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Abstract: Although the established ELISA-based sensing platforms have many benefits, the
importance of cytokine and cancer biomarkers detection for point-of-care diagnostics has propelled
the search for more specific, sensitive, simple, accessible, yet economical sensor. Paper-based biosensor
holds promise for future in-situ applications and can provide rapid analysis and data without the
need to conduct in a laboratory. Electrochemical detection plays a vital role in interpreting results
obtained from qualitative assessment to quantitative determination. In this review, various factors
affecting the design of an electrochemical paper-based biosensor are highlighted and discussed in
depth. Different detection methods, along with the latest development in utilizing them in cytokine
and cancer biomarkers detection, are reviewed. Lastly, the fabrication of portable electrochemical
paper-based biosensor is ideal in deliberating positive societal implications in developing countries
with limited resources and accessibility to healthcare services.

Keywords: electrochemical detection; paper-based device; biosensor; cytokine; cancer biomarkers;
point-of-care device

1. Introduction

Cytokines are microproteins secreted by cells that play a crucial role in cell signaling as
immunomodulating agents, typically in the activation of immune response against pathogens [1,2].
They can be categorized into few functional classes, being pro-inflammatory, anti-inflammatory, or
adaptive immune response for instance. Since cytokines exist as non-structural proteins, their induced
biological properties were, and still are the gold standards for defining them [3]. The classification of
cytokines had been compiled in Table 1 based on their triggered immune response, along with the
specific roles of individual cytokines that depend on cell type and location as shown in Table 2. Although
cytokines can be produced by numerous cell populations, the main producers are macrophages and
helper T cells [1,2,4]. Many individual cytokines can exhibit their hallmark pleiotropic and overlapping
activities by activating multiple signaling pathways, thus contributing to different functions [4,5]. In
contrast, different cytokines may also demonstrate redundancy wherein they share identical receptor
chains and have similar functions [1,4,5].

Germane to their involvement in immune system, cytokines are potential biomarkers that can
be utilized in the monitoring of disease activity and their subsequent severity [6–8]. Owing to the
influential role that cytokines play in cell-mediated immunity, it can be considered as potential
therapeutic targets for the treatment of various infectious, inflammatory, neurological, and even
neoplastic diseases [9–11]. A dysregulation in cytokine levels has been correlated with the onset of
several types of cancer such as gastric cancer and colorectal cancer, thus its role exhibits promising
quality as cancer biomarker to support diagnosis [12,13]. Apart from this, cytokines can also serve as
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prospective targets for the development of vaccines [14]. Hence, their detection and quantification can
provide diagnostic value of great importance.

At the time of writing, the broad definition of cytokine includes interferons, adipokines,
interleukins, and tumor necrosis factors [3,4]. Being the only member of the type II class of interferons,
interferon-gamma (IFN-γ) often appears to be the conundrum [3]. Although this particular cytokine is
vital for our immune defense against microorganisms such as Mycobacterium tuberculosis, it is also one
of the causative factors in the pathogenesis of various autoimmune diseases [3]. Therefore, the sensitive
detection of human IFN-γ is important for the precise diagnosis of diseases by clinicians. Currently,
the sensitivity of the detection of IFN-γ at serum level using an enzyme-linked immunosorbent assay
(ELISA) kit is reported to be 15 pg/mL and the standard curve range was 15-2000 pg/mL [15].

Other than the interferons, adipokines are low molecular weight, pleiotropic cytokines that are
commonly associated with obesity [16]. Leptin, the first member of the adipokine family, is found to act
as a body weight central regulator by linking neuroendocrine function with nutritional status [16,17].
It was reported that obese individuals have elevated circulating leptin level, yet fails to reduce food
intake and increase energy expenditure due to resistance in the hypothalamus, resulting in body weight
gain [17]. Few other members of the adipokine family, namely adiponectin, progranulin (PGRN), and
lipocalin-2 (LCN2) are also found to exhibit vital links between immune system and obesity, thus
making adipokines attractive biomarkers for obesity-related diseases, such as Type 2 diabetes mellitus,
osteoarthritis, and rheumatoid arthritis [18–20].

