funj

∣

∣

∣

measure the activity difference.

To determine the significance of activity difference and identify
dysregulated functions, the gene expression profiles of S and
T were permuted 1,000 times, respectively. We re-calculated
1,000 random DFAS as described above. The significance P was
calculated as the frequency in which random DFAS was larger
than real DFAS.We identified the dysregulated functions as those
at FDR= 0.01.

Inferring Subsequent Key Genes During
the Progression of CRC
The known driver mutations were inefficient to capture cancer
behaviors and to broadly explain cancer mechanisms. Exploring
the subsequent key genes of known drivermutations can improve
the understanding of modeling CRC. We utilized Random walk
with restart (RWR) (Köhler et al., 2008) to infer subsequent
key genes during the progression of CRC for five types
of organoids.

For each dysregulated function k obtained from a specific
organoid, we reconstructed a biological network based on the
pathway structure. We calculated the degrees of genes in the
dysregulated function and selected the top 10% genes with the
highest degrees as the seed genes which were the input of random
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walk. The seed genes were sowed into the protein interaction
network. The information flow can restart from the seed genes
with probability r in RWR (Köhler et al., 2008):

Pt+1 = (1− r)WPt + rP0

where r was set to 0.7; P0was the initial probabilities of genes,
in which the probabilities of seed genes was 1�n (n was the
number of seed nodes) and others 0; Ptwere the probabilities
of genes at the tth steps; W was the normalized transfer matrix
of the protein interaction network; the random walk process
reached the steady-state when the maximum difference between
Pt+1and Ptwas <10−8. The Pt+1 characterized the functional
similarity of genes with seed genes. We randomly selected 1,000
sets of pseudo seed genes with the same size and re-performed
random walk. For each gene j in the protein interaction network,
the significance Pkj was calculated as the frequency in which

random functional similarity was larger than real one. Finally,
we combined the significance (Pkj ) of gene j calculated from all

dysfunctional functions (k = 1. . . . . .K) into a statistic X which
follow the χ2 (2K) distribution:

χ2 = −2

K
∑

k=1

ln Pkj

Where the K was the number of dysfunctional functions. The
P(X ≥ χ2|X ∼ χ2(2K)) represented the significance of genes.
We considered genes with FDR ≤ 0.05 as subsequent key genes.

Prioritizing Gene Cascading Paths to
Recapture the Adenoma-Carcinoma
Sequence of CRC
High tumor heterogeneity of genetic alterations in CRC
made the well-known adenoma-carcinoma sequence explain
a part of CRC patients, additional alternative gene paths
were needed to interpret the development progression of
more extensive CRC patients. Different patients with similar
phenotype had different combinations of genetic alterations
that tended to participate in same or similar functions. To
prioritize gene cascading paths for each type of organoid,
firstly, we calculated the functional coherence among the five
known genes and the subsequent key genes (Wang et al.,
2007), and constructed the functional consistency network at
the threshold of 0.4. Then, a sparse functional consistency
network was constructed by selecting two neighbors with
highest functional consistency for each gene. Finally, using
the well-known adenoma-carcinoma sequence model as the
template, each gene cascading path was identified by starting
from the mutant genes in the organoids and ending at the
potential key gene showing the maximum shortest distance with
mutant genes.

Stepwise Comparison of Five Types of
Organoids in the Activities of Hallmark
Signatures
We compared the activities of 50 hallmark signatures among
five types of organoids (including A-organoid, AS-organoid, AK-
organoid, AKST-organoid, and AKSTP-organoid) in a stepwise
way. For a pair of organoids, we identified the significant
activation/inactivation of hallmark signatures in the organoid
with more mutations by comparing with the other. The
activities of 50 hallmark signatures were estimated using gene
set enrichment analysis, and the activity differences between the
pair of organoids were calculated. To measure the significance
of activity differences, we permutated the transcriptomes of the
pair of organoids 1,000 times, and recalculated 1,000 random
activity differences of hallmark signatures. The significance of
activation was calculated as the frequency in which random
activity differences was larger than real one. And the significance
of inactivation was calculated as the frequency in which random
activity differences was smaller than real one. We identified
the significant activation/inactivation of hallmark signatures at
FDR ≤ 0.05.

