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ABSTRACT
Identification of cancer-specific methylation of DNA released by tumours can be used for non-
invasive diagnostics and monitoring. We previously reported in silico identification of DNA
methylation loci specifically hypermethylated in common human cancers that could be used as
epigenetic biomarkers. Using DNA methylation specific qPCR we now clinically tested a group of
these cancer-specific loci on cell-free DNA (cfDNA) extracted from the plasma fraction of blood
samples from healthy controls and non-small cell lung cancer (NSCLC) patients. These DNA
methylation biomarkers distinguish lung cancer cases from controls with high sensitivity and
specificity (AUC = 0.956), and furthermore, the signal from the markers correlates with tumour size
and decreases after surgical resection of lung tumours. Presented observations suggest the clinical
value of these DNA methylation biomarkers for NSCLC diagnostics and monitoring. Since we
successfully validated the biomarkers using independent DNA methylation data from multiple
additional common carcinoma cohorts (bladder, breast, colorectal, oesophageal, head and neck,
pancreatic or prostate cancer) we predict that these DNA methylation biomarkers will detect
additional carcinoma types from plasma samples as well.

ARTICLE HISTORY
Received 28 June 2019
Revised 24 October 2019
Accepted 15 November
2019

KEYWORDS
Cancer marker; DNA
methylation; biomarker;
cfDNA; liquid biopsy; NSCLC

Introduction

Cancer is one of the most common causes of death
worldwide and lung cancer is responsible for the
highest percentage of mortality among all cancers
[1]. Earlier diagnosis of cancer or its recurrence [2]
may allow earlier intervention and could improve
management of the disease [3]. Frequent screening
for cancer or monitoring of cancer patients can be
improved using minimally invasive and cost-
effective diagnostic techniques based on tumour
specific biomarkers from blood samples or other
liquid biopsies [4,5]. Blood contains a small
amount of cell-free DNA (cfDNA) that can be
recovered from plasma or serum samples and is
mostly fragmented to a single nucleosome size. In
cancer patients, cfDNA contains circulating
tumour DNA (ctDNA) derived from tumours [6–
8]; the ctDNA fraction varies based on tumour
type and disease progression [9–11]. The ctDNA

fraction may be substantial, resulting in the overall
increase of cfDNA amount in cancer cases [6].
Specific identification of ctDNA within cfDNA
samples can be used for sensitive cancer detection,
including the early stages of the disease; it can also
allow for sensitive monitoring of the residual dis-
ease after intervention. Tumour DNA differs from
normal cell DNA in several aspects that allow
specific detection of ctDNA [4,5]; these include
tumour specific mutations, altered DNA copy
numbers and DNA methylation. Diagnostic tech-
niques based on the next-generation sequencing or
quantitative PCR (qPCR) can identify these
tumour specific alterations in cfDNA samples
from cancer patients [10,12–14]. Overall, specific
identification of tumour derived ctDNA in cfDNA
samples from blood or other liquid biopsies can be
used for minimally invasive diagnosis and moni-
toring of cancer.
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The fundamental differences between DNA from
normal and tumour cells could be found in the epi-
genome represented by tumour specific changes in
DNA methylation [15–17]. DNA methylation is an
optional covalent epigenetic modification of cytosine
residues in the CpG sequence context [18,19]. Cell-
type-specific DNAmethylation patterns help to deter-
mine and keep cellular identity of normal cells while
tumour cells have profoundly altered epigenome
[8,20–26] with two kinds of differences in DNA
methylation. First, the cancer cells improperly co-opt
some of the DNA methylation specific for normal
cells of different types [27]; e.g. the presence of
mesenchymal cell-type-specific DNA methylation in
carcinomas may be indicative of epithelial-to-
mesenchymal transition (EMT) [21,28]; however,
this is not suitable as a cancer-specific biomarker
since it is released into cfDNA also from normal
mesenchymal cells and would result in a false-
positive diagnosis. Second, the cancer cells contain
many loci with aberrant DNA methylation changes
that do not occur in any normal cells and such loci are
suitable for specific detection of ctDNA in cfDNA
samples from plasma or other liquid biopsies. DNA
methylation specific qPCR [29] is sensitive enough to
detect the presence of even few methylated copies of
ctDNA in a typical cfDNA sample [12,13]. In addi-
tion, qPCR is relatively quick and inexpensive. Since
tumours have aberrantly methylated many DNA
regions [24–26], the detection of tumour specific
DNA methylation could be performed in multiple
genomic loci; this increases the sensitivity of the tech-
nique. In summary, the detection of tumour specific
DNA methylation in cfDNA from liquid biopsies
could be used for diagnosis andmonitoring of cancer;
the technique would be sensitive, relatively quick and
cost effective while minimally invasive.