Apart from that, interleukin 6 (IL-6) is a pro-inflammatory cytokine and its overexpression
is relevant to numerous types of cancers, such as gastrointestinal cancer [21], head and neck
carcinomas [22], and colorectal cancer [23]. It was reported that IL-6 is present at a very low
concentration of approximately 6 pg mL−1 in healthy individuals [24,25], therefore making its detection
and early diagnosis of diseases to be an extremely challenging task. Few methods have been reported
for fabricating IL-6 biosensors with remarkable sensitivity and selectivity [26–28]. The sensitivity of
the detection of IL-6 at serum level using ELISA kit is reported to be 4 pg/mL and the standard curve
range was 4-500 pg/mL [15].

Furthermore, tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine and its
dysregulation has been linked to the onset of various human diseases, including cardiovascular
diseases [29], rheumatoid arthritis [30], Alzheimer’s disease [31], and psoriasis [32]. Hence, it is crucial
to measure TNF-α for the in-depth understanding of inflammation, thus its role has been extended to
biomarkers for the diagnosis and monitoring of disease severity [33,34].

Although cytokines have been considered as cancer biomarkers hitherto, few other glycoproteins,
typically carcinoembryonic antigen (CEA) and tissue inhibitor of metalloproteinase 1 (TIMP1), are
involved in cellular adhesion that is commonly produced in gastrointestinal tissue and their abnormal
levels are reported in serum of lung, colorectal, and breast cancer [35,36]. Therefore the detection of CEA
or TIMP1 as cancer biomarkers is crucial for cancer diagnosis, or more specifically, for the monitoring
of patients who suffer from cancer which produce CEA after and before getting chemotherapy, surgery,
radiation, or combination of all [36,37].

In this review, we shall provide detailed insight into the various factors that can influence the
design of an electrochemical paper-based biosensor, along with the latest development in utilizing
them in cytokine and cancer biomarkers detection. The selection criteria for this type of biosensors are
listed as follow: (i) fabrication steps that involve the use of any paper-based substrate, (ii) fabricated
sensors that utilize electrochemical methods as their mode of detection, and (iii) fabricated sensors that
detect only cytokines or cancer biomarkers. Therefore, any biosensors that do not fulfill all three of the
criteria shall not be reviewed.
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Table 1. Classification of cytokines based on their triggered immune response [4].

Immune Response Family Members

Adaptive immunity Common γ chain receptor ligands IL-2, IL-4, IL-7, IL-9, IL-15, IL-21
Common β chain (CD131)

receptor ligands IL-3, IL-5, GM-CSF

Shared IL-2β chain (CD122) IL-2, IL-15

Shared receptors IL-13 (IL-13R–IL-4R complex)
TSLP (TSLPR–IL-7R complex)

Pro-inflammatory IL-1 IL-1α, IL-1β, IL-1ra, IL-18, IL-33, IL-36α, IL-36β,
IL-36γ, IL-36Ra, IL-37 and IL-1Hy2

IL-6 IL-6, IL-11, IL-31, CNTF, CT-1, LIF, OPN, OSM
TNFα TNFα, TNFβ, BAFF, APRIL
IL-17 IL-17A-F, IL-25 (IL-17E)

Type I IFN IFNα, IFNβ, IFNω, IFNκ, Limitin
Type II IFN IFNγ
Type III IFN IFNλ1 (IL-29), IFNλ2 (IL-28A), IFNλ3 (IL-28B)

Anti-inflammatory IL-12 IL-12, IL-23, IL-27, IL-35

IL-10 IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28,
IL-29

Abbreviations: CNTF, ciliary neurotrophic factor; CT-1, cardiotrophin-1; GM-CSF, granulocyte macrophage-colony
stimulating factor; IFN, interferon; LIF, leukemia inhibitory factor; OPN, osteopontin; OSM, oncostatin M; TNFα,
tumor necrosis factor α; TSLP, thymic stromal lymphopoietin.

Table 2. Specific roles of individual cytokines that depend on cell type and location [4].

