
REVIEW

Num1 versus NuMA: insights from two functionally homologous
proteins

Samuel R. Greenberg1
& Weimin Tan1

& Wei-Lih Lee1

Received: 2 October 2018 /Accepted: 21 October 2018 /Published online: 6 November 2018
# The Author(s) 2018

Abstract
In both animals and fungi, spindle positioning is dependent upon pulling forces generated by cortically anchored dynein. In
animals, cortical anchoring is accomplished by a ternary complex containing the dynein-binding protein NuMA and its cortical
attachment machinery. The same function is accomplished by Num1 in budding yeast. While not homologous in primary
sequence, NuMA and Num1 appear to share striking similarities in their mechanism of function. Here, we discuss evidence
supporting that Num1 in fungi is a functional homolog of NuMA due to their similarity in domain organization and role in the
generation of cortical pulling forces.
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Introduction

Proper orientation of the mitotic spindle is paramount to many
fundamental processes in cell and developmental biology. In
particular, orienting the mitotic spindle ultimately controls the
outcome of asymmetric cell division, which is crucial for de-
termining daughter cell location, size, and fate. From animals
to fungi, pulling forces for orienting the spindle are generated
by cytoplasmic dynein, a conserved microtubule ATPase. In
many cases, dynein is anchored at the cell cortex and pulls on
the spindle poles through the connecting astral microtubules
(aMTs), thereby aligning the spindle along the axis of polari-
zation (McNally 2013; Siller and Doe 2009). This mechanism
requires dynein to interact with aMTs and its anchoring pro-
teins at the cell membrane.

In many well-studied animal models of spindle
orientation—such as Drosophila neuroblasts, C. elegans zy-
gotes, and cultured human HeLa cells—dynein associates
with the cortex via interaction with the NuMA family of pro-
teins (Couwenbergs et al. 2007; Kotak et al. 2012; Nguyen-
Ngoc et al. 2007; Okumura et al. 2018). NuMA interacts with
the LGN family of proteins (Bowman et al. 2006; Du and

Macara 2004; Siller et al. 2006), which in turn bind to the
myristoylated heterotrimeric Gαi protein that is directly at-
tached to the membrane. Additionally, in vertebrate skin basal
progenitors and neuroepithelial progenitors, the same ternary
complex NuMA-LGN-Gαi regulates asymmetric divisions
and planar cell divisions, respectively, using dynein at the
cortex to control spindle orientation (Peyre et al. 2011;
Williams et al. 2011). In contrast, in budding yeast, one of
the earliest model systems for spindle orientation (Eshel
et al. 1993; Li et al. 1993), dynein associates with the cortex
via interaction with the single component cortical anchoring
protein Num1. BLAST searches identified clear homologs of
Num1 in fungi but not in animals. Conversely, clear homologs
of NuMA are found in animals but not in fungi.

However, a common feature between Num1 and NuMA is
that both are large, multi-domain proteins (Fig. 1a). Num1 is a
313 kDa protein composed of a short N-terminal coiled-coil
domain (aa 95–303), followed by a putative Ca2+-binding EF-
hand (aa 303–316) overlapping with a putative ER-targeting
FFAT motif (aa 306–330), a central TR domain containing
thirteen 64-residue tandem repeats (aa 592–1776), and a C-
terminal lipid-binding PH domain (aa 2563–2683) (Chao et al.
2014; Tang et al. 2012). In comparison, NuMA is a 238 kDa
protein composed of a small N-terminal globular domain (aa
1–212), followed by a spindly-likemotif (aa 417–422) located
within an extended coiled-coil region (aa 213–1699), and a C-
terminal portion containing a cluster-forming CD domain (aa
1700–1801), as well as interaction domains for 4.1 family
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proteins (aa 1788–1810), LGN (aa 1892–1924), microtubules
(aa 1914–1985 and aa 2002–2115), and a nuclear localization
signal sequence (aa 1988–2005) (Chang et al. 2017; Du et al.
2002; Gallini et al. 2016; Harborth et al. 1999; Haren and
Merdes 2002; Kotak et al. 2012; Mattagajasingh et al. 1999;
Okumura et al. 2018; Seldin et al. 2016). Although the do-
mains are different between the two proteins, many of them
appear to carry out homologous functions in terms of how
they facilitate dynein interaction, activation, cluster formation,
and membrane localization (Fig. 1b) (Okumura et al. 2018;
Tang et al. 2012). Thus, it would be wise to pay close attention
to both animal and fungal systems in order to gain insights
into the conserved regulatory mechanisms governing cortical-
ly anchored dynein.