RESULTS

The Combination Mutation Patterns in Five
Driver Genes Across CRC Populations
The mutations of five genes (including APC, KRAS, SMAD4,
TP53, and PIK3CA) were reported to play driver roles in
CRC progression. Five CRC populations in the cbioPortal were
collected to investigate the mutation distributions of the five
driver genes (Cerami et al., 2012; Gao et al., 2013). We found that
these five genes showed high mutation frequencies ranging from
77 to 100% (Figure 2A). As a “gatekeeper” gene, APC mutations
were extremely pervasive across CRC populations. Especially,
the mutation frequency of APC reached up to 91% in MSKCC
study (Figure S1 and Table S2). The mutation frequencies of
TP53 were 82, 53, 55, 56, and 43% across five CRC populations;
55, 42, 44, 51, and 28% for KRAS; 20, 20, 15, 31, and 21% for
SMAD4; and 12, 14, 15, 24, and 10% for PIK3CA. The high
frequencies of these five driver genes confirmed their core roles
in the progression of CRC. Interestingly, only 0.72, 0.94, 0.45, 0%
(0/72), 0% samples harbored themutations of all five genes across
the five CRC populations (Figure 2B). CRC samples harboring
mutations in four genes only occupied 16.7, 5.7, 5.5, 8.3, and
3.9%, respectively. Most CRC samples (74.6, 65.1, 63.6, 58.3,
and 54.1%) carried mutations of two or three genes. And the
most common combination of mutations was observed between
APC and TP53. These results further showed CRC was a highly
heterogeneous disease from genomic perspective. Different CRC
patients harbored different combinations of genetic alterations.
The mutation frequency of single driver gene was high while the
co-occurrence frequency of the five driver genes was very low.
These phenomenon implied that although the mutations of the
five driver genes could explain the CRC pathogenesis well, which
could only explain the progressive mechanism for a fraction of
CRC patients, but the molecular pathogenesis of major patients
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FIGURE 2 | The mutation distributions of five driver genes in the five CRC populations. (A) The mutation frequencies of the five genes across five CRC populations.

(B) Combination patterns of mutations in the five genes across CRC populations.

remains unclear. There existed other gene paths or mutation
combinations to drive CRC evolution.

Functionally Characterizing Engineered
Organoids Carrying Various Combinations
of Driver Mutations
We collected the transcriptomes of five types of engineered
organoids which expressed mutations of different combinations
of the five genes from GSE57965. For each type of engineered
organoid, we calculated the activities of 50 hallmark signatures
from MSigDB and identified the hallmark signatures with
significant activation or inactivation using gene set enrichment
analysis (Subramanian et al., 2005; Liberzon et al., 2015).
In A-organoid, epithelial mesenchymal transition was the
most significantly activated development signature (Figure S2A,
P < 0.001). The immune signatures [IL6- JAK-STAT3 signaling
(P = 0.0012) and inflammatory response (P = 0.001)] also
showed significant activation. Five of six proliferation signatures
showed significant activation in AK-organoid, which contained
G2M checkpoint (P < 0.001) and E2F targets (P < 0.001).
In AKST- and AKSTP-organoids, the hypoxia and glycolysis
signature showed significant activation. Notably, none of 50

hallmark signatures showed significant inactivation in AKSTP-
organoid (Figure S2B), indicating AKSTP-organoid exhibited
more cancer hallmarks. These results suggested that the
introduction of the five driver genes in intestinal organoids could
induce the activation of hallmark signatures.