Class of
Cytokines

Specific
Cytokines Main sources Target CELL Major Function

Interleukins IL-1 Macrophages, B
cells, DCs

B cells, NK cells,
T cells

Pyrogenic, pro-inflammatory,
proliferation and differentiation,

BM cell proliferation

IL-2 T cells
Activated T and

B cells,
NK cells

Proliferation and activation

IL-3 T cells, NK cells Stem cells Hematopoietic precursor
proliferation and differentiation

IL-4 Th cells B cells, T cells,
macrophages

Proliferation of B and cytotoxic
T cells, enhances MHC class II

expression, stimulates
IgG and IgE production

IL-5 Th cells Eosinophils, B
cells

Proliferation and maturation,
stimulates IgA and IgM

production

IL-6
Th cells,

macrophages,
fibroblasts

Activated B cells,
plasma cells

Differentiation into plasma cells,
IgG production

IL-7 BM stromal cells,
epithelial cells Stem cells B and T cell growth factor

IL-8 Macrophages Neutrophils Chemotaxis, pro-inflammatory
IL-9 T cell T cell Growth and proliferation

IL-10 T cell B cells,
macrophages

Inhibits cytokine production
and mononuclear cell function,

anti-inflammatory

IL-11 BM stromal cells B cells Differentiation, induces acute
phase proteins

IL-12 T cells NK cells Activates NK cells
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Table 2. Cont.

Class of
Cytokines

Specific
Cytokines Main sources Target CELL Major Function

Tumor
necrosis
factors

TNF-α Macrophages Macrophages Phagocyte cell activation,
endotoxic shock

Monocytes Tumor cells Tumor cytotoxicity, cachexia

TNF-β T cells
Phagocytes,

tumor
cells

Chemotactic, phagocytosis,
oncostatic, induces other

cytokines

Interferons IFN-α Leukocytes Various Anti-viral
IFN-β Fibroblasts Various Anti-viral, anti-proliferative

IFN-γ T cells Various

Anti-viral, macrophage
activation, increases neutrophil
and monocyte function, MHC-I

and -II expression on cells

Colony
stimulating

factors
G-CSF Fibroblasts,

endothelium Stem cells in BM Granulocyte production

GM-CSF
T cells,

macrophages,
fibroblasts

Stem cells Granulocyte, monocyte,
eosinophil production

M-CSF Fibroblast,
endothelium Stem cells Monocyte production and

activation
Erythropoietin Endothelium Stem cells Red blood cell production

Others TGF-β T cells and B cells Activated T and
B cells

Inhibit T and B cell proliferation,
inhibit haematopoiesis, promote

wound healing

Abbreviations: BM, bone marrow; DCs, dendritic cells; G-CSF, granulocyte-colony stimulating factors; M-CSF,
macrophage colony stimulating factor; Th, T helper cells.

2. Methodology for Cytokine and Cancer Biomarkers Quantification

Traditionally, cytokine can be measured and quantified using several methods, namely ELISA,
radioimmunoassay (RIA), biochemical assays, and multiplex array [38,39]. Among the list the
conventional ELISA has proven to be the benchmark in most biophysical methods [38]. It was
introduced in the 1970s to replace the use of radioactive isotopes in RIA described by Yalow and Berson
in 1959—a discovery that won Yalow the 1977 Nobel Prize in Physiology or Medicine [38,40]. ELISA
offers high specificity and sensitivity for cytokine detection in biological samples such as serum or
cell supernatant [38,39]. Furthermore, the results obtained from ELISA have high reproducibility and
generally accurate. However, the drawback in using ELISA is that it can only measure a single type of
cytokine present in each sample for each trial as compared to other sensing platforms. Although the
cost of ELISA is still affordable, a lower cost sensing platform would naturally be more beneficial.

In recent years, multiplex arrays have been developed from traditional ELISA in order to address
the limitations in ELISA with the aim of performing multiple cytokines and cancer biomarkers
measurement in the same given serum sample at a time [39]. These innovative arrays are available in
varying formats established from the fundamental understandings and utilization of flow cytometry
and chemiluminescence technology [38,39]. Although having lower sensitivity, these multiplex arrays
have countless advantages over singleplex ELISA, including minimal sample volume requirement,
broader quantification range for each cytokine, and vast reduction in both assay time and cost [41].
Although the established ELISA-based sensing platforms have many benefits, an alternative sensing
platform with lower cost would naturally be more favorable.

