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Protein phosphatase 4 (PP4), one of serine/threonine phospha-
tases, is involved in many critical cellular pathways, including 
DNA damage response (DNA repair, cell cycle regulation, and 
apoptosis), tumorigenesis, cell migration, immune response, stem 
cell development, glucose metabolism, and diabetes. PP4 has 
been steadily studied over the past decade about wide spectrum 
of physiological activities in cells. Given the many vital func-
tions in cells, PP4 has great potential to develop into the 
finding of key working mechanisms and effective treatments for 
related diseases such as cancer and diabetes. In this review, 
we provide an overview of the cellular and molecular mechani-
sms by which PP4 impacts and also discuss the functional sig-
nificance of it in cell health. [BMB Reports 2020; 53(4): 181-190]

INTRODUCTION

A number of cellular pathways are regulated through the 
reversible phosphorylation of proteins orchestrated by kinases 
and phosphatases, a central mechanism in the regulation of 
signal transduction (1). Protein phosphatases can be classified 
into four gene families each with distinct functions in cells: (i) 
Serine/threonine phospho-protein phosphatase (PPP); (ii) Mg2＋- 
dependent protein phosphatase (PPM/PP2C); (iii) Phospho- 
tyrosine phosphatase (PTP); (iv) Asp-based protein phosphatase 
(1-4). PPPs are the most highly conserved phosphatases in 
eukaryotes, and more than 80% phosphatase activity is contri-
buted to this family. PPPs are further divided into seven 
subgroups (PP1, PP2A, PP2B, PP4, PP5, PP6, and PP7) based on 
sequence, structure, and biochemical properties. Approxima-
tely 40 catalytic subunits derived from PPPs and PPM/PP2C 
are responsible for dephosphorylating the majority of Ser/Thr 
phosphoresidues on proteins, whereas more than 400 kinases 

are in charge of phosphorylation of Ser/Thr residues. This 
implies that these phosphatases should be highly regulated, 
and the majority of catalytic activities is usually attributed to a 
wide variety of regulatory subunits, forming functionally uni-
que complexes with a limited number of catalytic subunits 
(Fig. 1) (1-3).

Protein phosphatase 4 (PP4) complex is comprised of one 
catalytic subunit (PP4C) and five regulatory subunits (PP4R1, 
PP4R2, PP4R3, PP4R3, and PP4R4), typically forming the 
functional heterodimer (PP4C/PP4R1 or PP4C/PP4R4) or hetero-
trimer (PP4C/PP4R2/PP4R3 or PP4C/PP4R2/PP4R3) in cells 
(Fig. 2) (3-10). PP4C, a catalytic subunit of PP4, was the first 
identified in 1993 as PPX (designated as PPP4 in human 
genome nomenclature) and indicated 65% identical to PP2AC 
and PP2AC. Given the ＜ 70% identity to other phosphatases 
including PP1, PP2A and PP2B, PP4C cannot be considered as 
isoforms of these proteins (4). Also, it did not show physical 
interaction with other phosphatases tested and had the distinct 
functions (1, 4). The regulatory subunits of PP4 are highly con-
served across mammals, yeast and plants. The heterotrimer 
complex, PP4C-PP4R2-PP4R3 (PPH3-YBL1046W-PSY2), sharing 
a high homology between human and S. cerevisiae, functions 
in DNA damage response (DDR) in the both organisms (9, 
11-13). Arabidopsis also contains regulatory subunits of PP4, 
PP4R2 domain (putative homologue of PP4R2 in human), and 
SMEK-1 domain (homologue of PP4R3 in human), even 
though their functional properties are largely undiscovered. In 
the beginning, the main effort of PP4 research was focused on 
the DDR, thus finding that phosphatase directly dephosphory-
lates many essential proteins particularly in DDR, facilitating 
efficient DNA repair and check point control: RPA2 (replica-
tion protein A2), KAP-1 (KRAB-associated protein-1), -H2AX 
(gamma H2A histone family member X), 53BP1 (p53 binding 
protein 1), DBC1 (deleted in breast cancer-1) and Rad53 (5-9, 
14). However, the results of more than a decade of studies in 
various fields of cell physiology showed that PP4 had many 
other essential physiological activities as well as DDR: genomic 
stability (cancer, cell cycle control, and DNA repair), immune 
response, glucose homeostasis, and neuron development.
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Fig. 1. Classification of Ser/Thr phosphatase. Ser/Thr phosphatases are classified into phosphoprotein phosphatases (PPP) and Mg2＋-dependent 
protein phosphatase (PPM/PP2C). The PPP family can be further divided into seven subgroups: PP1, PP2A, PP2B, PP4, PP5, PP6, and PP7. 
Most Ser/Thr phosphatases are in the complex with their catalytic and regulatory subunits, except for PP5, PP7, and PP2C, which are solely
comprised of catalytic subunits.

