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We investigated the relationship between visual experience and
temporal intervals of synchronized brain activity. Using high-density
scalp electroencephalography, we examined how synchronized
activity depends on visual stimulus information and on individual
observer sensitivity. In a perceptual grouping task, we varied the
ambiguity of visual stimuli and estimated observer sensitivity to this
variation. We found that durations of synchronized activity in the
beta frequency band were associated with both stimulus ambiguity
and sensitivity: the lower the stimulus ambiguity and the higher
individual observer sensitivity the longer were the episodes of
synchronized activity. Durations of synchronized activity intervals
followed an extreme value distribution, indicating that they were
limited by the slowest mechanism among the multiple neural
mechanisms engaged in the perceptual task. Because the degree of
stimulus ambiguity is (inversely) related to the amount of stimulus
information, the durations of synchronous episodes reflect the
amount of stimulus information processed in the task. We therefore
interpreted our results as evidence that the alternating episodes of
desynchronized and synchronized electrical brain activity reflect,
respectively, the processing of information within local regions and
the transfer of information across regions.
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Introduction

Gustav Theodor Fechner coined the term ‘‘inner psychophys-

ics’’ referring to the scientific pursuit of a lawful relation

between neural processes and sensation. This relationship has

remained elusive in the following over 150 years. Some

progress has been made in animal studies, relating sensory

stimulation to spiking activity of cortical neurons. For example,

studies of the visual system in behaving animals showed that

elementary sensory decisions at the threshold of visibility could

be reduced to activity of populations of sensory neurons on the

scale from single cells to hundreds of cells (e.g., Parker and

Newsome 1998). But even slightly more complex sensory tasks

engage very large populations of cortical neurons. Our aim is to

bring the elusive goal of inner psychophysics for large neuronal

populations one step closer, by introducing and testing a general

assumption about how these populations process information.

Large-scale brain activity has been studied using such

methods as magneto- or electroencephalography (EEG) and

functional tomography. High temporal resolution methods

have been particularly illuminating. They showed how different

sensory and perceptual processes are associated with ‘‘oscilla-

tory’’ activity in large populations of neurons, for example, with

amplitude of oscillations in different frequency bands of

electrical brain activity; for alpha band: (Klimesch, Sauseng,

and Hanslmayr 2007; Palva S and Palva JM 2007); beta and

gamma bands: (Tallon-Baudry and Bertrand 1999; Sannita

2000); or with synchrony of oscillatory activity within and

between brain structures (Singer 1999; Varela et al. 2001). But

no consensus has been reached on what aspects of the

oscillatory activity are relevant for sensation and perception.

Most observations have been interpreted using information-

processing approaches that view neural mechanisms as

input--output systems. In studies of perception, for example,

event-related desynchronization in EEG signals is often taken

as a sign that stimulation has engaged a neural mechanism, so

subsequent resynchronization is taken to express the disen-

gagement (Pfurtscheller and Aranibar 1977; Pfurtscheller et al.

1994). This view is incomplete because it disregards the

dynamics of ongoing (spontaneous) neural activity.

Parameters of ongoing activity vary across time, representing

the variability of neural activity and, consequently, the

fluctuations of alertness or arousal. Growing evidence shows

that ongoing activity significantly affects how animals (Arieli

et al. 1996) and humans (Romei et al. 2007) respond to sensory

stimulation. Ongoing activity may carry information which the

animal (or human) has already learned about the stimulation

(Kravitz and Peoples 2008) and therefore may reflect active

(although not necessarily specific) anticipation of stimuli.

However, in psychophysical experiments, anticipation is

typically minimized such that ongoing activity could be treated

as mere variability.

Variability in ongoing activity is not random but has

a characteristic dynamical structure, expressed by alternation

of irregular and regular episodes. These episodes emerge, hold,

and dissipate on different temporal scales and in different brain

structures (Friston 2000; Freeman et al. 2003; Gong et al. 2003;

Stam et al. 2003; Ito et al. 2005). The regular episodes take the

form of patterns of phase synchrony, which on the largest

spatial scale appear as standing or traveling waves (Ito et al.

2005, 2007). The underlying dynamics can be characterized by

collective phase synchronization of neural assemblies near the

critical transition to mutual entrainment (Gong et al. 2007).

This type of dynamics exhibits remarkable flexibility such that

external stimulation can trigger a transfer of neural activity into

different phase synchrony patterns with minimal expenditure

of energy (cf., Freeman 2007).

van Leeuwen (2007) proposed that neural systems maintain

their flexible dynamics across transitions from ongoing to

evoked activity. (Note that we use a term ‘‘evoked’’ in a general

sense, referring to any type of stimulus-related activity which

is superimposed on ongoing activity. In this sense, our use

of this term is different from that by Galambos [1992] and
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Tallon-Baudry and Bertrand [1999] who attributed evoked only

to activity phase locked to the stimulus, as opposed to

‘‘induced’’—nonphase-locked activity.) If that is the case, then

characteristic alternations of the episodes of irregular,

desynchronized activity and episodes of synchronized activity

are expected in both ongoing and evoked activity. Thus, the

theory relating perception to brain activity should be grafted

on the properties of ongoing brain activity. On this view,

evoked processes constitute a reorganization of phase (phase

resetting) in the ongoing activity. Indeed, phase resetting is

often thought of as a mechanism generating event-related

potentials (ERP) (Brandt et al. 1991; Basar 1999; Barry et al.

2000; Makeig et al. 2002; Hanslmayr et al. 2007).

Let us consider how stimulus presentation affects brain

dynamics. When a complex system such as the brain dwells

near a critical transition, a 1/f signature (or scale-freeness)

emerges in brain activity. This signature has been observed in

amplitude fluctuations of 10- and 20-Hz oscillation (Linkenkaer-

Hansen et al. 2001), as well as in ‘‘durations’’ of synchronized

activity (Gong et al. 2003). When a system is perturbed,

however, its scale-freeness may be suppressed. For example,

during somatosensory stimulation, the power law exponents

for the oscillations of 10- and 20-Hz decrease in comparison to

the oscillations of ongoing activity (Linkenkaer-Hansen et al.

2004). We therefore expect that, in contrast to spontaneous

activity, the episodes of synchronized activity will have

characteristic durations in the evoked response paradigm.

The durations of episodes of synchronous activity, rather

than other parameters of synchronous activity, should reflect

information-processing demands of the task at hand (van

Leeuwen et al. 1997). Tyukin et al. (2008) showed that

episodes of quasi-stable synchronized activity can represent

the outcomes of information processes in a recurrent neural

architecture. These episodes have been denoted ‘‘coherence

intervals’’ (van Leeuwen and Bakker 1995; van Leeuwen 2007).

During these intervals, a mental representation maintains its

integrity and its content remains unchanged. This means that

no information processing takes place during the interval,

whereas the previously processed information is propagated to

other brain areas. Such quasi-stable properties are needed to

facilitate efficient transfer of information: the oscillations

within a coherence interval have to be temporally stable and

synchronous because synchrony facilitates communication

between neural assemblies (Livanov 1977; von der Malsburg

1985); it helps to keep the temporal ‘‘windows of communi-

cation’’ concurrently open for input and output (Fries 2005).

In complex tasks, information is communicated across more

areas than in simpler tasks. Multiple information transfers are

completed simultaneously within a coherence interval; the time

required for completion depends on such factors as cable

length, signal transmission capacity, and signal transfer reliability.

Yet, the length of a coherence interval is determined by the

process that takes longest to complete. For this reason, the more

the information transfers must be completed within an interval

the longer its expected duration. In addition, because the

slowest interval is an extreme value in a random sample,

coherence intervals are expected to have an extreme value

distribution (Coles and Tawn 1991; Kotz and Nadarajah 2000).

Nikolaev et al. (2005) studied human EEG activity over small

regions on the human scalp with an electrode spacing of 2 cm.

The authors measured durations of intervals of quasi-stable

phase synchrony and found that in the beta frequency range,

the intervals were longer when observers were engaged in

a perceptual task than when they performed no task. This

result was interpreted as evidence that more information was

transferred across brain areas in ‘‘task’’ than ‘‘no-task’’ con-

ditions. But the effect of task could be as well driven by such

factors as arousal, concentration, and effort. In the present

study, we use a more subtle stimulus manipulation to in-

vestigate how synchronized brain activity relates to perception.