Various unconventional modern biosensors developed for the detection of cytokines were
reported in recent years in the forms of capacitance-based sensor, waveguide grating optical sensor,
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and field-effect transistor (FET) sensor [42–45]. For capacitance-based sensor, the detection of cytokines
is based on the relative change in their capacitive values, whereas optical biosensors are based on the
changes in refractive index that resulted from bound analytes [43,44]. Research on FET sensors have
shed new light on the development of novel biosensor as they have been employed to study on cellular
bioelectricity by performing electrophysiology measurements [42,45].

It has been highlighted that there is a pressing need for the development of a specific, sensitive,
simple, accessible, yet economical diagnostic method. In this case, the development of paper-based
biosensors have caught the attention of researchers owing to their idiosyncratic properties, accompanied
by the portability of the device which can in turn, provide rapid analysis and data without the need to
conduct in a laboratory [46].

3. Strategies for Designing Electrochemical Paper-Based Biosensors

The approach to design an electrochemical paper-based biosensor that serves as a paragon of
sensitivity, specificity, simplicity, and affordability can be challenging, yet rewarding and worthwhile.
There are few aspects that need to be considered prior to fabricating an electrochemical paper-based
biosensor, and the aspects were clearly stated and elaborated with detailed explanations in the
following context.

3.1. Selection of Paper Material

The use of paper in fabricating a biosensor has shown potential owing to its ubiquity and unique
properties, for instance, its porosity, surface affinity towards varying analytes, and the wicking rate of
liquid [47]. As a matter of fact, paper provides a thin layer of water that can deliver analytes to electrode
surface, thus enhancing the surface area and conductivity of the fabricated biosensor [48,49]. Evidently,
different paper materials as substrates have different properties in terms of pore size, thickness,
grades, and flow rate. As a result, the selection of paper material is crucial so that the properties
of the selected paper substrate can be fully utilized in order to maximize detection sensitivity [50].
There is a myriad of paper substrates ranging from filter paper to varying grades of office paper
that can be chosen from and utilized depending on the specific application required; each variety,
in turn, offers different characteristics [51]. Ideally, paper substrate made up of thinner material
is more favorable for several fabrication methods such as inkjet-, Stencil-, and wax-printing as it
requires smaller amount of ink or wax to be deposited onto the surface of the substrate for penetration
through the nitrocellulose membrane of paper in order to create a hydrophobic zone in the biosensor,
which in turn, reduces production cost [50]. The most widely used paper substrate to date is the
Whatman grade 1 chromatographic filter paper. It gains popularity from its structural uniformity, high
alpha-cellulose content (> 98%) and smooth surface, which provides quality assurance and guarantees
data reproducibility and uniformity [49]. Apart from that, various studies revealed that the Whatman
grade 1 chromatographic filter paper is suitable for the immobilization of DNA, proteins, and enzymes
owing to its extraordinary non-specific binding affinity towards bioactive molecules [52–56].

3.2. Design of Two- and Three-Dimensional Biosensors

Back in 2007, Prof. Whitesides and his research team introduced the two-dimensional (2D) concept
in the fabrication of paper-based sensors, for which multiple analytes can be simultaneously detected
using a single sample pool [57]. A more sophisticated yet simple three-dimensional (3D) paper-based
sensor was developed in 2016 to promote more complex and complicated operations [58]. The main
noticeable dissimilarity between 2D and 3D paper-based sensors is none other than the way the
electrodes are being displayed. For a 2D sensor, a three electrodes system is being implemented and
fabricated onto a piece of paper substrate. In contrast, a paper is folded to form a specific configuration
somewhat like origami, whereby the working electrode (WE) is being fabricated onto one segment
of the paper while both the reference electrode (RE) and counter electrode (CE) are constructed on
another in a 3D sensor [59]. By comparing both 2D sensor and 3D sensor, the latter has the edge over