Fig. 2. Protein phosphatase 4 complex and its inhibitory proteins. PP4 complex is comprised of its catalytic subunit (PP4C) and regulatory 
subunits (PP4R1, PP4R2, PP4R3, PP4R3, and PP4R4). PP4C interacts with PP4R1 or PP4R4 as a heterodimer, and PP4R2 and PP4R3/
as a heterotrimer. Target substrates of PP4 complex to be dephosphorylated are determined via regulatory subunits. The activity of PP4 
complexes can be regulated by the inhibitory proteins, including PP4IP, DHX38, and TIPRL. While PP4C/PP4R2/PP4R3 complex is re-
gulated by PP4IP or DHX38, PP4C/PP4R2/PP4R3 complex is regulated by TIPRL or DHX38. Inhibitory proteins for PP4C/PP4R1 or PP4C/ 
PP4R4 complex have not been elucidated. The reference numbers for the information are indicated. PP4IP, PP4 inhibitory protein; DHX38, 
DEAH box polypeptide 38; TIPRL, Tip41-like protein.
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Fig. 3. Multiple roles of protein phosphatase 4 in various cellular physiology. This schematic depicts the regions wherein PP4 participates 
and the genes regulated by or associated with PP4. The proteins in the closed boxes directly interact with PP4, but not all of them are 
targets to be dephosphorylated, whereas the proteins in the dashed boxes are indirectly regulated by PP4 or closely associated with the 
status of its expression. The organisms wherein the proteins are found and reference numbers are indicated; A, Arabidopsis thaliana; C, 
Caenorhabditis elegans; D, Drosophila melanogaster; H, human; M, mouse; N, Neurospora crassa; S, Saccharomyces cerevisiae; Sc, 
Schizosaccharomyces pombe; X, Xenopus laevis; Z, zebrafish.

THE ROLES OF PP4 IN VARIOUS CELLULAR 
PHYSIOLOGY

In this review, we will summarize the recent understanding 
and the biological significance of the roles of PP4 in a wide 
range of cellular physiology including genomic stability, 
immune response, glucose homeostasis, neuronal development, 
and plant physiology (Fig. 3).

Genomic stability
Genome is consistently exposed to DNA damages caused by 
endogenous or exogenous events. If genomic aberration occurs, 
cells will suffer from disasters such as cell death and transfor-
mation. Thus, it is necessary to maintain genomic integrity.

Cancer: It has been known that PP4 is overexpressed in 
human breast and lung tumors, stage II pancreatic ductal 
adenocarcinoma, colorectal carcinoma, and glioma (15-18), 
and also significantly increases JNK-1 (c-Jun N-terminal kinase 
1) activity in prostate cancer cell lines, PC-3 and LNCaP, 