Num1 and NuMA both dimerize and exhibit
cortical clustering activity

Current evidence shows that Num1 and NuMA both form
homodimers. Homodimerization of Num1 was established
through co-immunoprecipitation, gel filtration, and equilibri-
um sedimentation analysis of recombinantly tagged constructs

of Num1. Specifically, homodimerization is mediated by ami-
no acids 95–303 of the N-terminal coiled-coil domain, also
termed the CC or PA domain (Tang et al. 2012). A smaller
fragment encompassing amino acids 97–294 also forms di-
mers (Ping et al. 2016). The same is accomplished by amino
acids 213–1699 in the central rod–like coiled-coil domain of
NuMA, established through chemical crosslinking studies,
circular dichroism spectra, and electron microscopy of
NuMA constructs purified from E. coli (Harborth et al.
1999; Harborth et al. 1995). In addition to forming
homodimers, both NuMA and Num1 appear to cluster on
the cell membrane, forming punctate cortical foci in vivo
(Farkasovsky and Kuntzel 1995; Heil-Chapdelaine et al.
2000; Okumura et al. 2018), a behavior shown to be required
for proper spindle pulling. NuMA clustering is facilitated by
amino acids E1768-P1777 found in the C-terminal CD do-
main (Okumura et al. 2018), whereas Num1 clustering is de-
pendent upon E191 and K192 residues found in the N-
terminal CC/PA domain (Tang et al. 2012). Remarkably, both
NuMA and Num1 patches are independent of filamentous
actin (Berends et al. 2013; Heil-Chapdelaine et al. 2000;
Okumura et al. 2018; Omer et al. 2018), suggesting that the
cortical dynein attachment site may have similar architecture

NuMA

a

b

Num1 2748 aa

FFAT
CC/PA TR PH

EF-hand

2115 aa
Central coiled-coil

Spindly-like
motif

Globular CD
MTBD1 MTBD2

4.1 LGN NLS

Num1 NuMA Proposed Function

CC/PA domain Central coiled-coil domain Homodimerization 

CC/PA domain Clustering domain (CD) Cortical clustering

CC/PA domain Spindly-like motif Dynein interaction 

PH domain LGN-G Membrane targeting

TR domain Central coiled-coil domain Unknown/required for 
proper dynein function 

none MTBD1 and MTBD2 aMT binding/translation of aMT 
depolymerization to pulling forces

Fig. 1 Num1 and NuMA share
functionally homologous domain
structures. a Diagrams of Num1
and NuMA. b Summary of
domains inNum1 andNuMA that
specify similar functions in
dynein interaction, membrane
targeting, and cortical clustering.
All are part of the Num1 and
NuMA proteins except LGN-
Gαi, which is functionally
homologous to the PH domain of
Num1
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in fungi and animals. Num1 harboring mutations in the E191
and K192 residues could not assemble bright patches and
exhibited a strong spindle misorientation phenotype (Tang
et al. 2012), indicating defective dynein pathway function.
Similarly, NuMA harboring mutations in the CD domain
failed to form punctate foci and could not fully displace the
spindle (Okumura et al. 2018). Patch formation is therefore
critical for the activity of both anchors, but whether dimeriza-
tion is important for patch formation and spindle pulling has
yet to be established.

Num1 and NuMA share analogous domains
for dynein anchoring and membrane
targeting

Both cortical anchors have an N-terminal domain that recruits
and anchors dynein. Tang et al. (2012) used bimolecular fluo-
rescence complementation and pull-down assays to show that
dynein binds to the N-terminal CC/PA domain of Num1.
Okumura et al. (2018) mapped the dynein-binding site in
NuMA to the spindly-like motif sequence (aa 417–422) locat-
ed near the N-terminal side of the central rod–like coiled-coil
domain. Mutations in the spindly-like motif made NuMA un-
able to recruit dynein (Okumura et al. 2018), suggesting that
this motif is functionally homologous to the Num1 CC/PA
domain. Interestingly, Num1 constructs containing only the
CC/PA domain fused to a membrane-targetingmotif were able
to move the spindle (Tang et al. 2012), while NuMA con-
structs containing only the spindly-like motif fused to a
light-induced membrane–targeting anchor were unable to do
the same. This implies that, while the CC/PA domain and the
spindly-like motif are sufficient to interact with dynein, only
the CC/PA domain is able to also serve as an activator of
dynein for spindle pulling.