Sensors 2020, 20, 1854 6 of 19

the former as fluid can travel freely in both vertical and horizontal directions in a 3D sensor, thus
demonstrating a highly homogeneous coloration covering the whole surface area of the paper reaction
zones [60]. Examples of a 2D sensor and a 3D sensor are illustrated in Figures 1 and 2, respectively.
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3.3. Formation of Hydrophobic Walls

To form a microfluidic channel, the path of the flowing solutions and the hydrophilic zones
can be well defined by forming hydrophobic walls utilizing the porous matrix within the cellulose
membrane of a paper substrate [49]. This form of hydrophobic patterning can effectively prevent the
fluid solution from overflowing or backflowing from the paper sensor [63]. There are some common
fabrication techniques that can be applied to form hydrophobic walls on paper substrate, for example,
inkjet-, wax-, screen-, laser-printing, along with more costly photolithography [64]. Although each
technique has its own pros and cons, wax printing is much more desirable and stands out from other
techniques. This technique is quite straightforward and capable of forming both hydrophobic and
hydrophilic zones on cellulose matrix [65]. The fabrication steps of wax printing involve printing the
wax onto the paper substrate, heating the wax till it melts, then spreading it precisely and uniformly to
form hydrophobic walls across the surface of the paper substrate [66]. A wax-printed electrochemical
paper-based sensor is depicted in Figure 3.Sensors 2020, 20, x 8 of 20 
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3.4. Surface Modification of Electrodes

Owing to the extensive matrix of nitrocellulose membrane of a paper, it serves as the foundation
for the deposition of the electrodes’ conductive and redox materials in a paper-based biosensor [49]. In
fact, the sensitivity and conductivity of the electrode, along with the cost of the fabricated biosensor
are highly dependent on the selection of specific electrode material. Consequently, the materials
selected for the fabrication of WE, RE, and CE may differ from each other depending on the target
cytokine to be analyzed and the type of analysis required [68]. These electrodes can be fabricated using
conducting pastes comprised of graphene, gold, silver, carbon and heavy metal. Among all materials,
carbon paste has been widely used in the fabrication of CE and WE due to its lower interference in
the screen-printing technique compared to other materials. As for RE, silver paste is more favorable
owing to its consistent potential and stability for electrochemical detection, which enhances the signal
output [69].

In order to maximize the sensitivity, stability, and reproducibility of cytokine detection, the surface
of the fabricated electrodes can be subjected to further modifications to promote higher binding capacity
and more rapid recognition of target cytokine as compared to planar, stationary surfaces [58]. One of
the simpler surface modification pathways involves the use of nanoparticles (NPs). The utilization of
noble metal nanoparticles (NMNPs) can further expand the electrode’s surface and improve the surface
conductivity by acting as charge carriers and catalysts for electrochemical analysis, thus amplifying
the resulting signal detected [69]. Moreover, the incorporation of NMNPs such as gold nanoparticles
(AuNPs) are reported to enhance biocompatibility as well [70]. Such surface modification can be
characterized using several common techniques, such as electrochemical impedance spectroscopy
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(EIS) for the determination of an electrochemical system’s response to an applied potential, scanning
electron microscopy (SEM) for surface composition, and transmission electron microscopy (TEM) for
internal composition.

Apart from NMNPs, non-NMNPs such as carbon nanotubes and graphene have also been reported
as alternatives for surface modification of electrodes for improved detection [71–75]. For instance,
an amplified signal was recorded when graphene oxide nanoflakes and zeolite nanocrystals were
introduced onto the electrode surface of a paper sensor due to high electron transfer kinetics and larger
surface area of the nanocomposites [76]. In another work that focused on the detection of bisphenol
A (BPA), a type of surface modification involving the incorporation of gold nanoparticle layer with
multi-walled carbon nanotubes (MWCNTs) was reported and showed promising enhancement effects
to the oxidation of BPA [77].

3.5. Antibody-Based Versus Aptamer-Based Approach

There are two approaches for the design of electrochemical paper-based biosensor specifically for
the detection of cytokine and cancer biomarkers: antibody-based or aptamer-based.