Several studies regarding the discovery or testing
of cancer-specific DNA methylation biomarkers to
detect cancer from various body fluids have been
published in recent years. These include markers or
marker sets to detect e.g. lung [30–35], breast
[12,13], colorectal [36,37] or pancreatic [38] cancers.
A few DNA methylation cancer biomarkers are
already in clinical use, e.g. SEPT9 [39] to identify
colorectal cancer from plasma samples or GSTP1
[40] to detect prostate cancer from urine or blood
samples. Most of these studies use qPCR or digital
droplet PCR (ddPCR) analysis of a single marker

locus or several marker loci. Some other recent stu-
dies are based on the analysis of whole cfDNA
methylomes [8,14,41]; although these studies gener-
ate large amounts of data valuable for basic research,
whole cfDNA methylome approaches are less suita-
ble for clinical testing since the procedures are rela-
tively costly and time consuming. Overall, multiple
studies about the detection of cancer using analysis
of DNA methylation of cfDNA samples have been
published, most of them are based on qPCR testing
of a single marker or set of several markers; this
indicates general functionality of the above-
outlined principle.

We previously published a study that identified
a large suite of cancer-specific DNA methylation
biomarker loci that can detect the most common
human cancer types [42]. Our study utilized
Illumina HumanMethylation450 data from over
10,000 tumour and normal samples from The
Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) databases. We
reported 1,250 marker CpG loci specifically hyper-
methylated in at least one of 33 TCGA tumour
types. We also described optimal sets of marker
loci for each TCGA cancer type that could identify
most tumours of the particular type and
a universal set of 12 markers that can detect
tumours of most TCGA cancer types [42].
Testing of selected marker sets on independent
GEO data, including data from a different analy-
tical platform, confirmed their ability to distin-
guish tumours from normal tissues with high
sensitivity and specificity.

The purpose of the current study was to clini-
cally test a set of these DNA methylation biomar-
kers on blood samples from cancer patients and
healthy controls. We selected an optimal set of 10
markers that identify tumours of 10 common car-
cinomas. This marker set performs well (AUC 0.-
97–1.0) on all independent GEO data cohorts of
tumour and normal samples tested during in silico
validation. We then used methylation-specific
qPCR to analyse DNA methylation of these mar-
ker loci in cfDNA samples from non-small cell
lung cancer (NSCLC) patients (cases) and healthy
volunteers (controls). The DNA methylation signal
from the markers was able to distinguish between
lung cancer cases and controls with high sensitiv-
ity and specificity (AUC = 0.956). Furthermore,
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the signal from the markers depends on the
tumour size and decreases after surgical resection
of lung tumours. The entire analytical procedure is
inexpensive and could be accomplished within 2
days after blood is collected. We demonstrate here
that the marker set can detect the presence of
cancer in the plasma of NSCLC patients; based
on our validation results from other cancers we
predict that these markers will perform well on
additional cancer types as well.

Results

A set of 10 DNAmethylation biomarkers that detect
common carcinomas including NSCLC (Table 1,
Figure 1(a)) with high sensitivity and specificity
was selected from our previously published suite of
1,250 DNA methylation biomarkers [42]. This opti-
mized set of 10marker loci (Figure 1(b), Table 2) was
first tested using independent epigenomic data from
the GEO database. Eight GEO tumour sample
cohorts (total n = 1,471) representing the 10 TCGA
carcinoma types (Table 1) were tested against nor-
mal blood GEO samples (n = 310) as well as respec-
tive normal tissue (NT) GEO samples (total n = 571)
(Table S1, Figure 2). The results confirm that this 10
marker set can identify, with high sensitivity and
specificity (blood reference: AUC 0.987–1.0; respec-
tive normal tissue reference: AUC 0.972–1.0), all

Table 1. The list of 10 TCGA cancer types for which the marker
set was designed including GEO cancer cohort names that were
used for validation.
TCGA Cancer Type
Abbreviation TCGA Cancer Type Name

