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THE BIGGER PICTURE Proteins are the most common drug targets, and allostery plays a key role in regu-
lating protein activities. Predicting allosteric sites in silico is of great interest in expanding the chemical
space of drug discovery. Here, we demonstrate how bond-to-bond propensity analysis is used to not
only predict allosteric sites in large benchmarking datasets but also to shed light on the possible allosteric
mechanisms involved. Our quantitative analysis of a given site with a range of statistical measures allows
the identification of key residues required for allosteric signaling. The data can be harnessed for artificial-
intelligence-driven drug discovery and digital molecular design, which are new areas of interest in the
data science community.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Allostery is a pervasive mechanism that regulates protein activity through ligand binding at a site different
from the orthosteric site. The universality of allosteric regulation complemented by the benefits of highly spe-
cific and potentially non-toxic allosteric drugs makes uncovering allosteric sites invaluable. However, there
are few computational methods to effectively predict them. Bond-to-bond propensity analysis has success-
fully predicted allosteric sites in 19 of 20 cases using an energy-weighted atomistic graph. We here extended
the analysis onto 432 structures of 146 proteins from two benchmarking datasets for allosteric proteins: AS-
Bench and CASBench.We further introduced two statistical measures to account for the cumulative effect of
high-propensity residues and the crucial residues in a given site. The allosteric site is recovered for 127 of 146
proteins (407 of 432 structures) knowing only the orthosteric sites or ligands. The quantitative analysis using a
range of statistical measures enables better characterization of potential allosteric sites and mechanisms
involved.
INTRODUCTION

Proteins are ubiquitous in all aspects of cellular life where they

fulfil crucial functions, while their malfunction could result in dis-

ease states.1,2 By 2017, 70% of small molecule drugs on the

market targeted four types of proteins, namely protein kinases,

ion channels, rhodopsin-like G protein-coupled receptors, and

nuclear hormone receptors.3 Most current small molecule drugs

modify or inhibit the action of a protein by directly binding to the

primary active site (also known as the orthosteric site) of the pro-

tein. The main advantage of this drug type is the high affinity and

generally high specificity toward the orthosteric site as proved by

a large number of successful drugs on themarket.4 Despite such
This is an open access article und
advantages, the configuration of orthosteric sites is similar for

proteins performing related functions, and a low selectivity leads

to off-target toxicity.5 For instance, orthosteric sites for adeno-

sine triphosphate binding in different kinases are similar, making

the optimization of selective kinase inhibitors challenging.6 In

addition, prolonged exposure to the drugs results in drug resis-

tance, through either modifications of the drug molecules7 or

changes to the orthosteric sites.8–12 Moreover, orthosteric drugs

act as complete inhibitors or activators rather thanmodulators of

proteins, so their therapeutic effect may not be the most

optimal.10

Allostery broadly refers to the modulation of protein activity

when achieved through binding at a distinct site from the
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orthosteric site.13 These binding events may result in conforma-

tional changes of the targeted proteins and affect the binding of

natural substrates to orthosteric sites. Conformational modifica-

tion can enhance or reduce the binding affinity of natural

substrates at orthosteric sites and can, therefore, lead to a

controlled upregulation and downregulation of protein activities,

which is difficult to achieve by orthosteric site binding.14 Allo-

steric modulators therefore have a lower potential for adverse

side effects. Once all the allosteric sites are fully occupied, the

drug reaches saturation (a ceiling level), and there is no further

pharmacological effect. This indicates that on-target safety can

be guaranteed.15,16 Contributing to the low off-target effects of

allosteric drugs is the low evolutionary pressure for allosteric

sites to accommodate an endogenous substrate compared

with the well-conserved orthosteric sites.17 This would allow

for highly selective drug targeting in closely related protein

families by exploiting allosterism. Despite some chemical and

pharmacological issues associated with allosteric regulators

including intractable structure-activity relationships and ligand-

biased signaling,18 allosteric modulators still provide significant

benefits over orthosteric regulators.

The two main challenges for using allostery in drug develop-

ment are finding suitable allosteric sites in the first place and

designing molecules that bind and exert modulation effects.

The design of allosteric site binders could followwell-established

approaches used to develop molecules that bind to orthosteric

sites, such as high-throughput screening,19 structure-based

drug design,20 and peptide phage display.21 To achieve a high

specificity as well as the intended modulation, it is indispensable

to search for unique allosteric sites for the targeted protein.

Therefore, efficient and effective methods for identifying putative

allosteric sites are of great interest to guide the rational design of

allosteric modulators and contribute to the field of drug discov-

ery and development.22

Experimental methods including tethering,23,24 nuclear mag-

netic resonance,25,26 and high-throughput screening followed

by X-ray crystallography27,28 have successfully led to the discov-

ery of a few novel allosteric sites. However, these methods

involve screening of large compound libraries, which is laborious

and time-consuming. To circumvent the challenges associated

with the experimental methods, numerous computational

methods have been developed to predict allosteric sites (re-

viewed in Collier and Ortiz29 and Sheik et al.30) with various

degrees of success. The continuous growth of the Allosteric

Database (ASD), which contains data of 1,949 allosteric proteins,

their binding sites, and other relevant information,31–33 and the

construction of benchmarking datasets for allosteric proteins,

ASBench34 and CASBench,35 have provided comprehensive re-

sources in aiding the identification of allosteric sites with compu-

tational methods.

There are two general ways of approaching the problem of

identifying putative allosteric sites computationally: (1) identi-

fying allosteric sites without considering the communication

with orthosteric sites and (2) uncovering the allosteric communi-

cation pathways between orthosteric and allosteric sites.36

Several studies have followed the first approach; Huang et al.

developed Allosite to find allosteric sites based on topological

and physicochemical characteristics of allosteric and non-allo-

steric sites using a support vector machine classifier,37 while
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Chen et al. built a random forest model that utilized calculated

descriptors of orthosteric, allosteric, and regular sites (binding

sites without any function) and their bound ligands to classify po-

tential sites on a given protein and identify putative allosteric

sites.38 Similarly, not concentrating on cognate ligands, Fogha

et al. performed computational analysis of the density and clus-

tering of crystallization additives that are used to stabilize pro-

teins during the process of crystallization.39 These methods,

although achieving some promising predictability for putative

allosteric sites, focus merely on the potential binding pockets

on the protein and do not consider the effects of binding at these

sites on the protein, which is the key concept of allostery. There-

fore, these approaches alone are not sufficient to identify poten-

tial allosteric sites. Molecular dynamics (MD) simulations and

normal mode analysis (NMA) of elastic network models (ENM)

are widely used within the second approach of identifying allo-

steric signaling paths based on protein dynamics described by

Newton’s equation of motion. MD simulations can be applied

tomodel proteins at atomic resolution and aid the understanding

of communication pathways in proteins.40,41 For example, Shu-

kla et al. applied MD simulations to reveal the structures of inter-

mediates of a non-receptor tyrosine kinase c-Src and analyzed

its activation pathways to discover inhibitory allosteric sites.42

However, MD simulations require a vast amount of computa-

tional resources if applied at an atomistic level for large proteins,

and applying conventional all-atom MD simulations to access

the timescales of ligand-binding processes of proteins would

not be computationally feasible.43 To retain crucial characteris-

tics of dynamics but also alleviate high computational demands,

ENM was introduced.44 Performing NMA of ENM on proteins

provides access to global modes of the structures and results

in good agreement on large-scale motions with MD simula-

tions.45–47 Most available methods include NMA of ENM as the

main component and use a perturbation approach to measure

the response of the protein to ligand binding or unbinding,36

thereby predicting allosteric sites, such as PARS.48,49 The re-

sults obtained fromNMA of ENM can be combined with machine

learning for the identification of allosteric sites and have been

applied in AlloPred50 and AllositePro.51 Guarnera and Berezov-

sky introduced a structure-based statistical mechanical model

of allostery (SBSMMA) that differs from ENM52 to predict allo-

steric sites53 through the calculation of allosteric potential.54,55

Although both ENM and SBSMMA are successful in modeling

proteins and require much less computational power than MD

simulations, they have two inherent limitations: not providing

atomistic details of the protein and not considering long-range

interactions greater than a certain distance. A key limitation

associated with both ENM and SBAMMA is the presence of cut-

off distances for the harmonic interactions as the proteins repre-

sented by these two models are coarse grained at the residue

level. ENM treats each residue as a mass and represents a pro-

tein as a network of masses connected by virtual strings if they

are within a cutoff distance.56 SBSMMA uses the coarse-grained

representation of proteins based on Ca harmonic models, and

residues in contact must have their Ca atoms within a cutoff dis-

tance of 11 Å.52 As a result subtle changes in protein conforma-

tions cannot be captured.