In addition to their similar dynein-anchoring domains, both
Num1 and NuMA have functionally homologous cortical at-
tachment machinery. Num1 is targeted to the cortex via its C-
terminal pleckstrin homology (PH) domain, which binds the
membrane phospholipid phosphatidylinositol 4,5-
bisphosphate (PIP2) with high affinity and specificity (Yu
et al. 2004), and serves to localize Num1 to the cell membrane
(Tang et al. 2009). However, the PH domain is not sufficient
for cluster formation as isolated PH domain does not
oligomerize to form bright puncta at the cell cortex (Tang
et al. 2009). Instead, fusions of the CC/PA domain and the
PH domain were found to be the minimal constructs capable
of assembling into bright cortical patches (Lackner et al. 2013;
Ping et al. 2016; Tang et al. 2012), indicating that the CC/PA
domain is also required for cluster formation. Interestingly, the
only process dependent on the PH domain appears to be mem-
brane targeting, since its deletion can be rescued by addition
of a generic membrane–targeting tag (Schmit et al. 2018; Tang

et al. 2012, 2009). Thus, the PH domain is dispensable for
cluster formation and spindle pulling once Num1 reaches the
cell cortex.

NuMA is also targeted to the membrane via machinery
dispensable for spindle pulling. As a member of the ternary
complex, NuMA is targeted to the linker protein LGN, which
in turn is targeted to the membrane-bound heterotrimeric Gαi
protein. Thus, LGN-Gαi is functionally homologous to the
PH domain of Num1, since they serve to anchor their respec-
tive dynein-binding domain to the cell cortex. In striking sim-
ilarity to Num1, ectopic optogenetic targeting of NuMA to the
cell membrane in the absence of LGN-Gαi was found to in-
duce high spindle pulling force (Fielmich et al. 2018;
Okumura et al. 2018). This would suggest that the cortical
attachment machinery (PH domain for Num1; LGN-Gαi for
NuMA) is dispensable for cortical force generation.

While the cortical attachment machinery is not necessary
for force production, it might be involved in dynein regula-
tion. In budding yeast, Omer et al. (2018) demonstrated that
the spatial distribution of Num1 along the cell cortex exerts
fundamental regulation on the mechanism of dynein pulling.
The signaling pathway necessary for Num1 to communicate
its localization into regulation of dynein has not been
established, but it is conceivable that the PH domain of
Num1 is involved. Gαi has also been shown to be a key target
for upstream regulators of dynein in ternary complex–
containing cells (Ananthanarayanan 2016; Couwenbergs
et al. 2007; Fielmich et al. 2018). Thus, although the mem-
brane attachment machinery of NuMA andNum1 are dispens-
able for baseline function, they should not be ignored as sites
for the input of regulation. The complexity of the heterodimer-
ic attachment species (i.e., LGN and Gαi) in the ternary com-
plex compared to the relatively simple attachment domain in
Num1 likely reflects the greater volume of regulation required
by dynein in complex metazoans.

Num1 and NuMA share a central domain of important but
unidentified purpose. In Num1, a central region containing
thirteen 64-residue tandem repeats (TR) links the N- and C-
terminal functional domains. The role of this domain has not
been identified, and its deletion neither disrupts Num1 clus-
tering nor increases the proportion of binucleated cells, indi-
cating normal dynein pathway function (Tang et al. 2012).
These data would suggest that the TR domain is irrelevant
for spindle pulling, but a more sensitive assay found that cells
missing the TR domain had a lower percentage of spindles
crossing the bud neck and a reduced spindle penetration dis-
tance when crossing occurred (Tang et al. 2012). This suggests
that the TR domain is pertinent to Num1’s activity as a cortical
anchor, but its role has yet to be identified. Similarly, NuMA
contains a large region of unspecified purpose between its N-
and C-terminal domains. Though the function of this central
coiled–coil domain has not been determined, constructs of
NuMA containing only the N- and C-terminal functional
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domains were unable to induce high spindle pulling forces
(Okumura et al. 2018). Thus, the central coiled-coil of
NuMA also plays a role in the generation of cortical pulling
forces, similar to the central TR domain of Num1.

The presence of MTBDs in NuMA but not
Num1 is reflective of their differing
mechanisms for the initiation of spindle
pulling

A significant difference between NuMA and Num1 is the
unique presence of two microtubule-binding domains
(MTBD1 and MTBD2) in NuMA. These domains, located
near the C-terminal region of NuMA, are required for gener-
ation of spindle pulling forces (Okumura et al. 2018).
However, their specific role in this process is incompletely
understood. It was proposed that the MTBDs may either func-
tion to couple shrinking microtubule ends to the cortex to
generate pulling forces (Okumura et al. 2018), or facilitate
the capture of aMTs by dynein (Serra-Marques and Dumont
2018). To evaluate the significance of the NuMAMTBDs and
their apparent lack of homology in Num1, an understanding is
required of the differing processes of aMT/dynein/cortical an-
chor complex assembly in Num1 and NuMA containing cells.