GEO
representative

BLCA Bladder Urothelial
Carcinoma

Bladder
cancer

BRCA Breast invasive carcinoma Breast cancer
COAD Colon adenocarcinoma Colorectal

cancer
ESCA Esophageal carcinoma Oesophageal

cancer
HNSC Head and Neck squamous

cell carcinoma
Oral cancer

LUAD Lung adenocarcinoma NSCLC
LUSC Lung squamous cell

carcinoma
NSCLC

PAAD Pancreatic adenocarcinoma Pancreatic
cancer

PRAD Prostate adenocarcinoma Prostate
cancer

READ Rectum adenocarcinoma Colorectal
cancer

Figure 1. (a) A flowchart of the study, (b) A human ideogram
showing chromosomal locations of DNA methylation
biomarkers.

Table 2. The list of 10 DNA methylation biomarkers. CpG.ID is
a specific identification of CpG from Illumina
HumanMethylation450 microarray platform, CpG position indi-
cates the physical address of CpG in human genome assembly
hg19, and the annotation indicates an overlapping or nearby
located gene.
CpG.ID CpG.position (hg19) annotation

cg14416371 chr11:43,602,847-43,602,848 MIR129-2
cg08189989 chr2:105,459,164-105,459,165 LINC01158
cg00100121 chr1:169,396,635-169,396,636 CCDC181
cg03306374 chr16:23,847,325-23,847,326 PRKCB
cg01419831 chr2:162,283,705-162,283,706 TBR1
cg25875213 chr19:38,183,055-38,183,056 ZNF781
cg00339556 chr5:16,180,048-16,180,049 MARCH11
cg01893212 chr7:49,813,088-49,813,089 VWC2
cg14732324 chr5:528,621-528,622 SLC9A3
cg07302069 chr7:27,196,286-27,196,287 HOXA7
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carcinoma types it was designed for (Figure 2). In
summary, we have chosen the optimal marker set to
detect tumour specific DNA methylation in NSCLC
and additional common carcinomas and verified
that these markers can distinguish tumour derived
DNA from DNA originating from normal cells.

Quantitative PCR specific to methylated marker
regions was chosen in order to detect very small
amounts of methylated ctDNA found in cfDNA
samples. Ten qPCR primers and probe sets were
designed to specifically amplify bisulphite con-
verted DNA and to detect the marker region only

when it is methylated as is the case of tumour
specific ctDNA (Table 2, Table S2). The size of
the amplicons was selected to be as short as pos-
sible (Table S2) to perform well on the fragmented
templates like cfDNA. To reduce stochastic effects
of low numbers linked to low amounts of methy-
lated ctDNA templates in cfDNA samples a two-
step qPCR reaction was adopted as the analytical
strategy. In the first step, the methylated DNA
template is pre-amplified in a multiplex reaction
using cocktail of all primer pairs. The product
from the first step is then diluted and used in

Figure 2. Validation of the DNA methylation biomarker set on independent cancer sample cohorts from the GEO. Normal whole
blood cohort (GSE72773) and respective normal tissues (NT) were used as controls. The plots show DNA methylation of the marker
set in individual tumour samples in comparison to normal blood samples and respective NT samples. The samples were classified as
tumours or normal based on the metadata from GEO. The x-axis indicates individual samples. The y-axis shows cumulative beta
values for the entire marker set and the individual markers in the set are distinguished by colours. The DNA methylation data from
the normal blood cohort are shown only in the first panel and are represented in the additional panels by the horizontal dashed
lines showing the 95th percentile of the cumulative DNA methylation of the normal blood cohort. The horizontal dotted lines
indicate the 95th percentiles of the cumulative DNA methylation of the respective NT cohorts. The AUCs were calculated using the
cumulative beta values for the entire marker set for each sample from the respective tumour cohort and the normal blood cohort or
respective NT as a normal reference for each cancer type.
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individual standard qPCR reactions to quantify
individual markers (Fig S1). In this approach,
even the ctDNA templates present only in a few
copies can be detected since all the templates are
pre-amplified before the samples are divided into
individual amplicon-specific reactions for quanti-
fication. In summary, we have chosen a rapid,
inexpensive, and well-established analytical strat-
egy to detect DNA methylation of marker loci in
plasma cfDNA samples.