The closest counterpart to the notion of coherence interval

appears in the work of Walter Freeman and colleagues (for

a review, e.g., see Freeman 2007). Freeman advanced the

hypothesis that intervals of synchronized neural activity

emerge as part of a macroscopic action--perception loop, in

which early stages of action initiate a corollary discharge to

sensory areas of the brain. The corollary discharge prepares

sensory areas for settling into a characteristic pattern of

synchronized activity (attractor), which then governs the

quasi-stable spatiotemporal patterns of brain activity. Such

patterns are observed following stimulus presentation; they

constitute sequences of events characterized by amplitude

modulation of the carrier wave in the gamma or beta frequency

range. These patterns have variable durations, followed by

sudden phase shifts.

Freeman and colleagues observed that patterns of synchronized

activity are specific (but not invariant) to the context of

stimulation. Such patterns were observed in animal studies, in

olfactory, visual, auditory, and somatosensory cortices (Freeman

and Baird 1987; Barrie et al. 1996; Freeman and Barrie 2000;

Freeman 2005). In humans, evidence of such patterns has been

indirect because neural activity has been recorded using scalp

EEG. For example, Freeman et al. (2003) observed quasi-stable

synchrony patterns in the beta and gamma frequency range,

which were demarcated by abrupt phase changes lasting for

about 5 ms. These phase changes occurred with a frequency in

the theta or alpha frequency range. The correlation distance of

such patterns on the human scalp extended to the entire

length of the chains of electrodes (up to 19 cm). The difference

in the spatial scale of these synchrony patterns in humans and

animals suggests that the sources of these events differ across

species (although they may have a common functional

significance still, as argued by Freeman 2007).

Freeman and colleagues have not considered the possibility

that quasi-stable periods of synchronized activity reflect the

amount of transferred information. In contrast, the theory of

coherence intervals predicts that durations of these intervals

should be directly related to the amount of transferred

information. In psychophysical task conditions where stimulus

information is systematically varied, we should observe effects

of stimulus information on the length of the coherence interval.

We presently test this prediction by studying temporal

properties of electrical cortical activity in a visual grouping

task: we ask whether the amount of ‘‘stimulus information’’ is

associated with durations of coherence intervals.

Several studies have explored the relationship between the

amount of information contained in visual stimuli and observer

performance in perceptual grouping tasks. In particular, van

Leeuwen and van den Hof (1991) and Kubovy and Wagemans

(1995) measured information content of visual stimulus using

Shannon’s measure of information. They showed that in

ambiguous stimuli, the amount of Shannon’s information

covaries with stimulus ambiguity. (The entropy of stimulus X,

which can be perceived n ways and whose percepts x1, . . ., xn
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have probabilities P(x1), . . ., P(xn), is H=+n

i=1PðxiÞlog½1=PðxiÞ�.
Stimuli with the highest entropy convey the least information

and vice versa. Thus, the more ambiguous a stimulus [i.e., the

more its multiple percepts approach equiprobability, P(xi) = 1/

n] the less information it conveys.) For example, Kubovy and

Wagemans (1995) investigated perceptual grouping by prox-

imity (Wertheimer 1912; Kubovy et al. 1998) using ‘‘multistable

dot lattices’’ (Fig. 1). The amount of stimulus information in dot

lattices depends on their ‘‘aspect ratio’’ (AR): the ratio of 2

shortest interdot distances. When the AR of a lattice is at its

lowest (which is 1.0), the competing perceptual groupings are

equally likely, and Shannon’s information content of the lattice

is low. In contrast, when the AR is high (larger than 1.0), one of

the groupings is more likely to be perceived than the other

groupings, and lattice information content is high.

In the present study, we used ambiguous dot lattices in

a perceptual grouping task. We evaluated observer performance

using a phenomenal report paradigm (Kubovy et al. 1998). We

controlled the ambiguity (and thus the information content) of

dot lattices by varying their ARs. Because ambiguous lattices

contain less stimulus information than the unambiguous lattices,

we expected to find an association between lattice ARs and

durations of coherence intervals: shorter durations in perception

of ambiguous than unambiguous stimuli. In agreement with this

expectation, we found that durations of synchronized activity

were linearly related to AR (a stimulus property) and that the

durations depended on ‘‘observers’ sensitivity to proximity’’ (a

property of observer). Both factors relate coherence intervals

directly to the amount of stimulus information. We also found

that the onsets and offsets of coherence intervals were

associated with the time course of stimulus presentation. The

best-fitting theoretical distributions of the durations were

extreme value distributions, in agreement with the theory of

coherence intervals. We reproduced these results in 2 experi-

ments in different groups of observers. (The ERP results from

these studies were reported elsewhere: for Experiment 1,

Nikolaev et al. [2007]; for Experiment 2, Nikolaev et al. [2008].)

Materials and Methods

Experiment 1

Participants

Nine healthy participants (aged 19--33 years, median age 22, 6 women)

took part in the experiment. They were all right handed, had normal or

corrected-to-normal vision, and were not informed about the purpose

of the experiment. Prior to the experiment, all had given their informed

consent. RIKEN BSI Institutional Review Board No. 2 (Research Ethics

Committee) had approved this study.

Stimuli

We used displays containing dot lattices (Kubovy 1994). The diameter

of the dots was 0.15� of visual angle. The shortest interdot distance was

0.8� of visual angle. Dot luminance was modulated in each lattice by

a bivariate isotropic Gaussian distribution, such that the dots were

visible across a circular area of approximately 7.7� of visual angle in

diameter. The background luminance was 51 cd/m2. The largest Weber

contrast of dots was 30% in the lattice center.

The dots on these lattices are spontaneously perceived as grouped

into strips. The shorter the distance between the dots in a certain

direction the more likely these dots group along that direction. For

example, in Figure 1A, the 4 most likely perceptual groupings are

labeled a, b, c, and d according to their proximity: the interdot

distances increase from a to d. We will refer to the corresponding

percepts (reports of seeing the groupings) as a, b, c, and d. According

to the pure distance law (Kubovy et al. 1998), the perceptual grouping

of a dot lattice depends on its AR, which is the ratio of the 2 shortest

interdot distances, along a and b.
We used rectangular dot lattices with 2 magnitudes of AR: 1.0 and 2.0

(Fig. 1B). At AR = 1.0, the 2 shortest distances were equal to one another;

at AR = 2.0, the interdot distance along 1 orientation was twice longer

than in the other. We refer to the 2 lattices as AR = 1.0 and AR = 2.0.

Lattices were presented at orientations selected randomly from the

following set: 15�, 30�, 60�, 75�, 105�, 120�, 150�, and 165�
counterclockwise from the horizontal. For AR = 2.0, this resulted in 8

stimuli, whereas for AR = 1.0, in only 4 stimuli because the following

rotations of an AR = 1.0 lattice leave orientation unchanged: 15� and

105�, 30� and 120�, 60� and 150�, and 75� and 165�.

Procedure

Participants were seated at a distance of 1.3 m from the screen in

a dimly lit room. Stimuli were presented on an 18-inch TFT Dell

monitor using E-Prime software (Psychological Software Tools,

Pittsburgh, PA).

Each trial consisted of 4 intervals: fixation, stimulus, blank screen, and

response screen. During the fixation, participants were instructed to

look at a small circle (0.2� in diameter) presented at the center of an

otherwise empty screen for a duration that varied randomly according

to a uniform distribution on the interval of 200--600 ms. The durations

of the stimulus interval and the blank-screen interval were both fixed at

300 ms. A response screen was presented ad lib, until a response was

received. The intertrial interval varied randomly from 1000 to 2000 ms

according to a uniform distribution.

Participants reported the orientations of the perceived groupings by

choosing 1 of 4 alternatives on the response screen. This screen

consisted of 4 circles (response icons), each containing a line tracing

a diameter parallel to 1 of the 4 likely grouping directions (a, b, c, or d)

Figure 1. Stimuli used in Experiments 1 and 2. (A) Grouping of dots in a lattice
depends on its ‘‘ARs’’: the ratio of the shortest and longest distances between the
dots. (B) Dot lattices of ARs 1.0 and 2.0 used in Experiment 1. (C) Dot lattices of ARs
1.0, 1.1, 1.2, 1.3 used in Experiment 2.
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of the just-presented lattice. The response alternatives were located in

the 4 quadrants of the response screen; their locations were assigned

randomly for each trial. Participants responded by pressing 1 of 4

buttons of a response box using their middle and index fingers of both

hands. Each button corresponded to 1 of the 4 quadrants of the screen.

Because sometimes the perceived grouping switched while the

stimulus was on, we asked participants to report the first orientation

they perceived after stimulus onset. We advised participants that there

was no correct or incorrect answer. The participants learned the

procedure in a practice session of 40 trials that preceded the

experiment. Each of the 8 AR = 2.0 lattices was presented 12 times,

and each of the 4 AR = 1.0 lattices was presented 24 times. The stimuli

were presented in random order in blocks of 192 trials. The

experiment lasted about 20 min in total.