which is essential for proliferation and drug resistance (19), 
suggesting that PP4 could have oncogenic activity. However, in 
conflicting studies, PP4R2 gene is deleted in patients with 
acute myeloid leukemia (AML), required for proper DNA 
repair and functions as tumor suppressor protein (20). And PP4 
recovers the expression of HPK1 (hematopoietic progenitor 
kinase 1), lost in more than 95% of pancreatic cancer through 
proteasome-mediated degradation, thus inhibiting cell 
proliferation of pancreatic cancer cells (21). Paradoxically, PP4 
is reported to improve cell proliferation and block apoptosis 
through downregulation of DR4 (death receptor 4) and 
dephosphorylation of DBC1, leading to SIRT1 (NAD-dependent 
deacetylase sirtuin-1) derepression and, subsequently, blocking 
p53-dependent apoptosis (7, 18, 22, 23) in one respect, but in 
the other respect, it could impair proliferation and cause 
apoptosis by inducing low phosphorylation level of PEA-15 
(phosphoprotein enriched in astrocytes of 15 kDa) and Bad 
(Bcl2 associated agonist of cell death) (24, 25). Thus, further 
studies are required to understand the discrepancy in PP4 
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functions regarding tumor formation.
Cell cycle: For successful cell division, many processes 

should occur properly, such as microtubule organization and 
chromosome segregation. In various species, including 
human, PP4 has critical functions in microtubule organization 
(26-30). Caenorhabditis elegans has two pp4 catalytic subunit 
genes, pph-4.1 and pph-4.2, and PPH-4.1, not PPH-4.2, is 
necessary for the activation of microtubule nucleation (27). 
PPH-4.1 interacts with and activates MEI-1 (meiotic spindle 
formation protein 1), which must be inactivated via ubiquitin- 
dependent degradation after the meiosis to allow for the 
formation of the mitotic spindle, and also promotes the activity 
of PPFR-1 (homologue of PP4R1 in C. elegans), which regulates 
MEI-1 during mitosis (28). Also, abnormal phosphorylation of 
NDEL1 (nuclear distribution protein nudE-like 1) and uncont-
rolled activation of Cdk1 (cyclin-dependent kinase 1) by PP4C 
disruption induce excessive recruitment of Katanin p60 to the 
centrosome and consequently, cause microtubule defects (29). 
Also, it was reported that PP4C depletion leads aberrant 
regulation of -tubulin, -tubulin, PLK-1 (polo-like kinase 1), 
and Aurora A, and precludes the organization of actin 
cytoskeleton, possibly by inactivated Rho GTPases, Rac1 
(Ras-related C3 botulinum toxin substrate 1) and Cdc42 (cell 
division control protein 42), thus impairing centrosome matu-
ration and cell migration (31). In addition, PP4C interacts with 
-tubulin and TUBGCP2 (tubulin gamma complex associated 
protein 2) and dephosphorylates -tubulin (30). When the cells 
are arrested in mitosis with spindle toxins such as nocodazole 
or paclitaxel, PP4 activity is inhibited through phosphorylation 
of its regulatory subunit PP4R2 and PP4R3, thus leading the 
blockage of microtubule nucleation by -tubulin. Kinetochore 
assembly is also required for PP4-CENP-C (centromeric protein 
C) interaction in Drosophila (32). Additionally, PP4 is related 
to chromosome pairing and crossover formation (33). Pph3 
mutants have defects in crossover repair and centromere 
pairing, with upregulated phosphorylation of Zip1 (34). And 
also, PP4 regulates anti-cohesin pathway through interaction 
with Wpl1, cohesin and WAPL (35, 36). Furthermore, Pph3, 
concerted with but independent to Slx4, is required for 
termination of replicative stress signaling (37) and regulates 
checkpoint signaling by interaction with Mec1 (ATR yeast 
homolog) (38). Besides, knockdown of PP4C and PP4R2 
increases the phosphorylation of BAF (barrier-to-autointegration 
factor) at Ser-4 site, which is important for normal nuclear 
envelop formation and cell cycle progression (39). However, 
overexpression of PP4, as well as the absence of PP4, also 
impairs proper cell cycle progression, but each condition 
results in different phenotypes; prometaphase arrest and 
interphase arrest, respectively (40). In prometaphase/metaphase 
transition, the interplay between PP4 and SAF-A (scaffold attach-
ment factor A) is necessary (40).

Most studies for cell cycle regulation-related PP4 functions 
have focused on the mitosis and meiosis events. However, 
considering that PP4 is required for recovery from a check-

point-induced arrest by dephosphorylating and inactivating 
p53 in G1 phase (41), it is feasible that PP4 could have essen-
tial functions in other cell cycle phases.