Using the above-described approach, we ana-
lysed cfDNA from healthy donors and NSCLC
patients. The cfDNA was extracted from plasma
samples of 47 healthy volunteers and 18 NSCLC
patients (Table 3). While cfDNA from healthy
donors shows relatively low background DNA
methylation across the marker set, the NSCLC
patient samples show a higher overall level of the
DNA methylation signal and a substantial fraction
of the patients show high-level DNA methylation
across a majority of the markers (Figure 3(a), Fig
S2A). Fifteen of 18 patients (83%) have DNA
methylation signal higher than the 95th percentile
of the control group (Fig S2A); this indicates sen-
sitivity 83% at 95% specificity. The distribution of
the mean DNA methylation signal from all mar-
kers in the group of NSCLC patients (cases) is
highly significantly different (p-value = 1.6x10-8)
from the signal in the group of healthy individuals
(controls) (Figure 3(a)). The median methylation
per marker is about 29-fold higher in the cases
than in the controls (Figure 3(a)), which is about 6
methylated marker copies per ml of plasma in

cases vs 0.2 copies in controls (Fig S2B). The
ROC analysis using the 47 controls and 18 cases
revealed quite large area under the curve (AUC =
0.956) with 95% confidence interval 0.906–1.0
(Figure 3(b)). These findings illustrate that the
marker set and the adopted detection technique
are able to distinguish between the plasma from
healthy individuals and the plasma from lung can-
cer cases with high sensitivity and specificity.

Since the DNA methylation signal detected by
the marker set varied among individual NSCLC
patients (Figure 3(a)), we tested if there is
a correlation between the tumour size or disease
stage and the signal of the biomarkers. We found
a strong positive correlation between the tumour
size and the marker signal (Figure 4(a)) and also
between the disease stage and the marker signal
(Figure 4(b)). The observed strongest correlation
of the marker signal (rho = 0.87) with the size of
the tumour is consistent with the quantitative nat-
ure of the assay; the larger the tumour, the more
ctDNA is shed into bloodstream. To further test if
the DNA methylation signal detected by the mar-
ker set depends on the presence of a tumour in the
body, we analysed pairs of plasma samples from
patients where samples taken before the surgical
resection of lung tumours and those collected
either 3 days or 3 months after surgery were

Table 3. The basic clinical characteristics of NSCLC patients
(cases) and healthy volunteers (controls) whose plasma was
used in the study.

Cases (n = 18) Controls (n = 47)

Characteristic No. % No. %
Age, years
Median 70 48
Range 33-82 18-85
Sex
Male 6 33 16 34
Female 12 67 31 66
Tumour type
Adenocarcinoma 15 83 - -
Squamous cell carcinoma 3 17 - -
Disease stage
I 5 28 - -
II 3 17 - -
III 2 11 - -
IV 8 44 - -

Figure 3. The DNA methylation biomarker set differentiates
between NSCLC cases and healthy controls with high sensitivity
and specificity. (a) Mean DNA methylation signal per marker of
the full 10 marker set for the control group of 47 healthy
volunteers and for the group of 18 NSCLC cases. P-value
shown is for Wilcoxon rank sum test. (b) The receiver operating
characteristic (ROC) analysis of the marker set signal from 47
controls and 18 NSCLC cases. AUC – area under the curve, CI –
confidence interval.
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available. Despite the limited number of sample
pairs, there was a clear trend towards substantially
lower DNA methylation signal obtained from
post-surgery samples; the level of decrease varied
greatly from about twofold to several hundred
folds (Figure 4(c,d)). The larger decreases in the
level of marker signal were observed in cases
where the initial DNA methylation signal was
higher because the removed tumours were larger.
This is again consistent with the quantitative nat-
ure of the assay. In summary, these observations
indicate that the DNA methylation signal detected
by the biomarkers depends on the presence of
a tumour in the body and its size and that this
non-invasive procedure could potentially be used
for monitoring cancer patients for persistent

disease and recurrence after surgical resection of
the lung cancer.

We analysed the performance of the individual
DNA methylation biomarkers and effects of age
on biomarker signal. We first evaluated each
marker separately using the same sample cohorts
of 47 controls and 18 NSCLC cases. The AUC for
the individual markers ranged from 0.694 to
0.929 (Fig S3), this is less than the full marker
set and it indicates benefit of combining multiple
markers. We found no sex-related differences in
DNA methylation status of any individual mar-
kers in healthy control participants (Fig S4). Since
DNA methylation changes with age [43,44], we
analysed the relation between the biomarker
DNA methylation levels and the age of 47 healthy