Experiment 2

Participants

Seventeen healthy participants (aged 19--36 years, median age 22, 9

women) took part in the experiment. All the participants were right

handed and had normal or corrected-to-normal vision. All but one of

the participants (one of the authors) were unaware of the purpose and

design of the experiment. None of the participants but one (MC, not an

author) took part in Experiment 1. All participants gave informed

consent. RIKEN BSI Institutional Review Board No. 2 (Research Ethics

Committee) had approved this study. Four participants were excluded

from the analysis: 2 due to EEG artifacts and 2 due to inability to

perform the task (see below).

Stimuli

We used dot lattices with 4 values of AR: 1.0, 1.1, 1.2, and 1.3 (Fig. 1C).

The lattices were presented at 4 orientations, in which the orientation

of the shortest distance a was rotated counterclockwise from the

horizontal for 22.5�, 67.5�, 112.5�, or 157.5�. The 4 ARs and the 4

orientations yielded 16 stimuli. Dot diameter was 0.2� of visual angle.

Their luminance was modulated by a bivariate isotropic Gaussian

distribution whose maximum was at the center of the lattice (as

illustrated in Fig. 1), such that the dots were visible across a circular

area with an approximate diameter of 6.9� of visual angle. The distances

between dot centers at AR = 1.0� were 0.6� of visual angle. The

background luminance was 108 cd/m2. The largest Weber contrast of

dots was 40% in the lattice center.

Procedure

Participants were sitting 1.15 m from the screen in a dimly lit room. The

stimuli were presented on a 17-inch CRT display (Eizo FlexScan T566)

with an 85-Hz (noninterlaced) refresh rate using E-Prime software.

The task and trial time course were as in Experiment 1, except that

the duration of the fixation interval in Experiment 2 was longer (it was

randomized between 1200 and 1500 ms) than in Experiment 1, and

a different response method was used. In Experiment 2, the participants

responded, using a rolling ball device, by clicking on 1 of the 4 ‘‘response

icons.’’ The cursor was visible only during the response interval.

Each participant practiced the task in a block of 20 trials before the

experiment started. Within each experimental block of trials, each of

the 16 conditions was presented 10 times in a random order. Four such

blocks were presented during an experiment (640 trials in total), which

on average took about 1 h, including 3 short breaks (2--5 min long)

between the blocks.

Electrophysiological Recording
In both experiments, EEG was recorded using a 256-channel Geodesic

Sensor Net (Electrical Geodesics Inc., Eugene, OR). The electrode

montage included sensors for recording vertical and horizontal

electrooculograms. Data were digitized at 250 Hz. All channels were

referenced to the vertex electrode (Cz). Impedance was kept below 50

kOhm. All channels were preprocessed online using 0.1-Hz high-pass

and 100-Hz low-pass filtering.

EEG Analysis
The analysis proceeded through 2 main stages: EEG preprocessing and

analysis of the duration of synchronized intervals. Our methods in both

stages were mostly identical for the 2 experiments, except for some

differences as we explain below resulting from differences in difficulty

of the grouping task. A detailed presentation of the method and its

justification are available elsewhere (Nikolaev et al. 2005). Here we

outline its main steps.

Preprocessing was done as follows: we set the epoch of interest for

the detection of the synchronized intervals from –100 to +400 ms

relative to stimulus onset and considered only the intervals that were

fully contained within the epoch. Using a semiautomatic artifact

rejection procedure, we excluded the ‘‘bad’’ epochs in which the

absolute voltage difference exceeded 50 lV between 2 neighboring

sampling points or the amplitude was outside +100 or –100 lV. Two

participants of Experiment 2 were excluded because of such bad

recordings. We pooled conditions across the orientations because this

dimension was irrelevant to the aim of present analysis. As a result, there

were about 80--90 ‘‘good’’ epochs per AR condition per participant in

Experiment 1 and about 130--150 such epochs in Experiment 2. The data

were converted to average reference.

The analysis of synchronized intervals was performed based on

single-trial data for each participant, separately for 9 EEG spectral

frequencies (see below).

Selection of Areas of Interest

Our choice of areas of interest was motivated by 2 hypotheses 1) that AR

affected the strength of perceptual grouping and that the activity of

primary visual cortex reflected grouping strength and 2) that the voltage

distribution of early ERP components indicated the location of this

activity. Because we were using a visual task, we chose our areas of

interest and the control areas based on the distribution of voltage

maxima of early ERP components in the occipital areas. In a previous ERP

analysis, we found that cortical activity in these areas was associated with

stimulus AR (Nikolaev et al. 2007, 2008). We searched individual

topographical maps for such regions at the latency of ERP components

P1 (about 100 ms after stimulus) or N1 (about 200 ms). The area with

the largest voltage at either of the 2 latencies was designated as the

‘‘peak’’ area (see inset in Fig. 2). That is, each individual had his or her

unique peak area. Within each peak area, we selected a chain of 5

adjacent electrodes, such that the largest ERP amplitude was located

under either the second or the third electrode of the chain. We also

selected chains of 5 adjacent electrodes in the other hemisphere, in

areas symmetric to the peak areas relative to the sagittal plane (to be

called ‘‘opposite’’ areas), for permutation statistics in Experiment 1, and

in order to control for volume conduction (see below).

In addition to the areas of interest selected in both experiments, in

Experiment 1, we also applied our analysis to the left and right

temporoparietal areas, the same areas for all the participants. We did so

to determine to what extent muscle artifacts contaminated EEG data:

electromyogram (EMG) is most prominent in the recordings from the

temporal areas. Muscle activity could be correlated with effort, and this

could cause differences in synchrony in the high-frequency EEG bands.

In particular, in Experiment 1, where the difference between AR

conditions was large (AR = 1.0 and 2.0), we expected larger effects than

in Experiment 2 (where the differences between AR were small and

gradual, ranging from 1.0 to 1.3). It was, therefore, considered sufficient

to control for EMG activity only in Experiment 1. Besides serving as

a control of muscle artifacts, the comparison of activity in the

temporoparietal areas with the activity in our areas of interest

(expected to be located in the occipital regions, i.e., over the visual

cortex) can provide additional indications of whether our findings

reflect effects of visual stimulation.

The scheme map of 256 electrodes in Figure 2 shows the areas of

interest defined for individual participants and marks locations of the

chains of electrodes selected for analysis.

Detection of Intervals of Quasi-Stable Phase Synchrony

We studied brain connectivity by measuring phase synchronization of

cortical activity. Comparative studies of various synchronization

measures have shown that the sensitivity of phase synchronization to
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linear and nonlinear properties of EEG signals is similar to other

measures of functional connectivity, such as generalized synchroniza-

tion, mutual information, and cross-correlation (Quian Quiroga et al.

2002; David et al. 2004). We computed phase synchronization as

follows. We obtained the instant phase of EEG signal using a Morlet

wavelet transform for 9 central frequencies: 10, 13, 15, 18, 21, 25, 30,

36, and 43 Hz. We used a logarithmic frequency step size because of the

scaling property of the wavelet transform. For the frequency of 10 Hz,

wavelet duration was 267 ms and spectral width was 2.4 Hz; for the

frequency of 43 Hz, wavelet duration was 62 ms and spectral width was

10.3 Hz. We then computed a relative phase difference in pairs of

channels. We approached synchronization from a statistical point of

view, looking for peaks in distributions of relative phase differences

(Tass et al. 1998). We computed a phase synchronization index by

Figure 2. A 256-channel electrical Geodesic Sensor Net with individually selected chains of adjacent electrodes for synchronization analysis. (A) Electrode chains for 9
participants in Experiment 1. The chains in the peak areas are marked by blue (solid) lines, and those in the ‘‘opposite’’ areas are marked by red (dashed) lines. The green (dotted)
lines designate chains in the right and left temporoparietal (control) areas. (B) The chains in the peak areas for 13 participants in Experiment 2. Spacing between electrodes is
uniform, which is distorted in the figure because of the polar projection. The labels of landmark electrodes are according to the International 10-20 system of electrode placement.
The inset in the right upper corner illustrates how an electrode chain was selected in the peak area on the voltage map at the peak latency of the P1 component.
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using the first Fourier mode of each such distribution (Rosenblum et al.

2001) (for details, see Nikolaev et al. 2005).