DNA repair: To prevent detrimental accidents by DNA 
damage, eukaryotes have evolved highly conserved and refined 
mechanisms, known as DNA damage response (DDR). DNA 
double strand break (DSB) is one of the most hazardous type 
of DNA lesions, restored mainly by non-homologous end 
joining (NHEJ) or homologous recombination (HR). To progress 
proper DNA damage response, timely dephosphorylation is 
required for counteracting the phosphorylation by kinases and 
in fact, PP4 has indispensable roles in these sophisticated 
processes (3).

Phosphorylated form of histone H2AX, named as -H2AX, is 
induced upon DNA damage and thus, regarded as the DNA 
damage marker. Aberration of dephosphorylation of -H2AX 
by PP4 on time clearly impairs proper DDR and causes 
genomic instability (9, 42). PP4 also dephosphorylates RPA2, 
whose phosphorylation status is essential for DNA synthesis 
after DNA damage, G2/M phase checkpoint, and HR (5). Also, 
phosphorylation of 53BP1, one of most critical proteins in 
genomic stability and tumorigenesis, is mainly regulated by 
PP4 (8). 53BP1 must be highly phosphorylated at T1609/S1618 
during mitosis so as not to be activated and thus, block 
error-prone NHEJ repair. However, PP4-mediated dephos-
phorylation of 53BP1 promotes the recruitment of 53BP1 to 
the DNA double strand break sites at the onset of G1 phase to 
secure genomic stability, but not in mitosis (8). When phos-
pho-null mutants of 53BP1 (T1609A/S1618A) are recruited to 
DNA lesions in mitosis, chromosome segregation is largely 
impaired. Besides, DNA damage sites should be accessible to 
facilitate recruitment of DNA repair factors. When DNA 
lesions are generated, KAP-1, a transcriptional corepressor, is 
rapidly phosphorylated by ATM kinase, inducing relaxation of 
DNA lesions and thus promoting transcription of stress- 
induced genes, such as p21 and Gadd45 (growth arrest and 
DNA damage-inducible alpha) to initiate DNA repair in 
heterochromatin. Right after DNA repair is completed, PP4 
induces KAP-1 dephosphorylation to recover its corepressive 
function (6). PP4 is also involved in NHEJ pathway, possibly 
through altering KAP-1 phosphorylation (43). According to 
phosphoproteomic analysis (6), PP4 could participate in other 
DNA repair pathways, such as DNA mismatch repair and base 
excision repair in addition to DNA DSB repairs, implying that 
PP4 could be universal regulator for DNA repair.

Considering the critical roles of PP4 as a phosphatase, PP4 
should be tightly regulated for efficient DDR. In fact, the 
post-translational modifications of PP4C and its regulatory 
subunits have significant impact on PP4 activity. PP4C methy-
lation on C-terminal leucine site (Leu307) by LCMT-1 (leucine 
carboxyl methyltransferase 1) is required for stable PP4 
complex, enzymatic activity to its targets, such as KAP-1 and 
53BP1, and thus, DNA DSB repairs (HR and NHEJ) (44, 45). 
Also, PP4 regulatory subunits, like PP4R2, PP4R3, and 
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PP4R3, are phosphorylated to be inactivated in mitosis (30, 
46). In particular, PP4R3 phosphorylation is required for 
maintaining 53BP1 phosphorylation and blocking premature 
53BP1 foci formation in mitosis (45).