Figure 4. The DNA methylation biomarker signal depends on tumour size and disease stage and decreased after tumour removal.
Correlation between the DNA methylation marker signal and tumour size (a) and disease stage (b). DNA marker methylation in pairs
of blood samples collected before surgical resection of tumour, and three days (c) or three months (d) after the tumour resection.
Y axis shows mean DNA methylation signal per marker of the full ten marker set.
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subjects. As expected, some of the markers have
increased in methylation with age (Fig S5). On
average the background DNA methylation signal
per marker increased about 2.5 fold between
healthy subject of ages 25 years and 75 years
(Fig S5), this is much lower difference than the
29 fold increase in cancer patients compared to
healthy controls (Figure 3(a)). Nonetheless, this
observation has to be taken into account when
using DNA methylation markers in general for
diagnostic purposes. Therefore, we tested the per-
formance of the biomarker set using only the
oldest third of the control cohort (n = 16, 55–85
YO) that has age distribution similar to the case
cohort (Figure 5(a)), and even in this case, the
marker signal separated well NSCLC patients
from controls (AUC = 0.938, Figure 5(b), Fig
S6). Overall, although the background methyla-
tion of the markers increases with age, the mar-
kers are able to differentiate between NSCLC
cases and older healthy control subjects with
high sensitivity and specificity.

Elimination of some biomarkers will further
improve the performance of the biomarker set.
Since the full biomarker set was designed to detect
10 different carcinoma types, we predicted that
there would be subsets of markers within the full
10 marker set that will provide superior perfor-
mance in individual carcinoma types. Therefore,
we performed ROC analysis on all possible com-
binations of subsets of all 10 markers using 18

NSCLC cases and either the whole control cohort
(n = 47) or the oldest control sub-cohort (n = 16)
as healthy references. We found a five marker
subset that can separate cases from controls with
AUC = 0.97 (0.934–1.0) using the whole control
cohort and AUC = 0.962 (0.909–1.0) using the
oldest control sub-cohort as healthy references
(Figure 6), respectively. In both cases, this is
a better performance than the full 10 marker set
(AUC = 0.956, Figure 3(b), AUC = 0.938,
Figure 5(b), respectively). Although the current
NSCLC cases cohort is too small to select the
final marker subset to be used for diagnostic pur-
poses, this finding indicates that the performance
of the biomarkers could be further improved by
using data from only a specific marker subset.

Discussion

This study demonstrated that DNA methylation
markers discovered through mining public data-
bases were able to identify cancer from plasma of
NSCLC patients. The data show highly significant
differences in the level of DNA methylation of the
marker loci between plasma cfDNA from NSCLC
patients and control subjects. Furthermore, the
signal from the markers depends on tumour size
and decreases over time after definitive surgical
resection of NSCLC, adding validity to the diag-
nostic value of the markers.

Figure 5. The effect of age on DNA methylation biomarker performance (a) Age distribution of the entire control cohort, control
cohort split into three sub-cohorts by age and NSCLC patient cohort. (b) ROC analysis of the performance of the marker set using
only the oldest third of healthy volunteers as control.
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The marker set can distinguish between plasma
from NSCLC cases and controls with high sensi-
tivity and specificity. The marker performance on
clinical cfDNA samples (Figure 3(b), AUC 0.956)
is not much lower than the performance on GEO
data (Figure 2, AUC 0.972–0.987). This is a solid
result considering that the GEO data (GSE39279)
[45] were independent cohorts of tumour and
normal tissue or blood samples analysed by the
same microarray platform that was used in the
marker discovery [42], while our qPCR technique
has to detect the small fraction of ctDNA in the
clinical plasma samples in a background of normal
DNA. Since the entire DNA methylation marker
set was designed for multiple cancer types, we
tested if there are any individual markers or mar-
ker subsets with better performance in the setting
of NSCLC. Although each individual marker did
not reach the performance level of the full marker
set, there was a subset of five markers with even
better performance than the full set of 10 markers
(Figure 6(a), AUC 0.97). There are likely two rea-
sons for this; first, not every marker is fully methy-
lated in every tumour and, second, the
combination of multiple markers increases the
probability of detection of the small ctDNA frac-
tion in cfDNA samples. On the other hand, some
of the markers in the full set are less frequently
methylated in NSCLC than in other cancers and
therefore the elimination of those markers may
increase the performance of the marker set. It is

likely that different subsets of the markers will be
optimal for other cancer types. Overall, the perfor-
mance of our minimally invasive analytical tech-
nique on cfDNA samples is comparable to the
performance of Illumina microarray platform on
pure tumour and normal tissues.