Of the 2 end electrodes in every chain, we chose the one that was

closer to the vertex and designated it as the reference for calculating the

phase synchronization. For each of the 4 remaining electrodes in the

chain, we calculated an index of phase synchronization versus the

reference (Fig. 3A). We used the standard deviation (SD) calculated

across the 4 indices as our main measure. This measure reflects the

uniformity of synchronization along chains of electrodes. As a function of

time, SD reflects the dynamics of synchronized activity within a region of

interest. To compare this dynamics across trials, conditions, and

participants, we standardized SD such that the mean of SD distribution

is 0 and the SD is 1. In order to identify intervals with uniformly high

synchrony in every (local) area, we introduced an SD threshold. A time

interval was considered synchronized for a duration in which SD values

remained below the threshold. Another threshold was needed, as only

intervals longer than some minimal length can be meaningfully related to

behavior (Freeman and Barrie 2000; Freeman 2005). We previously

found that in human EEG effects of task are observed only when the

length exceeded 80 ms (Nikolaev et al. 2005). Thus, we introduced

a minimal duration (MD) threshold, in addition to the SD threshold.

Comparison of Intervals of Quasi-Stable Phase Synchrony between

Experimental Conditions

To avoid arbitrariness in choice of threshold values, we evaluated

durations of synchronized intervals in a sweep through all possible

combinations of SD and MD thresholds, as we describe below. SD and

MD thresholds were varied in small steps, and each time, the

differences in the durations between conditions were evaluated using

a t-test. For SD thresholds, the step size was 0.01 and the range was

from –0.7 to –1.3 of normalized units; for MD thresholds, the step size

was 20 ms and the range was from 0 to 300 ms. The maximally possible

synchronized interval duration was 496 ms: the window size (500 ms,

from –100 to +400 ms) minus 2 data points.

For each SD threshold value, we calculated a t-sum statistic, based on

a sweep through all the MD threshold values. The t-sum statistics for

a given SD threshold was a sum of all the significant t values (P < 0.05)

across all MD thresholds. As we show in Figure 3B, we performed 15

such t-tests, each test corresponding to a different MD threshold value,

to obtain 1 t-sum statistic. Only the t values marked with an asterisk

(P < 0.05) were taken into account. The significance of t-sum values

themselves was evaluated using a permutation procedure described in

the next section.

In Experiment 1, we calculated t-sum statistics for each SD threshold

for duration differences of synchronized intervals in AR = 1.0 and 2.0

conditions, for each area of interest in individual participants. In

Experiment 2, we used the AR = 1.0 condition for comparison to each

of the other AR conditions (1.1, 1.2, and 1.3).

Testing for Significance

We used a permutation procedure to obtain a distribution of surrogate

t-sum statistics. This procedure involves randomly exchanging in-

dividual pairwise synchronization indices across chains of electrodes

between areas (Experiment 1) or conditions (Experiment 2). Surrogate

data must contain all EEG features of the original data, except for the

feature in question. The large difference between AR conditions in

Experiment 1 may produce a large but irrelevant difference in the EEG,

which might contaminate the surrogate series. Within conditions,

however, these features have to be similar in the opposite areas, that is,

areas symmetrically opposite to the peak areas across the sagittal plane.

Surrogate data for Experiment 1 were therefore created by randomly

exchanging indices between electrode chains in peak and opposite

areas for the same trials.

We randomly exchanged entire single-trial time series of synchro-

nization indices recorded between electrodes and the reference in the

peak area with ones in the opposite area, separated by an equal

distance from the reference (Nikolaev et al. 2005). For instance, the

time series from a pair of electrodes separated by 2 cm in the peak area

was exchanged with the time series from a corresponding electrode

pair in the opposite area also separated by 2 cm. As a result, the

permuted set of indices always contained indices for pairwise distances

2, 4, 6, and 8 cm. The numbers of permuted epochs (surrogate trials)

matched those in the original data for each participant.

For Experiment 2, the same permutation procedure was used, except

that here the differences between AR conditions were considered

sufficiently small to use them as the source of surrogate distributions.

We therefore permuted synchronization indices, instead of between

peak and opposite areas, between the peak areas of AR = 1.0 trials and

the peak areas of trials belonging to each of the other AR conditions

(1.1, 1.2, and 1.3), respectively, resulting in 3 separate sets of surrogate

data for pairwise comparisons between these conditions and the AR =
1.0 condition. Because the surrogates for Experiment 2 were assembled

from synchronization indices taken from different trials, this procedure

preserved all pairwise phase relations between channels, ongoing as

well as evoked, while eliminating any systematic phase relations among

pairs of channels (except for the relations which were constant across

trials and which were separately evaluated using intertrial coherence,

see below). In particular, what is eliminated in these series is any

systematicity in SD of the pairwise synchronization indices, on which

our measure of synchronized durations is based. In using time series

Figure 3. (A) Definition and duration estimation of a synchronized interval. On
a single trial, 4 pairwise synchronization indices are measured as a function of time in
a chain of 5 electrodes (shown schematically on the top). SD across the
synchronization indices are computed as a function of time. The synchronized interval
is a period during which SD falls below a threshold in the range of thresholds shaded
in the figure. (B) Example of 1 run of search for differences between conditions at
a given SD threshold: the results of 15 sequential t-tests with sequential removing of
intervals shorter than the values of durations on the abscissa. Significant t values
summed to obtain a t-sum statistic are marked with asterisks. The duration with
a maximal behavioral difference is marked ‘‘max.’’
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from different trials, our permutation procedure is similar to the trial-

shuffling procedure proposed by Lachaux et al. (1999). But Lachaux

et al. continued their analysis by evaluating averages from shuffled trials

where we continued our analysis with single trials.

After permutation, we computed for both experiments the SDs

across the surrogate synchronization indices, as we did in the main

analysis. The permuted data were compared in the same manner as the

original data, and t-sum statistics were calculated. This procedure was

repeated 1000 times for each SD threshold to yield a distribution of

permuted t-sums. An original t-sum was labeled as significant if it

exceeded the 95th percentile of the distribution of permuted t-sums

for a given SD threshold. This analysis was done separately within every

frequency and every participant.

Data Reduction and Significance Testing across Participants

We analyzed how durations of synchronized intervals depended on AR

across EEG frequencies and areas of interest. These analyses were

performed separately for every participant (9 and 13 participants in

Experiments 1 and 2, respectively). For each individual and each area of

interest, we measured the differences between AR conditions (between

AR = 1.0 and AR = 2.0 in Experiment 1 and between AR = 1.0 and,

respectively, 1.1, 1.2, and 1.3 in Experiment 2). We tabulated these

differences in terms of their t-sums at each of 61 SD threshold values for

each of 9 frequencies, yielding a 61 3 9 table in Experiment 1 and 3 such

tables in Experiment 2. The sign of t-sum indicated the direction of these

differences: negative (for shorter durations in AR = 1.0 than in AR > 1.0),

positive, or 0 (when no significant t-sum was observed).

Next, we reduced the 61 3 9 tables to 3 3 1 tables of trinary values

(+, –, and 0), as we explain below. The purpose of this reduction was to

reveal patterns of differences across observers. The first step of

reduction was to replace all the nonsignificant t-sum values with zeros

based on the results of our permutation analysis. The values in the

resulting sparse table were called t scores.

In Experiment 1, we selected the maximal absolute t score across all

SD threshold values for a given frequency. We then summed maximal t

scores across frequencies for 3 bands: alpha (10 + 13 + 15 Hz), beta

(18 + 21 + 25 + 30 Hz), and gamma (36 + 43 Hz). We used the signs of

resulting t scores as entries in the reduced table.

In Experiment 2, we first selected the entries in the sparse tables for

which the t scores were nonzero for both conditions AR = 1.2 and 1.3

(disregarding condition AR = 1.1, where nonzero t scores were rare).

Then, we computed the sum of t scores in conditions AR = 1.2 and 1.3

and found the SD threshold at which the sum of t scores was maximal.

(Different t-sum signs between AR = 1.2 and 1.3 occurred very rarely: in

peak areas—in 0.17%, in opposite areas—in 0.01% of all cases [9

frequencies 3 61 thresholds 3 13 participants]. We omitted these cases

from the analysis.) For every frequency, we took the t scores at this SD

threshold from the tables for conditions AR = 1.1, 1.2, and 1.3 and

summed them to obtain a new t score, which may deviate from the

previous value of t score because some entries in the AR = 1.1 table may

have nonzero values. Then, as in the previous experiment, we

combined these values for 3 bands: alpha (10 + 13 + 15 Hz), beta

(18 + 21 + 25 + 30 Hz), and gamma (36 + 43 Hz) and used the signs of

resulting t scores as entries in the reduced table.

For each experiment, we calculated the number of participants with

positive and negative signs (i.e., the participants whose durations of

synchronized intervals were, respectively, longer and shorter in AR = 1.0

than in AR > 1.0). To estimate the statistical significance of these results,

we evaluated how many participants are expected to have the same sign

of t score by chance and we used a permutation procedure, as follows.