For spindle pulling, dynein must be bound both to its cor-
tical anchor and to an aMT. This is true in both Num1 and
NuMA containing cells, but the order in which these compo-
nents associate is critically different between the two types. In
the current yeast model, dynein freely exists in the cytoplasm
until it is recruited to the plus end of an aMT. Once the plus
end contacts Num1, dynein offloads to the cortex and begins
to exert pulling forces on the aMT (Ananthanarayanan et al.
2013; Lee et al. 2005, 2003; Markus and Lee 2011; Sheeman
et al. 2003). In contrast, dynein in NuMA containing cells is
recruited directly from the cytoplasm to NuMA’s spindly-like
motif, and there it waits to Bcapture^ an aMTand pull to orient
the spindle (Collins et al. 2012; Kiyomitsu and Cheeseman
2012). The key difference between these pathways is that
dynein bound to NuMAmust Bcapture^ aMTswhereas dynein
bound to Num1 does not. Thus, the idea posited by Serra-
Marques and Dumont (2018) that the NuMA MTBDs are
required for stabilizing the aMT/dynein interaction is recon-
ciled with the absence of anMTBD in Num1, since dynein on
Num1 is usually associated with an aMT and likely needs no
further stabilization of this interaction. This would suggest
that there is no homolog of the NuMA MTBDs in the Num1
pathway, but recent data has indicated that the MTBD has a
separate function related to that of dynactin in yeast.

Seldin et al. (2016) and Okumura et al. (2018) suggested
that the MTBDs of NuMA co-generate cortical pulling forces
alongside dynein. Okumura et al. (2018) showed that a NuMA
fragment containing MTBD1 accumulated at the plus ends of

aMTs and remained associated as they depolymerized. This
indicates that the MTBDs may harness the energy of the
depolymerizing aMT to generate pulling forces parallel to
those produced by dynein (Okumura et al. 2018). The
NuMAMTBDs have no equivalent domain in Num1, but they
may bear functional homology to a domain in the p150glued

subunit of dynactin. The budding yeast homolog of dynactin
p150glued subunit, Nip100, contains a CAP-Gly domain.
Omer et al. (2018) recently showed that deletion of the
CAP-Gly domain resulted in a significant decrease in the du-
ration of aMT-cortical dynein interactions during end-on aMT
pulling events. This suggests that CAP-Gly is involved in
tethering the depolymerizing aMT to the cell cortex, in order
to translate the energy of the depolymerizing aMT into spindle
pulling forces (Omer et al. 2018). This data thus implicates the
CAP-Gly domain of yeast dynactin as the functional homolog
of the NuMA MTBDs.

Num1 organelle association and future
research

In budding yeast, Num1 is known to associate with both
mitochondria and cortical ER (Cerveny et al. 2007; Chao
et al. 2014; Hammermeister et al. 2010; Klecker et al.
2013; Kraft and Lackner 2017; Lackner et al. 2013;
Omer et al. 2018; Tang et al. 2012). Kraft and Lackner
(2017) showed that inhibiting mitochondrial migration in-
to the bud using temperature sensitive mutants resulted in
significantly reduced Num1 patch formation. It has also
been observed in several studies that Num1 anchors the
mitochondria to the cell cortex via its CC/PA domain
(Lackner et al. 2013; Ping et al. 2016; Tang et al. 2012).
This suggests that Num1 patch assembly is dependent on
mitochondria, and that patches then serve to anchor both
dynein and the mitochondria to the cell cortex.
Interestingly, Num1 appears to also associate with the
cortical ER, bringing dynein, mitochondria, and ER into
close proximity near the plasma membrane. Deletion of
the cortical ER tethering proteins Scs2 and Scs22 was
found to almost completely eliminate Num1 localization
to the lateral cortex, while enhancing localization to the
bud tip (Chao et al. 2014; Omer et al. 2018). This indi-
cates that Num1 is likely involved in ER tethering and
may take part in ER-dependent regulation of dynein. To
our knowledge, the ternary complex has not been ob-
served to associate with any organelles other than the
ER, which has been implicated in Gα regulation in
C. elegans embryos (Berends et al. 2013). Investigating
whether the ER and/or other organelles substantively in-
teract with the ternary complex in C. elegans embryo or
other ternary complex containing cells is thus a next step
in the study of animal dynein regulation.
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