Since the groundbreaking discovery of the chemical structure of antibodies back in 1959, they have
been extensively studied and used as diagnostic and therapeutic tools owing to their exquisite specificity
for their cognate antigen [78]. The performance of a fabricated antibody-based biosensor is dependent on
three factors: (i) the accessibility of the bioactive molecules to the relevant analyte in sample; (ii) its ability
to immobilize bioactive molecules; and (iii) degree of non-specific adsorption to the solid support. In
order to limit non-specific adsorption and to optimize immobilization of antibodies, the physicochemical
properties of the biosensor’s surface play a key role in determining the sensitivity, detection limit and
overall performance of the biosensor [79,80]. Apparently, the asymmetric macromolecular antibodies
can adsorb to the surface of the biosensor in various orientations. To optimize sensor performance,
immobilization should be made available through the constant fragment (Fc) region so that the binding
site of the antibody can be made available for maximum interaction with the cognate antigen [81].
Minimal structural modification and favorable orientation of antibodies upon immobilization on the
biosensor’s surface can therefore further optimize the performance of a biosensor with improvement
performance factors reported to be as high as 200-fold compared to random immobilization [80]. For
example, a more stable immobilization resulting in specific orientation can be achieved when the
thiol group is utilized for surface immobilization of antibody [80]. Albeit having specific orientation,
this method is restricted; it produces monovalent antibodies, and harsh reduction conditions might
inactivate antibody fragments due to unfavorable and unintentional reduction of internal disulfide
bonds since antibody chains are linked through disulfide bridges [80]. An overview of different
functional groups utilized for different modes of antibody immobilization on to the biosensor’s surface,
as well as the schematic representation of different immobilization techniques used to immobilize
antibodies is shown in Figure 4.

Although antibody-based sensors have remarkable sensitivity, these biosensors require the use
of expensive antibodies, where large amount of purified antigen is required to inject into animals to
produce antibodies [82]. Therefore, the need to develop novel methods for improved performance
cannot be overlooked. Lately, much attention has been shifted onto the development of aptamer-based
sensors as new biosensing devices [2,82]. An aptamer is a single-stranded nucleic acid that is capable
of binding selectively to a target biomolecule based on its well-defined tertiary structures. Compared
to antibodies, aptamers are more stable, thus making them an ideal candidate to be incorporated into
biological diagnostic devices [83,84]. Therefore, an aptamer-based biosensor is much more favorable
compared to an antibody-based biosensor.
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based sensors as new biosensing devices [2,82]. An aptamer is a single-stranded nucleic acid that is 
capable of binding selectively to a target biomolecule based on its well-defined tertiary structures. 

Figure 4. Overview of different functional groups utilized for different modes of antibody
immobilization on to the biosensor’s surface and schematic representation of different immobilization
techniques used to immobilize antibodies on to a biosensor’s surface. (a) Typical antibody structure;
(b) non-covalent immobilization of antibodies on to a biosensor’s surface through entrapment and
electrostatic interactions; (c) covalent immobilization of antibodies on to a biosensor’s surface through
various functional groups such as aldehyde, thiol, and amine groups; (d) affinity-based immobilization
of antibodies on to a biosensor’s surface via protein A/G coupling and avidin-biotin coupling [78].

4. Electrochemical Detection of Paper-Based Biosensors

In this segment we shall move on to inspect a few examples on different electrochemical-based
detection techniques of paper-based biosensor posterior to our fundamental understandings on the
factors affecting the design of this type of sensor. Commonly used electrochemical methods for the
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fabrication of paper-based biosensors include the various forms of voltammetry (differential pulse,
cyclic, linear sweep, stripping), impedance spectroscopy, and electrochemiluminescence detection. We
shall focus our review encircling their applications in cytokine and cancer biomarkers detection.