Bond-to-bond propensity analysis was introduced recently to

circumvent these limitations, mainly to retain atomistic detail and



Figure 1. Atomistic graph construction

Main steps of the atomistic protein graph construction package, BagPype, using the structure of bovine seminal ribonuclease (PDB: 11BG)66 as an example.
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remain computationally efficient. It has been shown capable of

predicting allosteric sites requiring only knowledge of orthosteric

sites and ligands.57 The method builds on the construction of an

atomistic graph from a biomolecular structure with atoms

described as nodes and bonds, whether covalent or noncova-

lent, as weighted edges (Figure 1). The resulting protein graph

is analyzed with an edge-to-edge transfer matrixM (Method de-

tails), and the effect of fluctuations of an edge on any other edge

is calculated and represented by a propensity score. Therefore,

this approach enables the measurement of long-range coupling

between bonds, which is crucial for allosteric signaling. This

graph-theoretical model differs from all of the computational

methods discussed above, except MD simulations, as it uses a

fully atomistic representation of a protein that retains the phys-

ico-chemical details of a protein.58,59 Despite keeping the atom-

istic details of the protein structure, the method is computation-

ally efficient: by employing advances in algorithmic matrix

theory,60,61 the computation time scales approximately linearly

with respect to the number of edges, which makes the method

applicable to large and multimeric proteins62,63 and high-

throughput analysis in general. Furthermore, since there is no

cutoff distance for interactions, both weak and long-range inter-

actions within a protein can be captured by this model. There-

fore, bond-to-bond propensity analysis presents a more cost-

effective computational method to analyze proteins at the atom-

istic level and predict potential allosteric sites.

Bond-to-bond propensity analysis has successfully predicted

19 out 20 allosteric sites for a test set of 20 proteins57 and show-
cased the allostery in aspartate carbamoyltransferase (ATCase)

and the main protease of the severe acute respiratory syndrome

coronavirus 2.62,64 It has also been built into an efficient web

application, ProteinLens, for the study of allostery.65 To further

benchmark this methodology and provide comparable insights

into its performance across as diverse proteins as possible, we

apply it here to two recently developed large, encompassing da-

tasets, ASBench and CASBench. ASBench contains 235 allo-

steric sites,34 and computational methods such as AlloPred,50

AllositePro,51 and SBSMMA53 have made use of this dataset

for method validation. However, it is important to note that

some of these methods use only the chain of the protein that

contains orthosteric and allosteric sites. This means they may

potentially miss communication between the sites if the pathway

involves multiple chains or the entire protein structure, as seen in

multimeric proteins. We show in this work that bond-to-bond

propensity analysis achieves overall higher accuracy in the AS-

Bench dataset compared to the other methods using the same

benchmarking dataset (see Table S1). We further tested bond-

to-bond propensities with 314 structures of 33 proteins from a

more recent dataset, CASBench, which contains proteins with

multiple crystal structures.35We evaluated the allosteric site pre-

diction performance of our method in these datasets based on

the four statistical measures used in Amor et al.57 and two new

measures introduced in this work. Quantitative analysis of a

given site with these measures provides mechanistic insights

into the allosteric effects. The different scores can be exploited

by data scientists, for example, working in digital chemistry to
Patterns 3, 100408, January 14, 2022 3



Figure 2. Bond-to-bond propensity analysis

on the atomistic graph of bovine seminal

ribonuclease (PDB: 11BG) where the orthos-

teric residues (green) are used as the pertur-

bation source

(A) All residues are colored by residue QS (see

legend) obtained from bond-to-bond propensity

analysis.

(B) Surface representation of the protein structure

colored by QS. Relevant sites are highlighted and

labeled accordingly.

ll
OPEN ACCESS Article
guide molecular design and synthesis to target specific sites on

proteins for drug discovery through supervised learning and

automation.
RESULTS

Bond-to-bond propensity analysis on the ASBench
database

Proteins with annotated orthosteric residues, allosteric residues,

and ligands were collected from the ASBench and ASD data-

bases, as described in method details, which resulted in 118

structures of 113 distinct allosteric proteins. Bond-to-bond

propensity analysis utilizes the orthosteric ligand as the pertur-

bation source to mimic the ligand-binding event57 and to identify

regions on the protein that are functionally coupled to the

orthosteric site. However, as orthosteric ligands are not

available in structures from the ASBench database, the orthos-

teric site residues were selected as the perturbation source

instead. For each protein, quantile scores (QSs), both intrinsic

ðpb; allosteric site;pR; allosteric siteÞ and absolute ðpref
b ;pref

R Þ; of all its

bonds and residues can be calculated for the site(s) of interest.

To assess the performance of the method and the significance

of these calculated QSs, the allosteric site residues were used

as the site(s) of interest and evaluated with six statistical mea-

sures (see method details).

We here exemplify the method on bovine seminal ribonu-

clease (PDB: 11BG),66 where we used the orthosteric site resi-

dues (chain A: Asp14, Asn24, Asn27, Leu28, Asn94, and

Cys95; chain B: Cys32 and Arg33) as the perturbation source.

Figure 2 shows the propensity QS results mapped onto the pro-

tein structure, where blue (0) indicates a low and red (1) a high

connectivity to the orthosteric site. The values obtained from

the statistical measures for the allosteric residues (allosteric

ligand excluded if present) are summarized in Table 1.

Based on the criteria described, the experimentally identified

allosteric site can be detected with all six statistical measures.

This process was conducted for all 118 proteins obtained from

ASBench under two conditions: with and without the allosteric

ligand in the structure. The results are shown in Figure 3.
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In the presence of the allosteric ligand,

the allosteric site is detected for 106 of

118 structures, according to at least one

statistical measure, and for 81 of 118

structures, according to at least three sta-

tistical measures. When the allosteric
ligand is removed from the protein structure and the same anal-

ysis is applied, the allosteric site is detected for 99 of 118 struc-

tures, according to at least one statistical measure, and for 69 of

118 structures, according to at least three statistical measures.

The slight decrease in success rate is probably owing to the

non-existence of interactions of the allosteric ligandwith the allo-

steric site residues. Since these allosteric ligands are effective

allosteric modulators of the corresponding protein, the binding

of the allosteric ligand would strengthen the functional coupling

of the allosteric site to the orthosteric site, which can be high-

lighted by the method. The average residue QS of the allosteric

site for 109 of 118 structures decreased when the allosteric

ligand was not present, and the QSs for the other nine structures

only increased by less than 0.01, suggesting the same conclu-

sion. Despite a lower success rate without the allosteric ligand,

allosteric sites of 84% of the structures can be identified with

only the knowledge of orthosteric site residues.