Recently, some endogenous PP4 inhibitors, such as DHX38 
(DEAH box polypeptide 38), TIPRL (Tip41-like protein), and 
PP4IP (protein phosphatase 4 inhibitory protein), have been 
reported (47-49). DHX38 specifically interacts with PP4C in 
constitutive and damage-independent manner, and inhibits 
PP4 activity in vitro and in vivo, thus impacting DNA DSB 
repairs, and DNA synthesis after damage (47). PP4IP also 
interacts with PP4, but its inhibitory function depends on DNA 
damage and cell cycle, especially mitosis. PP4IP knockout 
promotes the stability of PP4C-PP4R2-PP4R3 complex, but 
overexpression and depletion of PP4IP impair DNA DSB 
repairs and cell survival, suggesting that timely regulation of 
PP4 is essential for DNA repair and cell survival (49). And 
TIPRL downregulates PP4 activity by inhibiting the interaction 
between PP4C and PP4R2 by interception of PP4C from 
PP4C-PP4R2 complex (48). The fact that no synthetic inhibitor 
has been discovered makes it attractive to study the 
development of specific inhibitor to PP4. The PP4-specific 
inhibitor that has no impact on other phosphatases will be 
applied as beneficial material for treating PP4-overexpressing 
cancers and investigating PP4 functions in more detail.

Similar to mammalian cells, PP4 is also regarded as an 
essential element in yeast DDR. PPH3 prevents hyperphospho-
rylation of Rad53 (checkpoint kinase 2, CHK2, yeast homolog), 
thus affecting DNA end resection at DSBs (14), and also pro-
motes telomere healing at accidental breaks by opposing 
Cdc13 phosphorylation, even though it is unknown whether 
PPH3 directly dephosphorylates Cdc13 (50). Besides, PPH3 
depletion alleviates DNA damage accumulation and rescues 
the short lifespan in maf1 cells (51). Maf1, a repressor of 
RNA polymerase III transcription, was reported to be dephos-
phorylated by PPH3 during unfavorable conditions, such as 
nutrient deprivation (52). 

Not always, but in many cases, protein functions in yeast 
homolog are reflected in the human system. Thus, it is quite 
convincing that human PP4 regulates CHK2-mediated activity 
and telomere-related events. Actually, the phosphorylation of 
KAP-1 by CHK2 is regulated by PP4 and hyperphosphorylation 
of 53BP1 in mitosis induced by PP4 inactivation prevents 
telomere fusion (6, 53).

Immunity
Immune cell development and activation are regulated by 
extremely sophisticated pathways, and dysfunction of these 
processes leads to many hazardous immune disorders. To 
prevent such catastrophic incidents, PP4 participates in various 
immune-related processes, such as immune cell lineage 
development, cytokine secretion, and immune cell receptor 
signaling.

Pp4 gene knockout in the T-cell lineage causes aberrant 

thymocyte development, including T cell arrest at the double- 
negative 3 stage (CD4−CD8−CD25＋CD44−), abnormal 
thymocyte maturation, and lower efficacy of positive selection 
with impaired PLC1 (phospholipase C-1)-ERK (extracellular 
signal-regulated kinase) activation (54). Also, PP4 deficiency 
induces partial  T lymphopenia and T cell hypo-proliferation, 
as well as significant reductions in the numbers of thymic and 
peripheral Treg cells (regulatory T cells), thus inducing defec-
tive adaptive immunity (55). These aberrations are associated 
with decreased IL-10, CTLA-4 (cytotoxic T-lymphocyte- 
associated protein 4), GITR (glucocorticoid-induced TNFR- 
related protein), and CD103 expression, elevated transcriptional 
expression of CDK inhibitors including p15, p16, and p21, and 
enhanced AMPK (AMP kinase) activation (55, 56). Also, mice 
with T cell-specific ablation of the pp4c gene develop sponta-
neous rectal prolapse and colitis with symptom similar to 
human Crohn’s disease (55). Besides, PP4 is related to signal-
ing pathways in T cells. HPK1 (hematopoietic progenitor kinase 
1), a member of mammalian Ste20-like protein kinases, has 
been implicated in many cellular signaling pathways including 
TCR and BCR (T cell and B cell receptor, respectively) signaling. 
TCR stimulation promotes the interaction between PP4 and 
HPK1, and PP4 induces TCR-mediated activation of HPK1 in 
Jurkat T cells (57). Also, the activation of JNK and p38, but not 
ERKs, is a target for the PP4 in the Jurkat cell line (58).