4.1. Voltammetry

Recently, a study reported the fabrication of a label-free microfluidic paper-based aptasensor for
sensitive and simultaneous detection of cancer biomarkers CEA and neuron-specific enolase (NSE) as
depicted in Figure 5. The paper-based biosensor was fabricated through wax- and screen-printing.
The working electrodes were modified with amino functional graphene (NG)-Thionin (THI)-gold
nanoparticles (AuNPs) (NG-THI-AuNPs) and Prussian blue (PB)-poly(3,4-ethylenedioxythiophene)
(PEDOT)-AuNPs (PB-PEDOT-AuNPs) nanocomposites, respectively [85]. Experimental results
obtained from cyclic voltammetry (CV) and differential pulse voltammetry (DPV) revealed that
the aptasensor demonstrated remarkable linearity in ranges of 0.01–500 ng mL−1 for CEA and
0.05–500 ng mL−1 for NSE, respectively, whereas the detection limit was determined to be 2 pg mL−1

for CEA and 10 pg mL−1 for NSE. Therefore, it was shown that paper-based biosensors offer an
alternate platform for early cancer diagnostics, especially in resource-limited countries [85].
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4.2. Impedance Spectroscopy

The latest breakthrough was achieved in the form of an electrochemical label-free paper-based
impedance biosensor. A graphene screen-printed paper electrode modified with polyaniline showed
increased surface area for antibody immobilization and exceptional electrochemical conductivity, thus
contributing to its enhanced sensitivity. A schematic illustration of the fabrication of this biosensor
is shown in Figure 6. A linear relationship between logarithmic concentrations of human IFN-γ
and impedance was determined in the range of 5-1000 pg mL−1 with detection limit of 3.4 pg mL−1.
Surprisingly, the polyaniline-graphene modified electrodes displayed more than 30 times higher
sensitive compared to common polyaniline-modified electrodes [86]. Furthermore, this system is
low cost, requires minute sample volume and able to provide rapid analysis compared to traditional
methods. It has excellent prospect to be developed as an alternative platform for human IFN-γ
screening [86].Sensors 2020, 20, x 13 of 20 
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Another study reported results relating to the fabrication of a paper-based impedimetric biosensor
using a poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS) modified Whatman
filter paper as depicted in Figure 7. This portable paper platform has been used for selective quantitative
detection of the cancer biomarker CEA [36]. The results indicated that the fabricated paper-based
biosensor has promising applications in cancer biomarker detection, having sensitivity of 3.6 Ω mL ng−1

with a lower detection limit of 2.68 ng mL−1 in the range of 6-20 ng mL−1 CEA estimation [36]. Currently,
the sensitivity of CEA at the recommended 5 µg/L threshold is well documented [87,88]. However, a
proposed cut-off of 2.2 ng/mL may provide an ideal balance of sensitivity and specificity [88].
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4.3. Electrochemiluminescence Detection

Electrochemiluminescence (ECL) detection is another sensitive analytical technique that combines
electrochemical and luminescent methods. It is a process in which the emission of light is initiated by
a redox reaction occurring at an electrode surface [89]. This detection technique has attracted much
interest due to its distinctive advantages, for instance, high sensitivity, low background noise, and
spatial controllability.

Xu and co-workers had reported the fabrication of a disposable paper-based ECL biosensor for
the detection of human leukemia (HL-60) cells as shown in Figure 8. This ECL biosensor is developed
using an aptamer-based approach and utilized porous filter paper as an electrochemical cell connected
to a sheet of indium-tin oxide WE modified with gold nanoparticles and graphene [90]. The aptamer of
HL-60 cancer cells is tagged with [Ru(bpy)3]2+-conjugated silica nanoparticles. This detection limit for
this fabricated disposable testing platform could go down to 56 cells per milliliter [90]. A compilation
of various electrochemical-based detection techniques used and their respective criteria along with the
results obtained was tabulated and illustrated in Table 3.
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Figure 8. Schematic illustration of paper-based biosensor for Electrochemiluminescence (ECL) detection
of human leukemia (HL-60) cells. (a) Fabrication of indium-tin oxide (ITO) electrode, (b) Sensing
principle to HL-60 cancer cells based on [Ru(bpy)3]2+-conjugated silica nanoparticles as emitter on the
surface of ITO electrode, (c) A platinum wire and an Ag/AgCl wire were attached on to the filter paper
with a clasp and used as the counter electrode and reference electrode, respectively [90].
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Table 3. Compilation of various electrochemical-based detection techniques used and respective criteria
along with results.