Prediction accuracy of bond-to-bond propensity
analysis on the ASBench database
We focus here on the 12 structures with allosteric ligands where

the allosteric site could not be detected by any of the measures.

From those 12, the orthosteric residues of three structures (PDB:

1UXV, 2VD3, and 3QH0) reported in the ASD database are incor-

rect (they do not form a binding site), and those of one further

structure (PDB: 2ATS) do not match with the data in ASBench.

From the remaining eight, six structures (PDB: 1M8P, 3D2P,

3DC2, 3HQP, 3R1R, and 4HYW) obtained from the ASBench

are only one part of a large and complex multimeric protein,

where the effect of cooperativity might play a crucial role. There-

fore, without the complete protein structure, the allosteric

signaling cannot be detected. For example, it has been demon-

strated with ATCase, a large dodecameric protein with six or-

thosteric sites, that only when at least three orthosteric sites

are involved is allosteric behavior detected.62 Since only one or-

thosteric site is reported in ASBench for these structures, this

could explain the failure of identification of allosteric sites in

these proteins when using only one orthosteric site as the pertur-

bation source. From the remaining two structures, the G336V

mutant of Escherichia coli, phosphoglycerate dehydrogenase



Figure 3. Summary of allosteric site detection results for 118 struc-

tures in the ASBench database

Propensity analysis was conducted for all 118 structures under two conditions:

(1) with allosteric ligand in the protein structure (blue) and (2) without allosteric

ligand in the protein structure (orange). The x-axis represents the number of

statistical measures that successfully identify the allosteric site. Each bar in-

dicates the number of protein structures of which the allosteric sites can be

detected by a certain number of statistical measures shown on the x-axis.

Take the last two bars as an example: the allosteric site(s) can be detected

using all six statistical measures for 26 proteins structures with the presence of

allosteric ligand (blue bar). When the allosteric ligand is removed from the

structures, allosteric site(s) of 19 structures can be identified with all six

measures (orange bar). Detailed data can be found in Tables S3 and S4.

Table 1. Results of bond-to-bond propensity analysis with six

statistical measures for bovine seminal ribonuclease

(PDB: 11BG)

Statistical

measures Results

Allosteric

site detection

pb; allosteric site [95% CI] 0.529 (> 0.495)

[0.478, 0.495]

Success

pR; allosteric site [95% CI] 0.665 (> 0.528)

[0.522, 0.528]

Success

Pðpb; allosteric site >0:95Þ 0.081 (> 0.05) Success

PðpR; allosteric site >0:95Þ 0.125 (> 0.05) Success

pref
b; allosteric site 0.508 (> 0.5) Success

pref
R; allosteric site 0.780 (> 0.5) Success

Note that for pb; allosteric site and pR; allosteric site, the results need to be

greater than the upper bound of the corresponding 95% confidence in-

terval (95% CI), for Pðpb; allosteric site >0:95Þ and PðpR; allosteric site >0:95Þ;
the results need to be greater than the expectation value of 0.05, and

for pref
b; allosteric site and pref

R; allosteric site, the results need to be greater than

the expectation value of 0.5.
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(PDB: 2PA3), displays a different allosteric mechanism, the flip

flop mechanism,67 which involves large-scale mechanical

changes. Lastly, the human muscle glycogen phosphorylase

(PDB: 1Z8D) contains two allosteric sites,68 with only allosteric

site 1 being detected, highlighted in red in Figure 4. This is due

to the other site (highlighted in blue) being in close proximity to

the orthosteric site, where the inhibition is achieved by blocking

the entry channel to the orthosteric site.69 Moreover, direct inter-

actions, instead of functional coupling, occur if sites are close to

the orthosteric sites, which is out of the scope of bond-to-bond

propensity analysis, developed for allosteric, rather than direct,

signaling detection.

Upon removing the allosteric ligands, allosteric sites of seven

more structures could not be identified. For the structure of UDP-

glucose dehydrogenase (PDB: 3PJG), ASBench has incorrect

orthosteric residues reported (not forming a binding pocket),

so a wrong perturbation source was used. Hemoglobin (PDB:

1B86) is a well-known protein with cooperativity underpinning

its activity70 that contains four orthosteric sites. As only one or-

thosteric site is reported in ASBench, the coupling of the allo-

steric site to this one site could not be detected as it might not

be strong enough. Two structures (PDB: 3C1N and 3H6O) are

large and complexmultimeric proteins where again cooperativity

would affect the results. The orthosteric sites and allosteric sites

of the other three structures (PDB: 2W4I, 3MWB, and 4B1F),

similar to those of 1Z8D above, are in close proximity. The allo-

steric effect is not mediated by functional coupling and is thus

not revealed by propensity analysis.

It is worth noting that the allosteric sites are generally large in

size based on the definition provided in the ASBench database

(residues within 4 Å from the allosteric ligand). In the previous

bovine seminal ribonuclease (PDB: 11BG) example, the allo-

steric site contains eight residues, but only four residues form

direct interactions with the allosteric ligand. Therefore, these

four residues are responsible for allosteric signaling as the direct

interactions connecting the ligand and the protein are essentially

where the perturbation starts (see Table 2).
pb; allosteric site does not change, whereas pR; allosteric site de-

creases slightly when only four allosteric residues were scored.

However, the drop in mean QS and the 95% confidence interval

calculated from the 1,000 surrogate sites indicates that the allo-

steric site becomesmore significant compared with other similar

sites on the protein. The increase of values for the other four

measures complements this argument. Therefore, defining the

allosteric site with the four interacting residues leads to better

detection of the allosteric site, and one needs to take note that

actual results may be buried by the definition of a large allosteric

site. Hence, it is important to characterize the allosteric site and

include relevant residues properly, which presents an ongoing

problem.71

Similarly, not all residues in the orthosteric site defined in the

database interact with the orthosteric ligand or support its bind-

ing. Due to the absence of orthosteric ligands in the structures

from the ASBench database, comparisons between using the

orthosteric site residues and the orthosteric ligand as perturba-

tion source cannot be achieved.

Bond-to-bond propensity analysis on the CASBench
database
314 structures of 33 allosteric proteins with orthosteric ligands

and description of orthosteric and allosteric residues were

collected from the CASBench database. As seen in the ASBench

data analysis above, the presence of the allosteric ligand

strengthens the coupling to the orthosteric site and makes the

result biased toward successful detection of the allosteric site.

Hence, the allosteric ligand (if present in the structure) is

removed when carrying out bond-to-bond propensity analysis

for the CASBench database.

Bond-to-bond propensity analysis was conducted for these

314 structures using the orthosteric ligand or orthosteric site res-

idues (with orthosteric ligand removed) as the perturbation
Patterns 3, 100408, January 14, 2022 5



Table 2. Results of bond-to-bond propensity analysis with six

statistical measures for bovine seminal ribonuclease

(PDB: 11BG)

Statistical

measures

Results (8

allosteric residues)

Results (4

allosteric residues)

pb; allosteric site [95% CI] 0.529 (> 0.495)

[0.478, 0.495]

0.529 (> 0.495)

[0.475, 0.495]

pR; allosteric site [95% CI] 0.665 (> 0.528)

[0.522, 0.528]

0.659 (> 0.501)

[0.494, 0.501]

Pðpb; allosteric site >0:95Þ 0.081 (> 0.05) 0.106 (> 0.05)

PðpR; allosteric site >0:95Þ 0.125 (> 0.05) 0.25 (> 0.05)

pref
b; allosteric site 0.508 (> 0.5) 0.510 (> 0.5)

pref
R; allosteric site 0.780 (> 0.5) 0.808 (> 0.5)

Note that for pb; allosteric site and pR; allosteric site, the results need to be

greater than the upper bound of the corresponding 95% confidence in-

terval (95% CI), for Pðpb; allosteric site >0:95Þ and PðpR; allosteric site >0:95Þ;
the results need to be greater than the expectation value of 0.05, and

for pref
b; allosteric site and pref

R; allosteric site, the results need to be greater than

the expectation value of 0.5.