Dynamically Analyzing CRC Progression
From A- to AKSTP-Organoids
To further characterize the dynamic activities of hallmark
signatures during sequential introduction of multiple driver
mutations, we compared the activities of hallmark signatures
between the five types of organoids. Compared with A-organoids,
the other four types of organoids showed consistent activation
of proliferation signatures containing G2M checkpoint and
E2F targets (Figure 3A). Further, compared with AK- and
AS-organoids, the AKST- and AKSTP-organoids consistently
activated the hypoxia and glycolysis signature (Figures 3B,C).
Compared with AKST-organoid, the AKSTP-organoid continued
to enhance activation of proliferation signatures (MYC targets
and P53 pathway) and immune signatures (Figure 3D). These
dynamic analyses suggested that sequential introduction of
these driver mutations gradually drove the activation of distinct
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FIGURE 3 | Dynamic activity analysis of 50 hallmark signatures from A-organoid (A) to AKSTP-organoid (AKSTP). (A) The significant activation (red) or inactivation

(blue) of 50 hallmark signatures in AS-organoid (AS), AK-organoid (AK), AKST-organoid (AKST), and AKSTP-organoid (AKSTP) by comparing with A-organoid (A).

(B) The significant activation (red) or inactivation (blue) of 50 hallmark signatures in AKST-organoid and AKSTP-organoid by comparing with AS-organoid. (C) The

significant activation (red) or inactivation (blue) of 50 hallmark signatures in AKST-organoid and AKSTP-organoid by comparing with AK-organoid. (D) The significant

activation (red) or inactivation (blue) of 50 hallmark signatures in AKSTP-organoid by comparing with AKST-organoid.

hallmark signatures, and conferred the selective advantages to
engineered organoids.

Functionally Characterizing Combined
Effects of the Five Driver Mutations Using
TCGA CRC Patients
We collected CRC samples with both expression and mutation
profiles from TCGA. The mutations of the driver genes could
influence gene expression levels of driver genes (P = 0.021 for
APC, P = 0.0174 for SMAD4, P = 2.7e−5 for TP53, P = 0.0013
for KRAS, and P = 0.0183 for PIK3CA, Figure S3). According
to the mutation status of the five driver genes, the 103 CRC
samples were grouped into five groups (Table S3). To evaluate

whether CRC samples with different combinations of driver
mutations showed differential activities of hallmark signatures,
we calculated the activities of hallmark signatures using single-
sample GSEA for each CRC sample (Hänzelmann et al., 2013).
For each group, average activities of hallmark signatures were
calculated. We found that these five groups showed similar
activated patterns (Figure 4A). The correlation coefficients of
average activities ranged from 0.973 to 0.999 (Figure 4B). To
further investigate whether the similar activated patterns also
exited in all CRC samples, the correlation coefficients among
all CRC samples were calculated. We found that all CRC
samples still exhibited highly consistent correlation of hallmark
signature activities in spite of different combinations of genetic
alterations (Figure 4C). The results suggested that there existed
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FIGURE 4 | Highly consistent correlations of 50 hallmark signature activities across CRC samples with different combinations of mutations in five genes. (A) The

average activity scores of hallmark signatures in five different groups of CRC samples. (B) The correlations of hallmark signature activities across five groups. (C) The

correlations of hallmark signature activities across CRC samples.

additional driver genetic alterations contributing to development
mechanism of broad CRC patients.

Substantial Biological Gaps Between
Engineered Organoids and Colorectal
Cancer Tissues
Weused the rank-based scores to integrate the expression profiles
of engineered organoids andCRC samples. The result of principal
components analysis showed that the expression pattern could
distinguish the five types of organoids from TCGA CRC samples

(Figure S4). To characterize the biological distance from the
engineered organoids to CRC, we identified the dysregulated
functions with significant activity difference between engineered
organoids and their corresponding CRC samples at FDR = 0.01
against 1,000 permutations (Table S4).