PP4 is equally essential for B-cell lineage development. 
Ablation of PP4 in B-cell lineage leads to reduction in pre-B 
cell numbers, an absence in immature B cells, and a complete 
loss of mature B cells (59). In the PP4-knockout B cells, immu-
noglobulin (Ig) class switch recombination is impaired and the 
basal levels of serum immunoglobulins of all isotypes are 
reduced (59-61). However, beyond the cell proliferation phase, 
the conditional deletion of PP4 completely restores normal 
IgG1 production in B cells of immunized mice (61). The pp4 
gene-ablated mice fail to form germinal centers in the spleen 
and the draining mediastinal lymph nodes, and do not efficien-
tly mount antigen-specific humoral response, associated with 
lower activation of ERK and JNK, and IB (inhibitor of B ) 
degradation, both of which are mediated by CD40 (60).

In addition to roles in T and B cells, PP4 is an essential 
component in other immune cells including macrophage. 
Type I IFN production is indispensable for antiviral innate 
immune response, and TBK1 (TANK-binding kinase 1) plays 
crucial roles in type I IFN production. PP4 suppresses produc-
tion of type I IFN and IFN-stimulated genes by dephosphory-
lating and inhibiting TBK1 (62).

Similar to the conflicting role in genomic stability, the 
overexpression and depletion of PP4 cause apoptosis in T 
cells, meaning that PP4 can be proapoptotic or antiapoptotic 
gene (54, 63, 64). Interestingly, the knockout of PP4 in rodents 
causes embryonic lethality (54), suggesting that tight regulation 
or adequate expression of PP4 is pivotal in immune system 
development, at least in T cell lineage.
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Glucose homeostasis
The dysfunction of glucose homeostasis leads to critical 
metabolic disorders, such as diabetes and obesity. Insulin 
resistance is one of the main causes contributing to impaired 
glucose dysregulation (65). Recently, accumulating data indicate 
that PP4 is related to insulin resistance and glucose metabolism.

In type 2 diabetic db/db mice or insulin-resistant mice treated 
with TNF- (tumor necrosis factor ), the expression of PP4C 
and PP4R1 in protein level and PP4R3/ in mRNA level is 
increased, and downregulation of PP4 alleviates the insulin 
resistance (66-69), though the alteration of PP4R2 expression 
level remains elusive. It was reported that TNF- induces the 
phosphorylation and activation of PP4C, subsequently leading to 
the activation of JNK (70). However, it seems that PP4 may 
regulate JNK function in an indirect manner, since PP4 does 
not physically interact with JNK (70). Also, upon the activation 
of JNK, the interaction of IRS-1 (insulin receptor substrate 1) 
with PP4 causes the decreased expression of IRS-1 and 
increased phosphorylation of IRS-1 (68). Additionally, TNF- 
downregulates IRS-4 expression, which depends on the 
phosphatase activity of PP4. But, it is unknown whether PP4 
dephosphorylates IRS-4 directly (71).

ACC1 (acetyl-CoA carboxylase 1) is associated with hepatic 
lipogenesis, and its phosphorylation by AMPK blocks lipid 
synthesis and is reversed by PP4 (66). Consistently, PP4 de-
phosphorylates AMPK in Ca2＋ dependent manner, thus 
blocking lipid consumption (72). Furthermore, PP4 is involved 
in gluconeogenesis. Overexpression of PP4R3/ induces 
dephosphorylation of CRTC2 (cAMP-response element binding 
protein-regulated transcriptional coactivator 2) and promotes 
transcription of gluconeogenesis-related genes (69). It remains 
to be seen whether PP4 directly dephosphorylates CRTC2. 
Also, as another role in glucose signaling, PPH3 and PSY2 
(PP4C and PP4R3 yeast homolog, respectively) dephosphorylate 
Mth1 (MutT homolog 1) in glucose withdrawal condition, cau-
sing the binding of Rgt1 (restores glucose transport protein 1) 
to the promoters of glucose transporter (HXT) genes and 
represses their expression (73).