Figure 4. Structure of human muscle glycogen phosphorylase

(PDB: 1Z8D)

The orthosteric (green) and two allosteric (circled in blue and red) site residues

are highlighted as spheres.
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source in two separate runs.Whenmultiple orthosteric ligands or

sites are present, all of them were used as the perturbation

source. Moreover, when there are multiple allosteric sites in

the protein structure, each of them is investigated separately

with the six statistical measures, and the average value for

each of the measures is used to decide whether the allosteric

sites can be detected for the protein. Table 3 summarizes the re-

sults for yeast chorismatemutase (PDB: 3CSM),72 an example of

a system with two allosteric sites.

It is observed in some cases that some of the allosteric sites of

the protein can be detected by a particularmeasure, whereas the

other sites cannot be detected (Pðpb; allosteric site >0:95Þ in this

case). Therefore, the criteria used here are stringent and would

be effective and meaningful in assessing the performance of

bond-to-bond propensity analysis; the performance summary

is shown in Figure 5.

When the orthosteric ligand is selected as the perturbation

source, the allosteric site is detected for 308 of 314 structures

(32 of 33 proteins), according to at least one statistical measure.

When using the orthosteric site residues as the perturbation

source, the allosteric site is detected for 304 of 314 structures

(32 of 33 proteins), according to at least one statistical measure.

It is observed that, in general, the allosteric site of a protein struc-

ture can be identified with more statistical measures when the

orthosteric ligand is set as the perturbation source.

If the orthosteric ligand is selected as the perturbation source,

the source bonds include the weak bonds formed by the ligand

and the surrounding residues. The orthosteric site includes all

residues within 5 Å of the orthosteric ligand.35 Therefore, the

number of source bonds is much lower compared with when us-

ing the entire orthosteric site residues as the perturbation

source. The different and better results obtained by using the
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ligand as the perturbation source suggest that the allosteric

site is closely coupled to the ligand-binding event at the orthos-

teric site. Although successful allosteric site detection is

achieved by fewer statistical measures using the whole orthos-

teric site as the perturbation source, the method still succeeds

in identifying allosteric sites for more than 96% of the 314 struc-

tures. Combined with the results from analyzing the ASBench

database, for which orthosteric residues are used as the pertur-

bation source, the results indicate that propensity analysis re-

veals the intrinsic coupling of the allosteric site to the region

where the orthosteric binding occurs. Using the orthosteric

ligand as the perturbation source allows a more accurate detec-

tion of allosteric sites. However, if there is no structure containing

the orthosteric ligand, the approximate site containing orthos-

teric residues would still be a good choice to uncover distant

sites coupled to the region and provide guidance on allosteric

site detection.

Prediction accuracy of bond-to-bond propensity
analysis on the CASBench database
We focus here on the six structures for which the allosteric site

cannot be detected by any of the measures when using orthos-

teric ligands as the perturbation source. One of them (PDB:

4R1R) is ribonucleotide reductase protein R1 (CAS0047). It is a

large and complex multimeric protein, and only one orthosteric

site is reported in the CASBench database. Hence, the effect

of cooperativity could affect the performance of propensity anal-

ysis as previously discussed. Another two structures (PDB:

1FUQ and 1KQ7) are two out of the four structures of fumarase

(CAS0085). This is also a complex multimeric protein where

bond-to-bond propensity analysis may not perform well if not

all orthosteric ligands are present. The remaining three struc-

tures are epoxide hydrolase (CAS0002) (PDB: 5AIA, 5ALN, and

5ALT). We analyzed 28 structures of epoxide hydrolase in total,

each with a different orthosteric ligand. Hence, different ligands,

even when binding at the same orthosteric site, exert different

perturbation effects on the protein.



Table 3. Results of bond-to-bond propensity analysis with six statistical measures and averaging for yeast chorismate mutase

(PDB: 3CSM)

Statistical

measures Results Average

Allosteric

site detection

pb; allosteric site [95% CI] Site 1: 0.518 (> 0.505) [0.499, 0.505];

Site 2: 0.527 (> 0.505) [0.498, 0.503]

0.522 (> 0.505) [0.499, 0.505] Success

pR; allosteric site [95% CI] Site 1: 0.560 (> 0.531) [0.529, 0.531];

Site 2: 0.598 (> 0.530) [0.527, 0.530]

0.579 (> 0.531) [0.529, 0.531] Success

Pðpb; allosteric site >0:95Þ Site 1: 0.048 (< 0.05); Site 2: 0.060 (> 0.05) 0.054 (> 0.05) Success

PðpR; allosteric site >0:95Þ Site 1: 0.056 (> 0.05); Site 2: 0.056 (> 0.05) 0.056 (> 0.05) Success

pref
b; allosteric site Site 1: 0.491 (< 0.5); Site 2: 0.495 (< 0.5) 0.493 (< 0.5) Failure

pref
R; allosteric site Site 1: 0.586 (> 0.5); Site 2: 0.607 (> 0.5) 0.596 (> 0.5) Success

The two allosteric sites were scored separately based on the six metrics separately, and the average score was used to assess whether the allosteric

sites of yeast chorismate mutase can be detected by each measure. Note that for pb; allosteric site and pR; allosteric site, the results need to be greater than

the upper bound of the corresponding 95% confidence interval (95% CI), for Pðpb; allosteric site >0:95Þ and PðpR; allosteric site >0:95Þ; the results need to be

greater than the expectation value of 0.05, and for pref
b; allosteric site and pref

R; allosteric site, the results need to be greater than the expectation value of 0.5.
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When orthosteric residues were used as the perturbation

source, the allosteric sites of two structures (PDB: 1LLD and

1LTH) of L-lactate dehydrogenase (CAS0028) were not identified.

This can be partly explained by the changed perturbation effects

as the allosteric sites were identified when sourcing from the or-

thosteric ligands. In CASBench, the orthosteric sites include res-

idueswithin 5 Å from theorthosteric ligands,which leads toa large

region as the perturbation source. This shows that the specific

ligand-site interactions are crucial for accurate allosteric site

detection. This is consistent with the overall trend since it has

been shown above that successful allosteric site detection is

achievedbymorestatisticalmeasuresusing theorthosteric ligand

as the perturbation source. Moreover, allosteric sites of another

eight structureswerenot detectedwhenonly using theorthosteric

site residues as the perturbation source. This further strengthens

the idea that the method is sensitive to specific interactions be-

tween the ligand and the protein and holds the potential to eval-

uate the performance of different ligands in the orthosteric site.
DISCUSSION

Allosteric sites are of great interest in understanding biological

function as well as in drug targeting, but they are difficult to pre-

dict and, in general, poorly understood. They are usually discov-

ered serendipitously and require experimental verification. Two

recently introduced allosteric protein databases, ASBench34

and CASBench,35 aim to collect available information on known

allosteric sites and are hence excellent benchmarking tools for

promising computational approaches. To test the capability of

bond-to-bond propensity analysis, a recently developedmethod

that was shown to be able to predict allosteric sites, we deployed

the method to both databases, which, after cleaning, provided

432 protein structures for analysis.