For the A-organoids, we found that 65 of 186 functions
showed no significant difference of functional activities by
contrast to CRC samples, two of which APC participated in
directly. For example, APC participated in the Wnt signaling
pathway directly. In the A-organoids, the WNT pathway showed
similar functional activity with the CRC samples with APC
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mutation (P = 0.015, Figure S5A). However, the Wnt signaling
pathway showed significant activity difference (P = 0.008,
Table S4) by comparing normal and CRC samples. These results
suggested that APC mutation contributed the activation of Wnt
signaling pathway, which was consistent with previous studies
(Drost et al., 2015; Matano et al., 2015). Meanwhile, there were
121 dysregulated functions with significant activity difference.
The MAPK signaling pathway showed significant activity
difference between A-organoids and CRC samples (P < 0.001,
Figure S5B). The number of functions showing similar activities
between AK-organoids and corresponding CRC samples were
up to 128, and the number of dysregulated functions decreased
to 58. The RAS and MAPK signaling pathway showed similar
activity between AK-organoids and CRC samples (P = 0.11 and
P = 0.33, Figures S5C,D), suggesting the combination of APC
and KRAS mutations enabled the activity of RAS and MAPK
signaling pathway to reach the physiological state of CRCs. We
also compared the function activity between AS-organoid, AKST-
organoids, AKSTP-organoids and their corresponding CRC
samples. We found that the number of functions with similar
activity increased and the number of dysregulated functions
decreased along with the number of genes mutations (Figure 5A
and Table S4). These results gave a clue that combinations of

multiple drive mutations approximated the organoids to CRC by
activating or inactivating the activities of functions.

To characterize the step-by-step progression of CRCs from

organoids engineered by introducing mutations, we compared
the activity difference of 186 functions from five types of
organoids. Firstly, we focused on the five functions including

Wnt signaling pathway, RAS-MAPK signaling pathway, TGF-β
signaling pathway, TP53 signaling pathway and PI3K signaling

pathway, which were targeted by APC, SMAD4, KRAS, TP53,
and PIK3CA, respectively. By comparing the normal and CRC
samples, we found four functions including Wnt, RAS-MAPK,
TP53 and PI3K signaling pathway showed significant differential
activity(P = 0.008, P < 0.001, P < 0.001, and P = 0.003,
Table S4). By introducing the mutations of corresponding

genes, we found the significance of activity difference of four
functions disappeared gradually (Table S5, FDR = 0.01). With
the increasing number of mutated genes, the activity difference
of these functions between organoids and CRCs tended to
random state, suggesting the driver progression of key genes
during carcinogenesis.

To further investigate the dynamic progression integrally, we
clustered the organoids and the 186 functions based on the
significance status of dysregulated functions. We found that A-
and AS-organoids were a class, and AK-, AKST-, and AKSTP-
organoids as a class (Figure 5B). APC mutation was a key gene
for forming an adenoma. The adenoma still maintained the
benign state after introducing SMAD4mutation. KRASmutation
made the adenoma canceration by dysregulating the activities
of many functions, implying KRAS mutation played a key role
during transformation from adenoma to CRC.

Among the 186 functions, 56 showed no significance of
activity difference between any type organoid and CRCs. Twenty
one functions also showed no significance between normal
and CRC samples, indicating these functions may be essential
functions for maintaining cell survival. However, the other 35
functions showed significant activity difference between normal
and CRC samples, of which 16 functions were metabolism-
related, implying the serious metabolic derangements have
occurred from an adenoma. Meanwhile, we found that 27
functions showed significant activity difference between all of five
types of organoids and CRCs, such as the PI3K signaling pathway,
suggesting that additional key driver mutations were needed to
transform the organoids to CRCs.

Prioritizing Gene Cascading Paths
Contributing to the Model of Colorectal
Cancer Derived From Engineered
Organoids
The five driver genes were not sufficient to make organoids
approximate the physiological state of CRCs with features of

FIGURE 5 | The dysregulated functions identified in the gaps between five types of organoids and CRC samples. (A) The number of dysregulated functions identified

five types of organoids. (B) The binary heatmap of dysregulated functions across five types of organoids. (1 represents dysregulated functions, and 0 represents not).
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metastasis and invasion (Matano et al., 2015). Meanwhile, due
to tumor heterogeneity of CRCs, the mutations of five driver
genes could explain development mechanisms of a part of CRC
patients. Additional gene cascading paths were needed to explain
the pathogenesis of broad CRC populations.

Using random walk to propagate information flow from
dysregulated functions, we identified potential subsequent key
genes for five types of organoids. At FDR = 0.05, we predicted
34, 89, 56, 4 potential key genes for A-, AS-, AK-, and AKST-
organoids, respectively (Figures S6A,B and Table S6). For A-
and AS-organoids, both PIK3CA and KRAS were identified, and
PIK3CA was the top one gene identified from AK- and AKST-
organoids, suggesting our method was able to identify key genes
(Figure S6C). We also found that different organoids needed
some common and specific potential genes to compete CRC
progression (Figures S6B,C).