Let the data be represented by a 1-dimensional array with values ‘‘+,’’ ‘‘–,’’
or ‘‘0’’ (the sign of effect for each participant). In the significance test, we

randomly filled this array with + and – values with equal probability.

Then, we randomly replaced some of these values with 0 values. The

number of such 0 values was drawn randomly from a Gaussian

distribution. The mean and SD of this distribution were the same as

the mean and SD of 0-value distribution in original arrays across

frequency bands and areas, separately for Experiments 1 and 2. We

repeated this procedure 1000 times. From the resulting distribution of

arrays, we found the 95th percentile of the number of values (either

positive or negative), which was incidentally 7 in both experiments. (The

same 95% percentile value for 2 experiments with different number of

participants is explained by larger number of zeros [absence of

a significant difference] in Experiment 2, probably because of smaller

difference between ARs.) Thus, 8 or more participants with the same

sign of the t-sum value presented a significant result at the P < 0.05 level.

Volume Conduction

Because we analyzed synchronization in chains of electrodes spaced

about 2 cm apart, it is important to control whether our measure of

synchronization depended on volume conduction of currents through

head tissues. (For a detailed discussion of the role of volume

conduction in our method, see Introduction in Nikolaev et al. 2005.)

Besides its use in statistical tests, our permutation procedure for

generating surrogate synchronization data helps to ensure that our

measures of synchronization are independent of the effects of volume

conduction. If volume conduction had given rise to systematic

temporal variations of synchrony across conditions, the variations

would be the same in the peak and opposite occipital areas in

Experiment 1 because we see no reason to expect different volume

conduction anisotropies in symmetrical cortical areas within the same

temporal interval. This way we excluded systematic variation in volume

conduction as an explanation of the effect of stimulus AR on

synchronized intervals.

In addition, our measure of synchronization benefits from the fact

that volume conduction inflates synchronization indices toward the

maximally possible values. Because of volume conduction, synchroni-

zation indices were the highest in pairs of adjacent electrodes (e.g., the

blue and red lines in Fig. 3A). Because synchronization indices in these

pairs approached the ‘‘ceiling’’ of synchronization, variability across all

electrode pairs has the same interpretation: less variability means

increase of synchronization and more variability means decrease of

synchronization. This way, volume conduction helps to interpret the

fluctuations of synchronization.

Results

Behavioral results

Experiment 1

In the biased lattices (AR = 2.0), participants predominantly

saw dots grouped along the shortest distance, in organization

a (96.6 ± 2.2% of responses). The other organizations were

perceived at an average response rate of 2.3 ± 1.7% across

participants, excluding 1 participant for whom these responses

reached 40%. In the unbiased lattices (AR = 1.0), the 2 most

likely responses (a and b) were observed with equal frequency

(43.2 ± 5.7% and 44.3 ± 6.1%), whereas the 2 others responses

were observed in 12.5 ± 9.3% of trials. The response times

(RTs) were as follows: 1562 ms (standard error [SE] = 121 ms)

for AR = 1.0 and 1401 ms (SE = 102 ms) for AR = 2.0.

Experiment 2

We excluded 2 participants from the analysis because they

were unable to perform the task adequately (as indicated by

near-zero grouping sensitivity, see below). In this experiment,

the changes of lattice ambiguity across AR conditions were

smaller than in Experiment 1. We estimated the effect of AR

manipulation by measuring response log-odds:

L=logf½N ð:aÞ + 1=6�=½N ðaÞ + 1=6�g;

where N(a) is the number of reports of grouping along a and

N(:a) is the number of other reports (i.e., grouping along b, c,
and d) (Kubovy et al. 1998). In Figure 4, we plot L versus lattice

ARs. The thick lines represent linear fits to the data. Its slope

(indicated in the top right corner of each panel) is called
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‘‘attraction coefficient.’’ We used absolute values of attraction

coefficients to measure ‘‘grouping sensitivity,’’ that is, the degree

to which responses of individual observers depended on the AR

of dot lattices. Large values of this coefficient represent high

sensitivity and small values represent low sensitivity. The RTs for

AR = 1.0, 1.1, 1.2, and 1.3 were, respectively, 1777, 1773, 1734,

and 1754 ms (SE = 68, 57, 61, and 59 ms).

EEG Results

AR Effects on Duration of Synchronized Intervals: Overall

Results

Percentages of the participants whose durations of synchro-

nized intervals were, respectively, longer or shorter in AR = 1.0

than in AR > 1.0 are presented in Figure 5. In both experiments,

8 participants had negative scores in the peak areas in the beta

band, which exceeds in each experiment the number 7

required for significance (Fig. 5B). The negative score indicates

shorter durations in AR = 1.0 than in AR > 1.0. In Experiment 1,

the remaining participant (1 of 9) had a positive score; in

Experiment 2, the remaining 5 of 13 participants had 0 scores.

We found no significant effects in cortical areas or frequency

bands other than the peak areas in the beta band, although we

found 2 tendencies in the opposite areas (Fig. 5A,C). Figure 5B

shows that the proportion of participants with shorter

durations in AR = 1.0 than AR > 1.0 was about 30% larger in

Experiment 1 than in Experiment 2. This is likely an effect of

the larger dissimilarity between AR conditions in Experiment 1

than in Experiment 2.

AR Effects on Duration of Synchronized Intervals: Individual

Results

Having demonstrated that durations in condition AR = 1.0 are

consistently shorter than in condition AR > 1.0 within the beta
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Figure 4. Grouping sensitivity in Experiment 2. In every panel, we plot the log-odds
of responses as a function of lattice ARs. The thick lines represent linear fits to the
data. The slopes of fits (attraction coefficients indicated in the top right corner of each
panel) represent grouping sensitivity. In (A), we plot results for participants whose
synchronized intervals were systematically related to AR, and in (B), we plot results
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band across participants, we next estimated SD thresholds and

frequencies responsible for this effect within participants. For

those participants who showed an effect of AR in their peak

areas, we determined the frequency within the beta band (18,

21, 25, and 30 Hz) and the SD thresholds for maximal t scores in

Experiment 1. In Experiment 2, we additionally summed t scores

in conditions AR = 1.2 and AR = 1.3 and selected the maximal

values of the results. In Figure 6A, we plot the distribution of

frequencies within the beta band and in Figure 6B the

distribution of SD thresholds. Remarkably, the 21-Hz frequency

dominated among beta frequencies in both experiments.

For each participant, we estimated the durations of

synchronized intervals in which differences between condi-

tions were maximal. In Experiment 1, we found a duration for

which the difference between conditions AR = 1.0 and AR = 2.0

was most prominent. At the frequencies and SD thresholds

selected as we described above (Fig. 6A,B), we consecutively

removed the shorter intervals in 20-ms steps, starting from

0 ms, and identified the maximal t value among these steps

(marked ‘‘max’’ in Fig. 3B). The distribution of these ‘‘minimum’’

durations across participants is shown in Figure 6C. The mean

minimum duration was 75 ms (standard error of the mean

[SEM] = 16.4 ms). For the synchronized intervals of which the

durations exceeded this value, we computed the mean

duration for each participant, which are shown in Figure 7.

Similarly, in Experiment 2, we consecutively removed the

shorter intervals with 20-ms step at the frequencies and SD

thresholds selected as we described above (Fig. 6A,B). Because

there were several AR levels in Experiment 2, we had to use

a criterion different from the one used in Experiment 1. Now the

criterion was the maximal regression coefficient in a linear

regression of the durations on the 4 AR conditions. In all but one

(S.G.) participants whose difference between conditions AR =
1.0 than in AR > 1.0 was significant, the regression coefficients

were positive and significant (for S.G. P = 0.056) (Fig. 8B,C).

These fits indicate a consistent increase of durations of

synchronous intervals as a function of AR (Fig. 8A). For control

purposes, we used the same procedure in the opposite areas.

Here, the regression coefficient was significant in 2 participants

only (IM and MC; Fig. 8B,C). In the peak areas, the overall mean

of the minimum durations was 80 ms (SEM = 22.0 ms). The

durations of intervals whose durations exceeded minimum value

are on the right of Figure 8, averaged across participants.

The durations averaged across participants are shown for each

AR for Experiments 1 and 2 in Figure 9. One AR condition (AR =
1.0) was common for both experiments. We asked whether the

durations for this AR were comparable in the different groups of

participants. The t-test revealed that the mean durations in AR =
1.0 did not differ (t7 = 0.42) between Experiments 1 and 2. The

difference between themean durations in AR = 2.0 of Experiment

1 and in AR = 1.3 of Experiment 2 was also insignificant (t7 = 0.98)
(Fig. 9), although the durations in AR = 2.0 were on average about

24 ms longer than in AR = 1.3.