An important part of this process is the scoring of the target

sites. In addition to previously used scoring measures, we intro-

duced two additional statistical measures, namely the average

reference residue QS of the allosteric residues, pref
R; allosteric site,

and the proportion of allosteric residues with a QS greater than

0.95, PðpR; allosteric site >0:95Þ: The first measures the absolute
propensities of residues in the allosteric site compared with the

Structural Classification of Proteins (SCOP) reference set, and

the second counts the number of high scoring residues in the

allosteric site. These two measures complement the existing

four metrics and enable thorough analysis of the significance

of the QS computed from bond-to-bond propensity analysis. In

the previous benchmarking against ASBench, we only applied

the four measures from Amor et al. and identified allosteric sites

for 102 out of 118 structures.65 The additional measures enable

us to identify allosteric sites of four more protein structures. The

reason we have six different measures roots from the unclear

definition of allosteric mechanisms. Some may argue that the

ligand-binding event at the allosteric site causes a global confor-

mational change of the protein that leads to the allosteric effect,

but some attribute the effect to signaling between the orthosteric

and the allosteric sites. pb; allosteric site and pR; allosteric site evaluate

the intrinsic coupling strength of the entire allosteric site to the

orthosteric site. Pðpb; allosteric site >0:95Þ and

PðpR; allosteric site >0:95Þ focus more on the critical bonds and res-

idues responsible for allosteric signaling. Lastly, pref
b; allosteric site

and pref
R; allosteric site further confirm the coupling between the allo-

steric and orthosteric sites. Unlike most of the present computa-

tional methods that use one score to rank cryptic sites and pre-

dict the allosteric site, using multiple scores in the prediction of

allosteric sites by considering different aspects of allosteric ef-

fects is practical. This can also be adopted by researchers in

this field to further benchmark and improve on the quantitative

analysis of a target site of a protein. This expands the scope of

future work on how to best use the different scores in predicting

allosteric sites as well as sheds light on potential allosteric mech-

anisms involved within the protein through carefully examining

the proteins tested in this work and the corresponding scores

from the six measures.

Benchmarking datasets of allosteric proteins, namely the AS-

Bench and the CASBench databases, were used for analysis.

For structures in ASBench, the orthosteric residues were used

as the perturbation source. With the presence of the allosteric

ligand, the allosteric site is identified for 106 of 118 (89.8%) struc-

tures and the allosteric site is detected for 99 of 118 (83.9%)
Patterns 3, 100408, January 14, 2022 7



Figure 5. Summary of allosteric site detection results for 314 struc-

tures in the CASBench database
Propensity analysis was conducted for all 314 structures under two conditions:

(1) using orthosteric ligand(s) as the perturbation source (blue) and (2) using

orthosteric residues (removed orthosteric ligands) as the perturbation source

(orange). The x-axis represents the number of statistical measures that suc-

cessfully identify the allosteric site. Each bar indicates the number of protein

structures of which the allosteric sites can be detected by a certain number of

statistical measures shown on the x-axis. Take the last two bars as an

example: the allosteric site(s) can be detected using all six statistical measures

for 56 proteins structures when using the orthosteric ligand(s) as the pertur-

bation source. When using the orthosteric site residues as the perturbation

source, allosteric site(s) of 58 structures can be identifiedwith all six measures.

Detailed data can be found in Tables S6 and S7.
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structures when the allosteric ligand is removed, according to at

least one statistical measure. Despite the strengthening of func-

tional coupling of the allosteric site to the orthosteric site by the

allosteric ligand, propensity analysis is still able to reveal the

intrinsic connectivity between the two sites. For the CASBench

database, we conducted our analysis sourced from the orthos-

teric ligands or the orthosteric residues and managed to detect

the allosteric sites according to at least one statistical measure

for 308 of 314 (98.1%) structures (32 of 33 proteins) and for 304

of 314 (96.8%) structures (32 of 33 proteins), respectively. The

allosteric site of a protein structure can be identified with more

statistical measures when choosing the orthosteric ligand as the

perturbation source. This observation suggests that using the

ligand as the perturbation source confers the perturbation effect

of the binding event more accurately. However, if the information

on the orthosteric substrate is not available, it is viable to select

the orthosteric residues as the perturbation source.

Four existing computational methods have been benchmarked

using the allosteric protein data from ASBench and ASD. Since

the protocols for protein structure selection and collection of

relevant site information are different for each method, a direct

comparison cannot be fully achieved. The prediction accuracies

of AllositePro,51 AlloPred,50 and PARS48 are 51.7%, 59%, and

65%, respectively, while Tee et al.53 did not report the prediction

accuracyof SBSMMA.Bond-to-bondpropensity analysis outper-

forms these methods with a prediction accuracy of 84% when

benchmarked against 118 structures from the ASBench dataset.

The results presented here strengthen confidence in allosteric

site identification predicted by bond-to-bond propensity, which

coupled with the efficiency of the method make it an attractive

approach. Generally, the definition of orthosteric and allosteric

residues, which would significantly affect the size and residues

involved, plays an essential part when evaluating allosteric site

prediction methods and was also highlighted for bond-to-bond
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propensity analysis. Finally, more detailed analysis would be

usually required in cases where the allosteric site and the orthos-

teric site are in very close proximity, to elucidate the effect of co-

operativity in large and complex multimeric proteins or the role of

structural water molecules, which could still be possible given

the computational efficiency of the approach. The introduction

of the statistical measures coupled with the availability of large

datasets and the efficiency of computing bond-to-bond propen-

sity taken together strengthens our understanding of allostery

and builds the groundwork to a more targeted and data-driven

allosteric drug design.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Sophia N. Yaliraki (s.yaliraki@imperial.ac.uk).

Data and code availability

All protein structures used in this project and results obtained using bond-

to-bond propensity are deposited at figshare with https://doi.org/10.6084/

m9.figshare.16940317.v1. The method can be accessed via the ProteinLens

webserver.65

Materials availability

The authors declare that no materials were generated or used during

this study.

Allosteric protein datasets

The ASBench database

235 X-ray crystal structures of allosteric proteins were downloaded from the

ASBench database. Experimentally determined orthosteric and allosteric

site residues for these proteins were attained from ASD Release 4.10.73 The

data was further processed to exclude entries without orthosteric site informa-

tion or incomplete structures. The resulting 118 structures were all analyzed by

bond-to-bond propensity. Details can be found in Table S2. Note that results

on the first four of the six scoring measures were first reported in the supple-

mentary information of Mersmann et al.65 without any analysis.

The CASBench database

X-ray crystal structures containing various orthosteric and allosteric ligands of

91 allosteric proteins in PDB format were downloaded from the CASBench

website together with the corresponding experimentally determined orthos-

teric and allosteric site residues. This data was further processed to exclude

incomplete structures, and the resulting 314 structures of 33 distinct proteins

were used for bond-to-bond propensity analysis. The proteins in CASBench

are labeled with CAS ID, and the list of proteins with corresponding CAS ID

used in this work can be found in Table S5.

Method details

Construction of the atomistic protein graph

Bond-to-bond propensity analysis starts by constructing a weighted atom-

istic graph using the three-dimensional coordinates of the atoms of the

protein in the PDB files. Atoms are represented by nodes, and interactions

(covalent and non-covalent) between the atoms are represented by edges.