Heterogeneity in genetic alterations across CRC populations
indicated that different combinations of key genes contributed
to the tumor progression through participating in similar
functions. Prioritizing gene cascading paths for different
organoids, which could perform analogical functions of five
driver genes, could provide the interpretation of pathogenesis
for broader CRC patients. Functional analysis showed the
high functional coherence among the five driver genes. We
calculated the function coherence among the potential genes
and five known genes, and found that many potential key
genes showed high functional coherence with the five known
genes (Figures S7–S11). Thus, using the five driver genes as
template, we prioritized cascading paths of key genes based on
the function coherence to recapitulate the adenoma-carcinoma
sequence model for different organoids (Figures 6A–E).

For A-organoids, two paths of potential key genes were
predicted: one contained APC, ERBB4, NRG1, KRAS, PIK3CA,
and PIK3CG, and the other contained APC, ERBB4, LATS2,
TIAM1, and DLC1 (Figure 6A). ERBB4, one of the ErbB
receptor tyrosine kinases, showed the functional coherence of
0.56, 0.59, 0.63, and 0.57 with APC, KRAS, PIK3CA, and
TP53, respectively, which also participated in cancer associated
functions such as MAPK cascade, cell migration and cell
proliferation. The colonic inflammation was limited by ErbB4
signaling through stimulating pro-inflammatory macrophage
apoptosis (Schumacher et al., 2017). ERBB4 itself could not
induce tumor transformation of mouse colonocytes, while under
the condition of colonocytes with mutant Apc and Ras, ERBB4
enhanced the transformed phenotype both in vitro and in vivo
(Williams et al., 2015). The increased co-expression of ErbB4-
CYT-2 with KITENIN promoted the transition of colon adenoma
to adenocarcinoma in tumor microenvironment of APC loss
(Bae et al., 2016). NRG1, neuregulin 1, showed the functional
coherence of 0.54, 0.58, 0.55, 0.58, and 0.51 with APC, KRAS,
PIK3CA, SMAD4, and TP53, respectively. In the ERBB signaling
pathway, NRG1 could participate in cell migration and invasion
by activating ERBB4 and KRAS, and contribute to cell cycle
and cell metabolism by activating ERBB4 and PIK3CA. NRG1
was methylated in tumors and the knockdown of NRG1 could
increase net cell proliferation (Chua et al., 2009). Paracrine
NRG1/HER3 signals promoted CRC cell progression, and was

associated with poor prognosis in CRC (De Boeck et al., 2013).
PI3KCG was a critical switch between immune stimulation and
suppression during inflammation and tumor growth (Kaneda
et al., 2016). The silencing of PIK3CG contributed to inhibit the
PI3K-Akt/PKB signaling system which was responsible for the
tumorigenesis and progression of colorectal cancers (Semba et al.,
2002). Thus, ERBB4 and NRG3may replace SMAD4 and TP53 to
form a new combination, together with APC, KRAS and PIK3CA,
to form an alternative path underlying CRCs.

For ASKT-organoids, PIK3CA was ranked first, together with
APC, SMAD4, KRAS, and TP53, which restored the known
the adenoma-carcinoma sequence model of CRC (Figure 6D).
ASKTP-organoids were capable to form the tumors while showed
weak invasive behavior. Additional key genes were needed to
complete the progression of CRC. PKHD1 were the second
potential key genes which showed function coherence of 0.47,
0.49, 0.48, 0.45, and 0.45 with APC, SMAD4, KRAS, TP53,
and PIC3CA, respectively. The protein encoded by PKHD1
harbored the structural features with hepatocyte growth-factor
receptor and plexins which involved in regulation of cell
proliferation and cellular adhesion and repulsion (Onuchic
et al., 2002). Inhibition of PKHD1 may control cell cycle via
mTOR signaling pathway (Zheng et al., 2009), and induced cell
apoptosis through PI3K and NF-κB pathways (Sun et al., 2011).
We found that PKHD1 showed high frequency of mutations
in the CRC populations (from 8.9 to 11.8%, Figure S12).
Previous studies showed that PKHD1 was a candidate CRC
gene by screening mutations in the consensus coding sequences
profile, and was assigned to the function of cell adhesion
with the first rank (Sjöblom et al., 2006). The germline
mutations of PKHD1 played a protective role in colorectal cancer
(Ward et al., 2011). Thus, introduction of PKHD1 mutations
following the five driver genes may contribute to CRC invasion
and metastasis.