Contribution of Phase-Locked and Nonphase-Locked

Activities to Duration of the Synchronized Intervals

Detection of phase synchronization is sensitive to fluctuations

in signal amplitude. We investigated whether evoked signal

amplitude could explain the systematic relationship between

AR and the duration of synchronized intervals. For the 8

participants in Experiment 2 who showed this relationship, we

averaged EEG from the electrode chains selected individually

for every participant, as described above (Selection of areas of

interest and Fig. 2), and obtained their beta frequency

amplitudes (Fig. 6A) using a complex Morlet wavelet. We

extracted activity both phase locked or nonphase locked to the

stimulus (Galambos 1992; Tallon-Baudry and Bertrand 1999).

To determine the phase-locked activity, we first averaged raw

EEG data and then extracted the amplitudes. In order to
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determine how consistent EEG phase was across trials, we

computed the phase-locking factor (Tallon-Baudry et al. 1996)

called ‘‘intertrial coherence’’ in the EEGLAB software we used

(Delorme and Makeig 2004). Intertrial coherence is an

additional control of our permutation procedure: it is a measure

of phase-locked activity, which was constant across trials and

to which our permutation procedure was not sensitive. To

study nonphase-locked activity, we first computed the wavelet

amplitudes of beta activity in single trials and then averaged the

results across trials. We evaluated the amplitude and intertrial

coherence as a function of AR (4 levels) by repeated-measures

analysis of variance (ANOVAs) for each time point of the epoch

in the interval of –100 to +400 ms using the Huynh--Feldt

correction to compensate for violation of sphericity. In addition,

we tested the possible linear dependency of amplitude or

intertrial coherence on AR, similar to that of synchronized

interval durations. We used as a post hoc test a pointwise linear

regression of amplitude and intertrial coherence on AR (1.0, 1.1,

1.2, and 1.3). We considered only those time points where the

P levels in both ANOVA and regression were below 0.05. To take

into account the effect of multiple comparisons, we considered

only cases where the significance level of P < 0.05 was reached

in both ANOVA and regression for at least 11 consecutive

samples.

For ‘‘phase-locked’’ activity, amplitude reflected AR in the

interval of 230--254 ms after stimulus presentation (Fig. 10A,D),

but the regression did not reveal a linear relationship with AR.

The intertrial coherence had a prominent peak at about 100 ms

(Fig. 10B,E) but was not related to AR here, nor elsewhere in

the epoch.

For ‘‘nonphase-locked’’ activity, amplitude reflected AR in

intervals before and immediately after stimulus presentation

(Fig. 10C). In the first interval, from –70 to –18 ms (demarcated

by vertical lines in Fig. 10C), regression showed a linear

relationship with AR, with larger amplitude for AR = 1.0 and

smallest for AR = 1.3 (Fig. 10F), opposite to what would have

been expected if AR led to an increase of the nonphase-locked

response. The duration of this interval (52 ms) was shorter than

the minimal threshold for synchronized interval (80 ms). This
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interval happened prior to stimulus presentation, and partic-

ipants could not possibly have predicted the AR of the stimuli.

Thus, the linear relationship in this first interval must have

occurred by chance. Consistent with this conclusion, data from

individual participants did not show linear trends, in contrast

with the synchronized interval durations, where the trends

reached significance in individual participants (Fig. 8). In the

second significant ANOVA interval, from 22 to 64 ms after

stimulus presentation, the relationship between amplitude and

AR was not linear even in the averages (Fig. 10G).

To summarize, we found evidence that neither the

amplitude of phase-locked, nor nonphase-locked beta activity,

nor the intertrial coherence could explain the relationship

between AR and synchronized interval durations.

Distribution of Task-Related Synchronized Intervals

According to the theory of coherence intervals, length of the

interval is determined by the slowest process in communica-

tion between brain areas. It is therefore expected that interval

lengths should follow an extreme value distribution. To test

this prediction, we analyzed distributions of durations that

were longer than the minimum duration (i.e., durations

relevant to perception). We compared these distributions

with a large set of parametric distributions (using EasyFit

software, MathWave Technologies). We excluded from this

analysis all the distributions that had more than 3 parameters.

We fitted the remaining 38 theoretical distributions 1) to the

individual data and 2) to the pool of data collected across all

participants within each experiment. We evaluated the

goodness of fit using the Kolmogorov--Smirnov test and ranked

theoretical distributions according to the results of this test. In

the individual fits, we averaged the ranks across participants. In

Table 1, we present results for the 3 top-ranked distributions.

The generalized Pareto and generalized extreme value distri-

butions competed for the first rank. Kolmogorov--Smirnov

statistics of the 3 distributions were highly insignificant

(Fig. 11B,D). This result means that the fits were excellent

so that the empirical and theoretical distributions were

statistically indistinguishable.

Most of the distributions featured in Table 1 are adequate

descriptions of extreme events. Generalized Pareto distribu-

tion, which is at the first position in the mean individual ranks,

is widely used to model extreme events (Hosking and Wallis

1987; Coles and Tawn 1991). Extreme value distributions

comprise Gumbel and Weibull families (as well as Fréchet-type

distributions) (Kotz and Nadarajah 2000). The Weibull distri-

bution is a generalization of the Rayleigh distribution

(Mudholkar and Srivastava 1993). Therefore, it is likely that

the observed distributions of interval durations are extreme

value distributions, in agreement with predictions of the theory

of coherence intervals (Fig. 11A,C). (Because truncating the

lower part of our empirical distribution could result in a bias

for the extreme value distribution, we replicated the analysis

with all the intervals, including the shortest ones. The result

shows that generalized Pareto distribution in Experiments

1 and 2 was at the first position among 38 ranked distributions

for both mean individual ranks and fitting durations pooled

over participants.)

Onset and Offset of the Synchronized Intervals

In a previous study (Nikolaev et al. 2005), we had contrasted

synchronized intervals that were shorter and longer than the

MD and found they differ in their onset and offset latencies. We

report about these onset and offset latencies in our present

data. We derived the distribution of onset and offset latencies in

ten 50-ms bins in the epoch of 500-ms length (–100 to +400
ms). However, for the long intervals, the number of onsets in

the ‘‘end of an epoch’’ and the number of offsets in the

‘‘beginning of an epoch’’ had to be small because of a small

number of intervals that reached the end of an epoch for onsets

or terminated in the beginning of an epoch for offsets. (We

considered only the intervals fully contained within –100

to +400 ms of the stimulus onset.) Therefore, the number of

onsets in the end (and offsets in the beginning) of an epoch

could not be measured reliably. To evaluate the lengths in

those parts of an epoch where the onsets or offsets could not

be measured, we calculated the 95th percentile of the

distribution of long intervals. The 95th percentile was 300 ms in

Experiment 1 and 296ms in Experiment 2. The 300ms amounted

to six 50-ms bins. Accordingly, we did not use the last 6 bins for

onsets (and the first 6 bins for offsets) in these measurements.

Instead, we evaluated the onsets in 4 bins from –100 to +100 ms,

and the offsets in 4 bins from 200 to 400 ms.

Distributions of onsets and offsets averaged across partic-

ipants are shown in Figure 12. To evaluate the number of

onsets and offsets as a function of latency, we performed

a repeated-measures ANOVA with factors interval length (short

vs. long) and time Bin (4 levels). These were performed

separately for onsets and offsets and for each experiment.

In Experiment 1 for onsets, the effect of interval length was

significant, F1,7 = 7.3, P < 0.05, and the effect of time bin and the

interaction were not significant (Fig. 12A). A post hoc least

significant difference test showed a smaller number of onsets in

the bin 50--100 ms (marked with an asterisk in Fig. 12A) than in

the preceding bins –100 to 50 ms (P < 0.05) and 0--50 ms (P =
0.05). For offsets, the effect of interval length approached

significance, F1,7 = 5.0, P = 0.06, and the effect of time bin and

the interaction were not significant. But the number of offsets

for the long intervals gradually increased starting from the bin of

250--300 ms, the difference with which approached significant in
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Figure 9. Mean, SEM, and the range of durations of synchronized intervals averaged
across 8 participants in whom we found shorter durations in AR 5 1.0 than in AR[
1.0 in the 2 experiments.
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the bins of 300--350 (P = 0.08) and 350--400 ms (P < 0.05)

(Fig. 12A).