The weights of edges correspond to the interaction energies between the

atoms with weights derived from relevant interatomic potentials. An in-

depth procedure for the atomistic protein graph construction has been

described in Delmotte et al. and Amor et al.58,59 In this work, Biochemical,

atomistic graph construction software in Python for proteins (BagPype)65,74

was used to construct the atomistic protein graph, and Figure 1 illustrates

the main features of this process using bovine seminal ribonuclease (PDB:

11BG)66 as an example. The crystal structures in the PDB files are cleaned

by removing water molecules and unwanted ligands followed by adding

hydrogen atoms using Reduce (v.3.23),75 which is incorporated in Bag-

Pype. Covalent bonds are weighted using standard bond energies.76 The

weighting of p-p stacking, hydrophobic interaction, hydrogen bonding,

mailto:s.yaliraki@imperial.ac.uk
https://doi.org/10.6084/m9.figshare.16940317.v1
https://doi.org/10.6084/m9.figshare.16940317.v1
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and electrostatic interactions is done based on potentials in Hunter and

Sanders,77 Lin et al.,78 Mayo et al.,79 and Jorgensen and Tirado-Tives,80

respectively. The weighted graph is then converted to an N3 N adjacency

matrix, where N is the number of nodes (atoms).

Bond-to-bond propensities

Bond-to-bond propensity was first introduced in Amor et al.57 and further dis-

cussed in Hodges et al.,62 so it is only briefly summarized here. The edge-to-

edge transfer matrix M was introduced to study non-local edge-coupling in

graphs,81 and an alternative interpretation of M is employed to analyze the

atomistic protein graph. The element Mij describes the effect that a perturba-

tion at edge i has on edge j. M is given by

M =
1

2
WBTLyB (Equation 1)

where B is the n3m incidence matrix for the atomistic protein graph with n no-

des andm edges;W = diagðwijÞ is anm3m diagonal matrix that possesses all

edge interaction energies withwij as the weight of the edge connecting nodes i

and j, i.e., the bond energy between the atoms. Ly is the pseudo-inverse of the

weighted graph Laplacian matrix L.82 L, which defines the diffusion dynamics

on the energy-weighted graph,83 is defined as follows:

Lij =

8<:
�wij ; isjX
j

wij ; i = j (Equation 2)

To evaluate the effect of perturbations froma groupof bondsb0;which belong

to the orthosteric ligand or the orthosteric site residues (i.e., the perturbation

source), on a bond b anywhere else in the protein, we calculate the following:

Yraw
b

=
X

b0 ˛ source

jMbb0 j (Equation 3)

This is the raw propensity of an individual bond that reflects how strongly the

bond is coupled to the perturbation source. As different proteins contain

different numbers of bonds, the raw propensity is normalized and the bond

propensity is defined as follows:

Y
b

=

Qraw
bP

b

Qraw
b

(Equation 4)

The residue propensity is then defined as the sum of normalized bond pro-

pensities of all the bonds of a residue, R:Y
R

=
X
b ˛ R

Y
b

(Equation 5)

Quantile regression

Bond and residue propensities naturally decrease as the distance of the bond or

residue from theperturbation source increases. Todetermine thebondsand res-

idues that are significant, bond and residue propensities at a similar distance

from theperturbation sourcearecomparedusingconditional quantile regression

(QR).84 The distance of a bond b from the perturbation source is defined as the

minimum distance, db; between b and any bond of the perturbation source:

db = min
b0 ˛ source

jxb � xb0 j; (Equation 6)

where the vector xb contains the cartesian coordinates of themidpoint of bond

b. As propensity
Q
b

decays exponentially with distance d, a linear model for the

logarithm of the propensities is adopted to solve the QRminimization problem:

bbprotein

b ðpÞ = argmin
ðbb;0 ;bb;1Þ

Xprotein
b

rp

 
log

 Y
b

!
� �bb;0 + bb;1db

�!
; (Equation 7)

where rpð ,Þ is the tilted absolute value function,

rpðyÞ = jyðp� 1ðy <0ÞÞj; (Equation 8)

p is the quantile, and 1ð ,Þ is the indicator function. The optimized modelbbprotein
= ðbbprotein

b;0 ðpÞ; bbprotein

b;1 ðpÞÞ describes the sum of the quantiles of the pro-

pensities for all bonds in the protein. The bond quantile score of bond b with
propensity
Q
b

at distance db from the perturbation source can be calculate

by finding the quantile pb such that

pb = argmin
p ˛ ½0;1�

�����log
 Y

b

!
�
�bbprotein

b;0 ðpÞ + bbprotein

b;1 ðpÞdb

������ (Equation 9)

The residue quantile score of residue R is defined similarly by using the

residue propensity as shown in Equation 5 and the distance dp, which is the

minimum distance between the atoms of a residue and those of the perturba-

tion source. Therefore,

bbprotein

R ðpÞ = argmin
ðbR;0 ;bR;1Þ

Xprotein
R

rp

 
log

 Y
R

!
� �bR;0 + bR;1dR

�!
; (Equation 10)

and

pR = argmin
p ˛ ½0;1�

�����log
 Y

R

!
�
�bbprotein

R;0 ðRÞ + bbprotein

R;1 ðpÞdR

������ (Equation 11)

are used to calculate the residue quantile score.

Statistical evaluation of allosteric bond and residue quantile scores

Four statistical measures have been used to evaluate the significance of the

QS by Amor et al.57 and were employed in this project, as listed below:

1. The average bond QS of the allosteric site:

pb; allosteric site =

P
b ˛ allosteric sitepb

Nb; allosteric site

(Equation 12)

where Nb; allosteric site is the number of bonds in the allosteric site.

2. The average residue QS of the allosteric site:

pR; allosteric site =

P
R ˛ allosteric sitepR

NR; allosteric site

(Equation 13)

where NR; allosteric site is the number of residues in the allosteric site.

3. The proportion of bonds in the allosteric site with bond QS greater

than 0.95,

i.e., P
�
pb; allosteric site >0:95

�
:

4. The average reference bond QS of the allosteric site:

pref
b; allosteric site =

Pref
b ˛ allosteric sitep

ref
b

Nb; allosteric site

(Equation 14)

where Nb; allosteric site is the number of bonds in the allosteric site.

For the purpose of complementing these previous measures and to investi-

gate more aspects of allosteric site detection, two additional measures were

introduced in this work:

5. The proportion of residues in the allosteric site with residue QS greater

than 0.95,

i.e., PðpR; allosteric site >0:95Þ:

6. The average reference residue QS of the allosteric site:

pref
R; allosteric site =

Pref
R ˛ allosteric sitep

ref
R

NR; allosteric site

(Equation 15)

where NR; allosteric site is the number of residues in the allosteric site.

If the functional coupling is the result of a cumulative effect of the whole allo-

steric site, an accurate measure of the allosteric propensity would be the

average QS of all bonds or residues in the allosteric site. Hence, measures

1, 2, 4, and 6 would be able to uncover the cumulative effect at both the
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bond and residue level for both the intrinsic propensities of the protein and the

absolute propensities comparing with the SCOP reference set.57 It is also

possible that only a few bonds or residues with high QS in the allosteric site

are responsible for the functional coupling to the orthosteric site, while other

allosteric bonds or residues are associated with structural and energetics as-

pects of allosteric ligand binding. Measures 3 and 5 are able to detect the pro-

portion of those high scoring bonds. This is because QS is uniformly distrib-

uted, and the bonds with QS greater than 0.95 belong to the top 5% of all

the bonds in the protein.