Neuronal development
SMA (Spinal muscular atrophy) is an autosomal recessive 
neurodegenerative disease characterized by progressive loss of 
motor neurons from the anterior horn of the spinal cord, 
resulting in paralysis and severe muscular atrophy (74). SMA 
mainly arises from deletions or mutations in SMN1 (Survival of 
Motor Neuron 1) gene and its abnormal high expression. SMN 
complexes participate in spliceosome assembly and regene-
ration of spliceosomal components. PP4R2 interacts with 
Gemin3 and Gemin4, identified as components of the SMN 
protein complex. Also, PP4R2 promotes the temporal localiza-
tion of newly formed snRNPs and modulates the differentia-
tion and survival of neuronal cells (74, 75).

Hedgehog signaling is related to the development in verte-
brates and invertebrates, and Smo (the seven-transmembrane 

protein smoothened) is an essential factor in Hedgehog signal-
ing (76). In Drosophila, PP4 dephosphorylates Smo and alle-
viates its signaling activity (77). Wnt signaling regulates growth 
and proliferation, cell-fate differentiation, stem cell renewal 
and homeostasis (78). In embryonic stem cells, PP4R3/ 
suppresses the transcription of Wnt target gene brachyury 
through recruitment of HDAC1 (histone deacetylase 1) to its 
promoter to maintain pluripotency (79). However, in Drosophila 
development, PP4 promotes the Notch signaling to induce 
expression of wg (wingless), and Ryk (Receptor-like tyrosine 
kinase; a Wnt receptor) intracellular domain, in complex with 
PP4R3/ that regulates the gene transcription for neuronal 
differentiation (78, 80). Additionally, PP4 promotes the axonal 
regeneration after only peripheral injury, but not spinal cord 
injury, by dephosphorylating and inactivating HDAC3 (81). 
Similarly, HDAC3 activity is inhibited by PP4C/PP4R1 complex 
in HeLa cell, a cervical cancer cell line (82). Also, PP4R3/ 
induces Mbd3 (methyl-CpG-binding domain 3) degradation 
and blocks recruitment of the repressive Mbd3/NuRD 
(nucleosome remodeling and deacetylase) complex to the 
neurogenesis-related gene loci (83). Interestingly, the clea-
rance of severed or degenerating axons also requires PP4 in 
drosophila, bridging the glial receptor Draper to cytoskeletal 
remodeling through the SOS GEF (guanine nucleotide ex-
change factor) complex and the GTPase Rac1 to ensure glial 
infiltration of injury sites and clearance of degenerating neu-
ronal materials (84).

Drosophila NBs (neuroblasts), stem cell-like neural progeni-
tors, undergo repeated asymmetric divisions to self-renew and 
generate neurons and/or glia. During each round of division, 
the cell fate determinants, such as Pros (Prospero) and Brat 
(Brain Tumor), are asymmetrically localized and preferentially 
segregated into the GMCs (ganglion mother cells). Asymmetric 
localization of Pros and Brat is mediated through direct inter-
actions with Mira (Miranda) (85). Pp4-19C or PPP4R2r (PP4C 
or PP4R2 Drosophila homologs) facilitate localization of Mira 
and PP4R3/Flfl interacts directly with Mira (85, 86). Also, PP4 
complex associates with PTPA (phosphotyrosyl phosphatase 
activator), thus inducing dephosphorylation of Mira and direct-
ing cortical localization of Mira (86). In developing mammalian 
brains, neural progenitors expand by symmetric division before 
switching to an asymmetric division mode to generate neurons 
(87). PP4 facilitates mitotic spindles orientation in parallel to 
the neuroepithelial surface through NDEL1 dephosphorylation, 
thus preventing premature neurogenesis (88). Conversely, it 
was reported that PP4/PP4R3 complex promotes neuronal 
differentiation and suppresses the proliferative capacity of neural 
progenitor cells by suppressing Par3, a negative regulator of 
neuronal differentiation (89).