In Experiment 2 for onsets, we found a significant effect of

interval length, F1,7 = 42.1, P < 0.001, and a tendency for the

effect of time bin, F3,21 = 2.5, P = 0.09, Huynh--Feldt e = 1

(Fig. 12B). The interaction was not significant. A post hoc test

showed a smaller number of onsets in the bin 0--50 ms (marked

with an asterisk in Fig. 12B) than in the preceding bin –50 to

0 ms (P < 0.05). For offsets, the effect of interval length was

significant, F1,7 = 20.8, P < 0.01, the effect of time bin

approached significance, F3,21 = 2.7, P = 0.07, Huynh--Feldt e = 1,

and the interaction was not significant. A post hoc test showed

that relative to the bin 200--250 ms (marked with an asterisk in

Fig. 12B), the number of offsets increased in the following bins

250--300 (P = 0.05) and 350--400 ms (P = 0.07).
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Figure 10. (A) Grand-average amplitude of phase-locked beta activity for the 4 ARs. (B) Grand-average intertrial coherence for the 4 ARs. (C) Grand-average amplitude of
nonphase-locked beta activity for the 4 ARs. The horizontal bars indicate intervals of significant AR effects: according to pointwise ANOVAs (black) and according to pointwise
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Table 1
Ranked estimates of goodness of fit of theoretical distributions to observed distributions of

synchronized interval durations

Mean rank Pooled

Rank Statistics Rank Statistics

Experiment 1
Generalized Pareto 4.5 0.100 Generalized extreme value 1 0.029
Generalized extreme value 6.9 0.111 Rayleigh (2P) 2 0.030
Gumbel max 9.6 0.118 Fatigue life (3P) 3 0.031
Experiment 2
Generalized Pareto 1.6 0.048 Generalized extreme value 1 0.022
Weibull (3P) 5.1 0.061 Rayleigh (2P) 2 0.025
Generalized extreme value 6.1 0.065 Weibull (3P) 3 0.026

Note: The first 3 ranks among the 38 tested distributions are shown, for the ranks averaged

across individual fits (mean rank) and pooled across all the participants within an experiment

(pooled).
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The results are consistent across the 2 experiments for the

long intervals. Their frequency of onsets decreased immedi-

ately after stimulus presentation. Onsets reached a minimum 1

bin later in Experiment 1 than in Experiment 2. The frequency

of offsets increased after the bin of 250--300 ms, which

corresponded to the moment of stimulus removal.

Synchronized Interval Durations and Individual Grouping

Sensitivities

To understandwhy high ARs corresponded to longer durations of

synchronized intervals, in Experiment 2, we examined how these

durations related to individual grouping sensitivities reflected in

attraction coefficients (Fig. 4). We performed a multiple re-

gression analysis of single-trial durations with 2 predictors:

attraction coefficient and AR (multiple regression, R2 = 0.16;

overall goodness of fit, F2,1075 = 101.8, P < 1 3 10
–17). Regression

coefficients were highly significant for both attraction coefficient

(0.36, t = 12.7, P < 13 10
–17) and AR (0.18, t = 6.5, P < 13 10

–9). In

Figure 13, we plot individual averaged durations as a function of

grouping sensitivity for each AR condition. This plot shows that,

just as we found for high AR, long durations are associated with

high attraction coefficients.
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We also averaged durations of synchronized intervals for each

participant across trials and performed a multiple regression

analysis of the averaged durations with 2 predictors: attraction

coefficient and AR. The multiple regression accounted for about

half of the variance (R2 = 0.55, overall goodness of fit, F2,29 = 17.7,
P < 0.00001). Regression coefficients were significant for both

attraction coefficient: 0.65 (t = 5.2, P < 0.0001) and AR: 0.36 (t =
2.9, P < 0.01).

Discussion

We studied synchronized electrical brain activity in local

regions of the scalp of human observers engaged in a perceptual

grouping task. The task was to report the orientation of the

perceived groupings in dot lattices. We found that the

‘‘duration’’ of synchronized activity in the beta frequency band

depended on the ambiguity of stimulation and on individual

grouping sensitivity. These dependencies were observed for

synchronized intervals that exceeded a minimal duration (MD)

of about 80 ms. This result is consistent with the observation of

Freeman and Barrie (2000) that only synchronized intervals

longer than some MD were related to behavior.

Effect of Stimulus Ambiguity

Synchronized brain activity depended on the degree to which

a stimulus organization dominated perception within a trial.

Durations of the intervals of synchronized activity depended on

2 factors, both associated with perceptual ambiguity: one was

a property of stimulation (aspect ratio, AR, of dot lattices) and

the other was a property of participant (grouping sensitivity):

1. AR of dot lattices controls how strongly the most likely

perceptual organization is supported by stimulus geometry

(Fig. 1): the higher the AR the more dominant is that

interpretation the lower is stimulus ambiguity. In both

Experiments 1 and 2, we observed longer durations of

synchronized intervals for biased (AR > 1.0) than ambiguous

(AR = 1.0) stimuli. Notably, in Experiment 2, the graded

increase of AR was associated with a graded prolongation of

synchronized intervals (Figs 8 and 9).

2. Grouping sensitivity reflects how much participant’s

preference of the dominant organization depends on the

AR (Fig. 4). Participants with high grouping sensitivity report

the dominant organization more often than participants with

low grouping sensitivity. We found that high grouping

sensitivity was associated with long synchronized intervals

(Fig. 13).

AR corresponds to graded perceptual ambiguity, that is, to

uncertainty, or lack of information in the perceptual judgment.

Dot lattices with high ARs contain more information for

the grouping task than lattices with low ARs (Kubovy and

Wagemans 1995). Individual sensitivity, or the lack thereof,

equally reflects uncertainty with respect to stimulus information.

These results, therefore, are consistent with the view that the

lengths of coherence intervals reflect the amount of information

communicated across different parts of the visual system.

According to the theory of coherence intervals, periods of

synchrony are the periods during which communication

between brain structures takes place. Because the slowest

process determines length of the coherence intervals, the

intervals are expected to have an extreme value distribution. In

accordance with this prediction, we found that the generalized

Pareto and extreme value distributions competed for the best-

fitting theoretical distributions of the durations of synchro-

nized intervals (Fig. 11).

Figure 12. Frequencies of the onsets and offsets (mean ± SEM) of synchronized
intervals that were longer or shorter than the minimum duration for Experiment 1 (A)
and Experiment 2 (B). Significant changes of frequency relative to neighboring bins
are marked by asterisks.
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Reaction times (RTs) were longer in ambiguous than in

nonambiguous stimuli. A likely reason is that in ambiguous

stimuli, observers tended to vacillate between response

alternatives, consistent with the notion that stimulus un-

certainty of ambiguous stimuli was high. Note the opposite

trends in the associations of 1) RT and stimulus ambiguity and

2) durations of synchronized intervals and stimulus ambiguity.

We therefore conclude that the effect of stimulus ambiguity on

RTs is mediated by a mechanism unrelated to the mechanism

that controls the durations of synchronized intervals.

Can the results be explained by attractor dynamics, which,

according to Freeman and colleagues, governs the evolution of

a quasi-stable synchronized neural activity? One could argue, for

instance, that perceptual switching between alternative organ-

izations of an ambiguous stimulus is a manifestation of switching

between alternative attractor states of neural activity (e.g.,

Ditzinger and Haken 1990). Then, perhaps, competition be-

tween the attractor states would somehow be reflected in the

durations of intervals of synchronized activity. But this argument

is inconsistent with the well-known properties of attractor

dynamics: a system governed by an attractor follows a specific

path in the state space toward the attractor and this process is not

expected to depend on other possible system states, including

attractors, outside of this path (van der Helm 2006).

EEG Frequency Band of Synchronized Intervals

Our findings on synchronized activity in relation stimulus and

individual properties were specific to the beta frequency band

(18--30 Hz) (Figs 5B and 6A). This observation is consistent

with previous results (Nikolaev et al. 2005) and with numerous

reports about the association of cortical activity in the beta

band with visual perception. For example, perception of

gratings presented in different visual hemifields was accompa-

nied by increase of interhemispheric coherence in the beta

band when the gratings were co-oriented rather than

orthogonal to one another (Knyazeva et al. 1999, 2006). In

binocular rivalry, cortical interactions in the beta band were

associated with perception of alternating stimuli (David et al.

2004). Beta-band synchronization was also associated with

perception of semantic aspects of visual perception (von Stein

et al. 1999), target detection in attentional blink (Gross et al.

2004), object recognition (Supp et al. 2005), and visual short-

term memory (Tallon-Baudry et al. 2001).

We found no association between perception and duration

of synchronized intervals in other frequency bands, including

the gamma band (Fig. 5C), where other studies have reported

correlation between synchronous activity and feature binding

(reviewed in Singer 1999; Tallon-Baudry and Bertrand 1999).