To assess the significance of the average bond and residueQS pb; allosteric site

and pR; allosteric site; structural bootstrap is used to sample random surrogate

sites from the same protein. These surrogate sites need to follow two structural

rules: (1) the number of residues is equal to the number of residues in the

allosteric site, and (2) the diameter (maximum distance between any

two atoms in the site) is smaller than that of the allosteric site. For each pro-

tein, 1,000 surrogate sites are generated, and the average bond and

residue QS Cpb; siteDsurrogate sites and CpR; siteDsurrogate sites of these sites are calcu-

lated. The scores are compared with those of the allosteric sites

ðpb; allosteric site and pR; allosteric siteÞ: A 95% confidence interval is obtained for

each protein to assess the statistical significance by using bootstrap with

10,000 resamples with replacement.85 Figure 2 illustrates the process using

bovine seminal ribonuclease (PDB: 11BG)66 as an example. If the average

QS, whether bond or residue of the allosteric residues, is greater than the up-

per bound of the 95% confidence interval, the allosteric site is assumed to be

detected according to the corresponding statistical measure. The proportion

of both bonds and residues of the allosteric residues with a QS greater than

0.95 ðPðpb; allosteric site >0:95Þand PðpR; allosteric site >0:95ÞÞ is then calculated. If

the proportion exceeds the expected proportion of 0.05, the allosteric site is

classified as identified. Lastly, the average reference bond and residue QS

of the allosteric residues ðpref
b; siteand pR; siteÞ are computed, and a value greater

than 0.5 (the expected value) suggests that the allosteric site is uncovered.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100408.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with Florian Song, Ching Ching Lam, and

Jerzy Pilipczuk. This work was funded by the President’s PhD Scholarships,

Imperial College London, to N.W.. L.S. acknowledges funding from a Well-

come Trust studentship [grant number 215360/Z/19/Z]. N.W. and S.N.Y.

acknowledge funding from the EPSRC award EP/N014529/1 supporting the

EPSRC Centre for Mathematics of Precision Healthcare.

AUTHOR CONTRIBUTIONS

N.W., L.S., and S.N.Y. conceived the study. N.W. performed the computations

and created the figures, and all authors analyzed the data and wrote the

manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: August 18, 2021

Revised: September 6, 2021

Accepted: November 15, 2021

Published: December 9, 2021

REFERENCES

1. Casem, M.L. (2016). Chapter 3 - Proteins. Case Studies in Cell Biology

(Academic Press), pp. 23–71. https://doi.org/10.1016/B978-0-12-

801394-6.00003-8.
10 Patterns 3, 100408, January 14, 2022
2. Gonzalez, M.W., and Kann, M.G. (2012). Chapter 4: protein interactions

and disease. PLoS Comput. Biol. 8, 1–11. https://doi.org/10.1371/jour-

nal.pcbi.1002819.

3. Santos, R., Ursu, O., Gaulton, A., Bento, A.P., Donadi, R.S., Bologa, C.G.,

Karlsson, A., Al-Lazikani, B., Hersey, A., Oprea, T.I., and Overington, J.P.

(2017). A comprehensive map of molecular drug targets. Nat. Rev. Drug

Discov. 16, 19–34. https://doi.org/10.1038/nrd.2016.230.

4. Abdel-Magid, A.F. (2015). Allosteric modulators: an emerging concept in

drug discovery. ACS Med. Chem. Lett. 6, 104–107. https://doi.org/10.

1021/ml5005365.

5. Grover, A.K. (2013). Use of allosteric targets in the discovery of safer

drugs. Med. Principles Pract. 22, 418–426. https://doi.org/10.1159/

000350417.

6. Traxler, P., and Furet, P. (1999). Strategies toward the design of novel and

selective protein tyrosine kinase inhibitors. Pharmacol. Ther. 82, 195–206.

https://doi.org/10.1016/S0163-7258(98)00044-8.

7. Munita, J.M., and Arias, C.A. (2016). Mechanisms of antibiotic resistance.

Microbiol. Spectr. 4, 0016–2015. https://doi.org/10.1128/microbiolspec.

VMBF-0016-2015.

8. Li, W., Atkinson, G.C., Thakor, N.S., Allas, U., Lu, C.-c., Chan, K.-Y.,

Tenson, T., Schulten, K., Wilson, K.S., Hauryliuk, V., and Frank, J.

(2013). Mechanism of tetracycline resistance by ribosomal protection pro-

tein Tet(O). Nat. Commun. 4, 1477. https://doi.org/10.1038/ncomms2470.

9. Dӧnhӧfer, A., Franckenberg, S., Wickles, S., Berninghausen, O.,

Beckmann, R., and Wilson, D.N. (2012). Structural basis for TetM-medi-

ated tetracycline resistance. Proc. Natl. Acad. Sci. U S A 109, 16900–

16905. https://doi.org/10.1073/pnas.1208037109.

10. Hooper, D.C. (2002). Fluoroquinolone resistance among Gram-positive

cocci. Lancet Infect. Dis. 2, 530–538. https://doi.org/10.1016/S1473-

3099(02)00369-9.

11. Leclercq, R. (2002). Mechanisms of resistance to macrolides and lincosa-

mides: nature of the resistance elements and their clinical implications.

Clin. Infect. Dis. 34, 482–492. https://doi.org/10.1086/324626.

12. Hiramatsu, K., Ito, T., Tsubakishita, S., Sasaki, T., Takeuchi, F., Morimoto,

Y., Katayama, Y., Matsuo, M., Kuwahara-Arai, K., Hishinuma, T., and

Baba, T. (2013). Genomic basis for methicillin resistance in

Staphylococcus aureus. Infect. Chemother. 45, 117–136. https://doi.org/

10.3947/ic.2013.45.2.117.

13. Wodak, S.J., Paci, E., Dokholyan, N.V., Berezovsky, I.N., Horovitz, A., Li,

J., Hilser, V.J., Bahar, I., Karanicolas, J., Stock, G., et al. (2019).

Allostery in its many disguises: from theory to applications. Structure 27,

566–578. https://doi.org/10.1016/j.str.2019.01.003.

14. Peracchi, A., and Mozzarelli, A. (2011). Exploring and exploiting allostery:

models, evolution, and drug targeting. Biochim. Biophys. Acta 1814,

922–933. https://doi.org/10.1016/j.bbapap.2010.10.008.

15. Kenakin, T., and Miller, L.J. (2010). Seven transmembrane receptors as

shapeshifting proteins: the impact of allosteric modulation and functional

selectivity on new drug discovery. Pharmacol. Rev. 62, 265–304. https://

doi.org/10.1124/pr.108.000992.

16. De Smet, F., Christopoulos, A., and Carmeliet, P. (2014). Allosteric target-

ing of receptor tyrosine kinases. Nat. Biotechnol. 32, 1113–1120. https://

doi.org/10.1038/nbt.3028.

17. Christopoulos, A., May, L.T., Avlani, V.A., and Sexton, P.M. (2004). G-pro-

tein-coupled receptor allosterism: the promise and the problem(s).

Biochem. Soc. Trans. 32, 873–877. https://doi.org/10.1042/BST0320873.

18. Wenthur, C.J., Gentry, P.R., Mathews, T.P., and Lindsley, C.W. (2014).

Drugs for allosteric sites on receptors. Annu. Rev. Pharmacol. Toxicol.

54, 165–184. https://doi.org/10.1146/annurev-pharmtox-010611-134525.