Technique Sample Volume Substrate Analyte Limit of
detection

Range of
detection Reference

Voltammetry Serum 20 µL
Whatman No.1

chromatography
paper

CEA 2 pg mL−1 0.01-500 ng
mL−1 [85]

Serum 20 µL
Whatman No.1

chromatography
paper

NSE 10 pg mL−1 0.05-500 ng
mL−1 [85]

Impedance
Spectroscopy Serum 25 µL

Whatman No.1
chromatography

paper
IFN-γ 3.4 pg mL−1 5-1000 pg

mL−1 [86]

Serum N.A.
Whatman No.1

chromatography
paper

CEA 2.68 ng mL−1 6-20 ng mL−1 [36]

Electrochemil
uminescence

Detection

Aptamer
bioconjugates 20 µL

Whatman No.1
chromatography

paper

HL-60
cells 56 cells per mL 56 to 5.6 × 106

cells per mL
[90]

Abbreviations: N.A., not available.

5. Pros and Cons of Electrochemical Paper-Based Biosensors

Apart from the various advantages of using electrochemical paper-based biosensors, there are
some drawbacks that need to be dealt with appropriate measures. The advantages and disadvantages
of paper-based biosensors over ELISA-based sensing platforms were being tabulated and presented in
Table 4.

Table 4. Advantages and disadvantages of paper-based biosensors over ELISA-based sensing platforms.

Property Advantage Utility

Sensitivity High Competitive with modern instrumental methods
Specificity High Competitive with modern instrumental methods

Reproducibility High Competitive with modern instrumental methods
Detection Limit Low Competitive with modern instrumental methods

Disposable Yes Convenience in handling
Response Time Fast Able to obtain results within seconds or minutes

Cost Low Able to use in developing countries with limited
resources as point-of-care diagnostic devices

Property Disadvantage Circumvention

Reusability No -
Stability of stored

biomolecule
Few weeks if not

protected
Fabricated sensor must be stored in dry state and in

sealed polybags

The handling of paper-based biosensors is easy and does not require highly trained personnel.
A study reported that a paper-based biosensor using bioactivated multi-walled carbon nanotubes
is about 20 times cheaper and over 10 times faster than ELISA, along with its maximum detection
limit which is approximately 50 times higher than ELISA [91]. The main challenge associated with the
application of paper-based biosensors is to preserve the activity of biomolecules stored in the pores of
the paper device, especially for enzymes and antibodies which may be prone to oxidation by air when
moist [92]. Therefore, it is advisable to store the paper-based biosensors in dry, sealed containers or
polybags to prevent or slow down the degradation of biomolecules.

6. Limitations and Future Perspective

The main challenge for the fabrication of this type of biosensors is its reliability and ability to
detect multiple cytokines or other biomarkers simultaneously in complex biological samples. Thus,
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future studies should focus on addressing the above issues and increasing the current shelf-life of these
biosensors in order to promote future commercialization for the sensitive detection of cytokines and
cancer biomarkers.

Moreover, paper-based biosensors can also be utilized in cytokine profiling among individuals in
order to study the development of cytokine expression in humans. Unlike most biomarkers, cytokines
are directly involved in mediating inflammation, and their measurement may predict the likelihood of
immune response, which in turn, is crucial against pathogen infections.

7. Summary

Cytokines are potential biomarkers that can be detected and measured owing to their influential
role in cell-mediated immunity. Although various traditional and unconventional methods have
been developed for cytokine and cancer biomarkers detection and measurement over the years, the
development of electrochemical paper-based biosensors have caught the attention of researchers owing
to their idiosyncratic properties, device portability, specificity, sensitivity, simplicity, accessibility,
yet being economical. Additionally, it provides rapid analysis and data without the need to enter
a laboratory. Therefore, the development of electrochemical paper-based biosensor is important,
especially in deliberating positive societal implications in developing countries with limited resources
and accessibility to healthcare services. Apart from this, this type of biosensors is not restricted to the
analysis of cytokines and cancer biomarkers; their applications have been incorporated into many
fields, such as environmental and food testing.
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