This discrepancy may be explained by a systematic relationship

between sizes of synchronized networks and the frequency

band of their synchronization: the higher the frequency the

smaller the size (von Stein and Sarnthein 2000). Gamma-band

synchronization is generally responsible for local communica-

tion across short cortical distances, whereas beta frequencies

can synchronize over longer conduction delays, that is,

between more distant brain structures (Kopell et al. 2000).

Thus, it is plausible that the significance of beta band in our

results is a consequence of the spatial scale of our measure-

ments (about 8 cm).

Freeman (2005) distinguished between 2 types of synchro-

nized patterns related to stimulus presentation. The first

pattern has a carrier frequency in the gamma band; it appeared

soon after stimulus presentation and persisted for relatively

short time. This pattern is modality specific and localized over

the primary sensory cortex. The second pattern has a carrier

frequency in the beta range; it appeared later (but it might also

occur in prestimulus epochs) and lasted longer than the

gamma pattern. The beta pattern was synchronized over the

primary sensory cortex and subcortical areas. Although these

patterns were found in animal studies, that is, at a different

spatial scale than here, the properties of the beta pattern make

it more likely to be detected in scalp EEG than the gamma

pattern. It is therefore the beta pattern that probably

corresponds to the pattern of synchronized activity observed

presently.

Time Course of Synchronized Activity

Task-relevant synchronized intervals (i.e., intervals > 80 ms)

often began prior to stimulus presentation (Fig. 12) (cf.,

Lachaux et al. 2000; Freeman 2005). This activity may reflect

preparatory behavior. Nonspecific preparation may occur

under conditions of random variation of stimuli with impov-

erished semantics typical for psychophysical experiments.

Recruitment of ongoing activity helps to meet resource

demands during stimulus processing (Nakatani et al. 2005).

Synchronized intervals continued in the transition from

ongoing to evoked activity. Of the evoked activity, neither

phase-locked nor nonphase-locked amplitudes showed a sys-

tematic relationship to ARs (Fig. 10A,C; The linear relationships

between the amplitude of the nonphase-locked activity and

ARs [Fig. 10C] observed before stimulus presentation were not

confirmed in the individuals and were shorter the MD of 80 ms

above which ARs were associated with the duration of

synchronized intervals.). This is evident that the relationship

between synchronized interval duration and AR occurred

because of changes in phase rather than amplitude.

We distinguished 2 types of activity phase locked to the

stimulus. The first type involved stable phase relations between

channels that were constant across trials. This type of activity

was not eliminated in the surrogates, and therefore, we

evaluated it by intertrial coherence (or phase-locking factor;

Tallon-Baudry et al. 1996). We found a peak of the intertrial

coherence at about 100 ms after stimulus onset (Fig. 10B). This

result suggests that ‘‘phase resetting’’ of ongoing activity may

occur at this instant, in response to stimulus presentation. The

timing of phase resetting may be functionally significant

(Gruber et al. 2005; Klimesch, Hanslmayr, et al. 2007).

Instantaneous phase locking may help to maintain exact timing

of information processing in the brain, by establishing temporal

windows during which neural systems are prepared for

particular information-processing tasks (Tallon-Baudry and

Bertrand 1999; Klimesch et al. 2006; Fell 2007).

The abrupt phase change overlaps with ERP components C1

and P1, with latencies 60--110 ms. Other findings in the present

data (reported in Nikolaev et al. 2008) showed that compo-

nents C1 and P1 reflected effects of AR and grouping

sensitivity. In general, oscillations of different frequencies that

are phase locked to the stimulus can contribute to the

generation of ERP components in a manner specific to the

behavioral task (Klimesch, Hanslmayr, et al. 2007). For example,

in a memory retrieval task, phase alignment of alpha-band

activity significantly contributed to generation of the P1

component and phase alignment of (mainly) theta-band activity
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contributed to generation of the N1 component (Gruber et al.

2005). ERP components may also be associated with high-

frequency activity: phase-locked high-frequency oscillations

were shown to be negatively correlated with component N70

(C1) and positively correlated with component P100 (P1)

(Sannita et al. 1995).

However, the abrupt phase changes at the 100-ms latency

were not associated with AR, in contrast to the amplitude of

the low-frequency ERP components. Possible reasons are the

following: 1) the phase changes happened in a narrow

frequency band around 20 Hz (see the previous section of

Discussion) in contrast to the wide band ERP response and 2)

effects of AR on C1 and P1 amplitude were too small or too

short lived to have a measurable effect on the signal-to-noise

ratio and, consequently, on the estimates of phase synchrony.

Besides the fact that this type of phase-locked activity

coincided with early ERP components, the phase-locked

activity also coincided with an abrupt decline in the onset

frequency of task-relevant synchronized intervals (Fig. 12). The

phase-locked activity, therefore, appears to interfere with the

synchronization. Nikolaev et al. (2005) observed a similar drop

in onsets at a later stage, coinciding with ERP component N1

with a 200-ms latency. This component was associated with

differences between task and no-task conditions and therefore

was understood to reflect the deployment of task-specific

attention. In the current experiments at about 100 ms after

stimulus, the early ERP components, the peak of intertrial

coherence, and the drop in onsets all coincided. This moment

may demarcate the beginning of the perceptual grouping

process.

The second type of phase-locked activity is characterized by

stable phase relations between channels that vary across trials

(Lachaux et al. 1999). It is therefore not visible in the intertrial

coherence. However, within a trial, the phase relations are stable

and persist for some duration. This mechanism is supposed to

support the synchronization of activity across brain regions. For

example, phase locking within rhinal cortex and hippocampus

may trigger rhinal--hippocampal synchronization related to

memory formation (Fell et al. 2008). The function of this

mechanism is to facilitate communication across regions. This

type of phase-locked activity may therefore give rise to

systematic effects among pairs of channels that were eliminated

in the surrogates of Experiment 2. Against this background, the

effect of AR on synchronized interval durations was observed.

Therefore, the AR effect to a considerable degree depends on

this second type of phase-locked activity.

This type of phase-locked activity might be necessary for the

effects of synchronized interval durations, but could it also be

sufficient? Phase-locked oscillations are usually short term,

widespread over brain areas, and broadband (Yeung et al.

2004). The present effects were not short term: in the intervals

shorter than 80 ms, we did not find a systematic effect of their

duration on AR. Also, the association of grouping sensitivity and

durations of synchronized intervals was observed only in the

intervals that were longer than 80 ms. The mean duration of

synchronized intervals was 140--180 ms (Figs. 7 and 9), and

some of them lasted until stimulus offset (300 ms after stimulus

presentation) (Fig. 12). Nor were the effect broadband or

widespread: we found them only in a narrow beta band (Fig.

6A) and in the peak areas (Fig. 2). We therefore consider the

contribution of activity with stable phase relations (between

channels) that are nonphase locked to the stimulus. We cannot

exclude that this activity forms characteristic patterns among

pairs, which we have identified as synchronized intervals.

Assuming that phase-locked activity was not sufficiently long

lived to sustain these intervals, we set our cards on a synergistic

effect of phase-locked and nonphase-locked activities.

Implications for Mechanisms of Cortical Communication

As we mentioned in the Introduction, intervals of synchronized

activity (coherence intervals) could manifest information

transfer between brain structures (van Leeuwen and Bakker

1995; van Leeuwen 2007): the more information is transferred

and the more brain structures get involved the longer the

synchronized intervals. This argument led to the predictions

we tested in the present work.

The quasi-stable synchrony patterns observed in visual,

auditory, and somatic cortices (Barrie et al. 1996; Ohl et al.

2001; Freeman 2005) are sometimes presented as evidence of

discrete processing of information in the brain. (Freeman 2007,

dubbed these patterns ‘‘cinematographic frames.’’) The notion

of discrete processing originated in psychology (Lalanne 1876;

von Uexkuell 1928). It enjoyed some popularity in experimen-

tal psychology in 1950--70s (Stroud 1955; Lichtenstein 1961;

Kristofferson 1967; Geissler 1987), and now it undergoes

a revival (reviewed in VanRullen and Koch 2003; Palva S and

Palva JM 2007). Although our findings are not inconsistent with

the notion of discrete processing, they do not commit us to the

view that information processing occurs in discrete stages.

Coherence intervals are relatively local events, so many

coherence intervals may co-occur at different locations in the

brain. These intervals may overlap in time to various degree,

yielding a continuous flow of information across the brain. The

question of whether cortical processing is discrete or

continuous (in the above sense) can be perused in future

studies aimed at discovering the temporal organization of

multiple coherence intervals.
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