19. Fox, S., Farr-Jones, S., Sopchak, L., Boggs, A., Nicely, H.W., Khoury, R.,

and Biros, M. (2006). High-throughput screening: update on practices

and success. J. Biomol. Screen. 11, 864–869. https://doi.org/10.1177/

1087057106292473.

https://doi.org/10.1016/j.patter.2021.100408
https://doi.org/10.1016/j.patter.2021.100408
https://doi.org/10.1016/B978-0-12-801394-6.00003-8
https://doi.org/10.1016/B978-0-12-801394-6.00003-8
https://doi.org/10.1371/journal.pcbi.1002819
https://doi.org/10.1371/journal.pcbi.1002819
https://doi.org/10.1038/nrd.2016.230
https://doi.org/10.1021/ml5005365
https://doi.org/10.1021/ml5005365
https://doi.org/10.1159/000350417
https://doi.org/10.1159/000350417
https://doi.org/10.1016/S0163-7258(98)00044-8
https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
https://doi.org/10.1038/ncomms2470
https://doi.org/10.1073/pnas.1208037109
https://doi.org/10.1016/S1473-3099(02)00369-9
https://doi.org/10.1016/S1473-3099(02)00369-9
https://doi.org/10.1086/324626
https://doi.org/10.3947/ic.2013.45.2.117
https://doi.org/10.3947/ic.2013.45.2.117
https://doi.org/10.1016/j.str.2019.01.003
https://doi.org/10.1016/j.bbapap.2010.10.008
https://doi.org/10.1124/pr.108.000992
https://doi.org/10.1124/pr.108.000992
https://doi.org/10.1038/nbt.3028
https://doi.org/10.1038/nbt.3028
https://doi.org/10.1042/BST0320873
https://doi.org/10.1146/annurev-pharmtox-010611-134525
https://doi.org/10.1177/1087057106292473
https://doi.org/10.1177/1087057106292473


ll
OPEN ACCESSArticle
20. Andricopulo, A.D., Salum, L.B., and Abraham, D.J. (2009). Structure-

Based Drug Design Strategies in Medicinal Chemistry. https://doi.org/

10.2174/156802609789207127.

21. Molek, P., Strukelj, B., and Bratkovic, T. (2011). Peptide phage display as a

tool for drug discovery: targeting membrane receptors. Molecules (Basel,

Switzerland) 16, 857–887. https://doi.org/10.3390/molecules16010857.

22. Nussinov, R., and Tsai, C.-J. (2013). Allostery in disease and in drug dis-

covery. Cell 153, 293–305. https://doi.org/10.1016/j.cell.2013.03.034.

23. Hardy, J.A., andWells, J.A. (2004). Searching for new allosteric sites in en-

zymes. Curr. Opin. Struct. Biol. 14, 706–715. https://doi.org/10.1016/j.sbi.

2004.10.009.

24. Erlanson, D.A., Wells, J.A., and Braisted, A.C. (2004). Tethering: fragment-

based drug discovery. Annu. Rev. Biophys. Biomol. Struct. 33, 199–223.

https://doi.org/10.1146/annurev.biophys.33.110502.140409.

25. Selvaratnam, R., Chowdhury, S., VanSchouwen, B., and Melacini, G.

(2011). Mapping allostery through the covariance analysis of NMR chem-

ical shifts. Proc. Natl. Acad. Sci. U S A 108, 6138. https://doi.org/10.1073/

pnas.1017311108.

26. Oyen, D., Wechselberger, R., Srinivasan, V., Steyaert, J., and Barlow, J.N.

(2013). Mechanistic analysis of allosteric and non-allosteric effects arising

from nanobody binding to two epitopes of the dihydrofolate reductase of

Escherichia coli. Biochim. Biophys. Acta 1834, 2147–2157. https://doi.

org/10.1016/j.bbapap.2013.07.010.

27. Rath, V.L., Ammirati, M., Danley, D.E., Ekstrom, J.L., Gibbs, E.M., Hynes,

T.R., Mathiowetz, A.M., McPherson, R.K., Olson, T.V., Treadway, J.L., and

Hoover, D.J. (2000). Human liver glycogen phosphorylase inhibitors bind

at a new allosteric site. Chem. Biol. 7, 677–682. https://doi.org/10.1016/

S1074-5521(00)00004-1.

28. Wright, S.W., Carlo, A.A., Carty, M.D., Danley, D.E., Hageman, D.L.,

Karam, G.A., Levy, C.B., Mansour, M.N., Mathiowetz, A.M., Mc- Clure,

L.D., et al. (2002). Anilinoquinazoline inhibitors of fructose 1,6-bisphos-

phatase bind at a novel allosteric site: synthesis, in vitro characterization,

and x-ray crystallography. J. Med. Chem. 45, 3865–3877. https://doi.org/

10.1021/jm010496a.

29. Collier, G., and Ortiz, V. (2013). Emerging computational approaches for

the study of protein allostery. Arch. Biochem. Biophys. 538, 6–15.

https://doi.org/10.1016/j.abb.2013.07.025.

30. Sheik Amamuddy, O., Veldman, W., Manyumwa, C., Khairallah, A.,

Agajanian, S., Oluyemi, O., Verkhivker, G., and Tastan Bishop, O. (2020).

Integrated computational approaches and tools forallosteric drug discov-

ery. Int. J. Mol. Sci. 21, 847. https://doi.org/10.3390/ijms21030847.

31. Huang, Z., Zhu, L., Cao, Y., Wu, G., Liu, X., Chen, Y., Wang, Q., Shi, T.,

Zhao, Y., Wang, Y., et al. (2010). ASD: a comprehensive database of allo-

steric proteins and modulators. Nucleic Acids Res. 39, D663–D669.

https://doi.org/10.1093/nar/gkq1022.

32. Huang, Z., Mou, L., Shen, Q., Lu, S., Li, C., Liu, X., Wang, G., Li, S., Geng,

L., Liu, Y., et al. (2013). ASD v2.0: updated content and novel features

focusing on allosteric regulation. Nucleic Acids Res. 42, D510–D516.

https://doi.org/10.1093/nar/gkt1247.

33. Shen, Q., Wang, G., Li, S., Liu, X., Lu, S., Chen, Z., Song, K., Yan, J., Geng,

L., Huang, Z., et al. (2015). ASD v3.0: unraveling allosteric regulation with

structural mechanisms and biological networks. Nucleic Acids Res. 44,

D527–D535. https://doi.org/10.1093/nar/gkv902.

34. Huang, W., Wang, G., Shen, Q., Liu, X., Lu, S., Geng, L., Huang, Z., and

Zhang, J. (2015). ASBench: benchmarking sets for allosteric discovery.

Bioinformatics 31, 2598–2600. https://doi.org/10.1093/bioinformatics/

btv169.

35. Zlobin, A., Suplatov, D., Kopylov, K., and �Svedas, V. (2019). CASBench: a

benchmarking set of proteins with annotated catalytic and allosteric sites

in their structures. Acta Naturae 11, 74–80.

36. Daura, X. (2019). In Advances in the Computational Identification of

Allosteric Sites and Pathways in Proteins BT - Protein Allostery in Drug

Discovery, J. Zhang and R. Nussinov, eds. (Springer Singapore),

pp. 141–169. https://doi.org/10.1007/978-981-13-8719-7_7.
37. Huang, W., Lu, S., Huang, Z., Liu, X., Mou, L., Luo, Y., Zhao, Y., Liu, Y.,

Chen, Z., Hou, T., and Zhang, J. (2013). Allosite: a method for predicting

allosteric sites. Bioinformatics 29, 2357–2359. https://doi.org/10.1093/

bioinformatics/btt399.

38. Chen, A.S.-Y., Westwood, N.J., Brear, P., Rogers, G.W., Mavridis, L., and

Mitchell, J.B.O. (2016). A random forest model for predicting allosteric and

functional sites on proteins. Mol. Inform. 35, 125–135. https://doi.org/10.

1002/minf.201500108.

39. Fogha, J., Diharce, J., Obled, A., Aci-Séche, S., and Bonnet, P. (2020).
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