DISCUSSION

The adenoma-carcinoma sequence was recognized as the
mechanism model of CRC, in which mutations of APC, KRAS,
SMAD4, TP53, and PIK3CA could sequentially drive CRC
transformation. The sequential introduction of CRC genes was
used to model colorectal cancer. These studies gave a clue that
it is possible to investigate the CRC dynamic progression using
engineered organoids. We proposed an integrative strategy to
characterize the dynamic progression of CRC and prioritize
gene cascading paths for directing subsequent introductions of
key genes.

Dynamic analysis of activities of biological functions
showed biological gaps between organoids and CRC tissues.
The number of dysregulated functions dropped sharply with
the number of mutations of key genes increasing. These
results were consistent with previous studies (Drost et al.,
2015; Matano et al., 2015), suggesting that our method
could capture biological dynamics and characterize the CRC
progression. The AKST- and AKSTP- organoids approximated
the true CRC with corresponding mutations. However,
there were still many dysregulated functions associated
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FIGURE 6 | The potential gene cascading paths for five different organoids. Red node represents mutant genes in organoids, orange nodes for potential genes.

(A) A-organoid. (B) AK-organoid. (C) AS-organoid. (D) AKST-organoid. (E) AKSTP-organoid.

with tumor metastasis, such as cytokine-cytokine receptor
interaction, ECM-receptor interaction, and adherent junction.
Meanwhile, some tumor microenvironment associated
functions including antigen processing and presentation,
leukocyte transendothelial migration and chemokine signaling
pathway were also in these biological gaps. The identified
dysregulated functions may provide an explaining that AKST-
and AKSTP-organoids without features of migration and
invasion may be due to lacking of tumor microenvironment
supporting invasion and metastasis. Additional driver mutations
of key genes were needed to further identify to control
these functions.

Through screening the genetic alteration profiles of CRC
populations, the co-occurrence frequency of five CRC genes
was low. Although the adenoma-carcinoma sequence of CRC
was recognized, it only explained molecular mechanism in
a fraction of CRC populations with mutations of all five
genes. The genetic alterations of CRC populations showed high
heterogeneity, implicating that other key genes were required
for drawing the mechanism of colon carcinogenesis for most
of CRC populations. Our method not only could characterize
biological gaps between different types of organoids and their
corresponding CRC samples, but also be able to predict key
genes which followed the introduced key mutation to further
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shrink biological gaps. The potential sequential genes were
identified for different types of organoids, which participated in
important functions and pathways. For example, for the AK-
organoids, 56 subsequent genes were predicted. Using functional
enrichment, many cancer-associated functions, such as MAPK
cascade, Ras signaling pathway, PI3K-Akt signaling pathway,
positive regulation of cell migration and positive regulation of cell
proliferation, were identified (Table S7). With the accumulation
of published studies about CRC organoids and multidimensional
omics data of organoids (Fumagalli et al., 2017; Newey et al.,
2019; Ooft et al., 2019), our method could be used to identify
more extensive gene paths and construct the landscape of
molecular pathogenesis for CRC cancer. Sequential introduction
of the mutations in gene paths may provide a new avenue for
understanding the dynamic progression of CRC.

In summary, we developed an integrative strategy to capture
the dynamic progression of CRC and prioritize gene cascading
paths for understanding the mechanisms of wide CRC patients.
Our approach also can reveal the dynamic transformation
mechanism of other cancer types. This will provide a more
detailed interpretation for molecular mechanisms of cancer
which could help for drug design and cancer therapy.
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