Plant and others
PP4 functions also have been elucidated in other various 
biological fields, though requiring more information in future. 
First, Arabidopsis thaliana as a model organism in plant biology 
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has two PP4 catalytic subunit genes, PPX1 and PPX2. PP4R3A, 
with these catalytic subunits, assembles a functional PP4 
complex to target Hyponastic Leaves 1, HYL1 (90). HYL1 has 
a role in promoting miRNA biogenesis, antagonized and 
degraded by the MAPK pathway. PP4 complexes stabilize and 
also dephosphorylate HYL1 to promote miRNA biogenesis, 
inhibiting MAPK signal cascade. Also, PP4R3A interacts with 
RNA polymerase II and recruits it to the promoters of miRNA- 
encoding (MIR) genes (91). Additionally, it was shown that 
PP4R3A gene is related to plant growth, root morphology, and 
genomic integrity in Arabidopsis thaliana (92).

PP4 can activate or inhibit NF-B signaling. Signaling to NF- 
B is crucial for T cell activation, differentiation, and prolife-
ration as it regulates a wide variety of target genes such as 
different cytokines (e.g., IL-2, IFN-, and TNF-), chemokines 
(e.g., IL-8), and anti-apoptotic molecules (e.g., Bcl-2 and c-IAPs; 
cellular inhibitor of apoptosis protein 1) (93). PP4C-PP4R1 
complex functions as the negative regulator between IB and 
IKK (IB kinase) complex. Inactivation of IKK by PP4C/PP4R1- 
mediated dephosphorylation keeps IB dephosphorylated and 
thereby, prevents the activation of NF-B (93). PP4 also negati-
vely regulates LPS-induced and TRAF6 (TNF receptor-associated 
factor 6)-mediated NF-B activation by inhibiting the ubiquiti-
nation of TRAF6 (94). Although PP4 physically interacts with 
TRAF6 and is recruited to TLR4 (toll-like receptor 4) complex 
upon LPS (lipopolysaccharide) stimulation, whether PP4 
regulates TRAF6 by direct dephosphorylation remains to be 
elucidated.

In non-immune cells, PP4 stimulates c-Rel-mediated DNA 
binding and NF-B-mediated transcription, and decreases 
threonine phosphorylation on p65 subunit of NF-B for its 
activation (95, 96). Conversely, PP4 can also inactivate NF-B 
activity by dephosphorylation of TRAF2, inhibition of TRAF6 
polyubiquitination, and interaction with tAg (small T antigen) 
of MCPyV (merkel cell polyomavirus) and NEMO (NF-B 
essential modulator) adaptor protein (97, 98).

In Neurospora, PP4 dephosphorylates and activates WHITE 
COLLAR complex (WCC), phosphorylated by FREQUENCY- 
mediated manner to close circadian negative feedback loop 
(99). Additionally, PP4 inhibits thiazide-sensitive Na＋-Cl− 
cotransporter (NCC) in Xenopus oocytes, but it is unknown 
that PP4 directly dephosphorylates NCC, although its phospha-
tase activity is required for NCC inhibition (100). Furthermore, 
PP4 is expressed in the distal convoluted tubule of mouse 
kidney (100). These data suggest the possible role of PP4 in 
the regulation of the electrolyte transporter.

CONCLUSION

Emerging evidence clearly suggests that PP4 plays multifaceted 
roles which control a variety of cellular phenomena. In the 
light of the significant impact of PP4 in cells, it is obvious that 
a more intensive study should be pursued to achieve better 
understanding of the working mechanisms in organism, as 

well as to clarify conflicting results observed in the different 
experimental systems. In that scenario, PP4 could be harnessed 
for the development of therapeutic materials. For example, 
since PP4C is considered an oncoprotein frequently overexpre-
ssed or irrelevantly regulated in a number of tumor types, dis-
covering molecules as an inhibitor suppressing or blocking the 
gene expression or inhibiting directly enzymatic functions of 
PP4 is sufficiently persuasive and promising. From another 
perspective, the synthetic inhibitor, specific to PP4C, can be 
developed applying an entire or functional region of endoge-
nous protein inhibitors identified. Inhibitors has been used in 
the studies on PP4 also inhibits other phosphatases meaning 
that there is no PP4-specific inhibitor developed. The PP4 inhi-
bitor to be produced should be valuable for investigating PP4- 
specific functions and targeting tumors particularly with the 
high level of PP4C expression in the long term.
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