We found moderate increase in DNA methyla-
tion of the marker loci with age of the control
subjects. The DNA methylation changes in both
directions with age [43,44]. Since our marker set
was designed to be unmethylated in healthy tissues
and hypermethylated in tumours, the only possible
direction of change in older healthy subjects was
an increase in DNA methylation. This increase is
small, more than an order of magnitude lower
than the levels measured in cancer subjects, and
therefore does not diminish the diagnostic value of
the markers; nonetheless, this has to be taken into
account when determining marker signal thresh-
olds for diagnostic purposes.

The entire analytical procedure is relatively sim-
ple and could be performed using standard instru-
mentation. The required 2 ml of plasma for
analysis can be obtained from a routine whole
blood sample and therefore the technique is mini-
mally invasive. After cfDNA extraction and
sodium bisulphite conversion using commercially
available kits, the technique involves two rounds of
PCR; these can be performed on conventional
PCR and qPCR instruments, respectively. The
whole procedure could be accomplished by

Figure 6. The improved performance of a five biomarker subset. (a) ROC analysis of the performance of the five marker subset using
all healthy volunteers as control. (b) ROC analysis of the performance of the five marker subset using only the oldest third of healthy
volunteers as control.
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a single person within 2 days after the blood col-
lection using conventional laboratory equipment
and qPCR reagents. In summary, the technique is
minimally invasive, simple, sensitive, fast and cost
effective.

Although we demonstrated the performance of
the marker set on NSCLC samples, the markers
were designed to detect 10 TCGA cancer types
(Table 1). We have shown here that the markers
perform well on plasma samples from NSCLC
patients (Figure 3(b)), a cancer type responsible
for the highest mortality among malignancies[1]
and for which a companion diagnostic biomarker
may meaningfully improve the sensitivity and spe-
cificity of CT screening for early detection of
NSCLC. Since the validation of the marker set
using GEO microarray data was successful for all
cancer types (AUC 0.972–1.0, Figure 2) we predict
that the marker set will be able to detect those
additional cancers, as long as respective tumours
shed ctDNA into plasma cfDNA. Our preliminary
data on a limited amount of cfDNA samples from
some other cancer types indicate that the markers
will be able to detect e.g. pancreatic adenocarci-
noma, a cancer with the highest mortality rate
among malignancies[1]. The samples from addi-
tional subjects are currently analysed and as the
data from more cases and controls will be available
it will allow diagnostic thresholds to be deter-
mined. In conclusion, we present DNA methyla-
tion biomarker set and analytical technique that
will improve minimally invasive diagnosis and
monitoring of NSCLC and may be tested in the
same manner across multiple cancer types.

Materials and methods

The marker set selection

The marker set that identifies most tumours of 10
TCGA cancer types was selected from a suite of
the 1,250 hypermethylated marker CpGs we pub-
lished before [42]. Only the 10 TCGA cancer types
most relevant for our studies were used in the
selection algorithm instead of all possible TCGA
cancer types used before. The selection process
was run until the marker set contained for each
of 10 cancer types at least four markers that passed
all the filters [42] (Fig S7) resulting in a set of 10

markers (Table 2). The marker loci were annotated
by the RefSeq gene symbol of the overlapping gene
or by the gene within 5 kbp of the marker locus
regardless the direction.

The validation of the marker set using GEO data

The Illumina HumanMethylation450 DNA methy-
lation data for 8 cancer types, representing 10
TCGA cancer types, and respective normal tissues
as well as a large normal blood cohort (Table S1)
were downloaded from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/). None of these data
were used in the previous study for marker dis-
covery, filtering or validation. All data were ana-
lysed in the R programming environment [46]
using custom scripts. DNA methylation data
from the Illumina HumanMethylation450 plat-
form are presented as beta values – numeric values
in interval 0.0–1.0. For unmethylated CpGs the
beta value approaches zero, for fully methylated
CpGs beta approaches 1 and for CpGs methylated
in a fraction of the sample 0< beta<1, e.g. a CpG
methylated in 50% of the sample will have a beta
value of approximately 0.5. The beta values were
first normalized as described [42]. The perfor-
mance of the marker set was then evaluated
using ROC analysis on cumulative beta values for
all 10 markers and the large blood sample cohort
(n = 310, GSE72773) or respective normal tissue
cohort (Table S1) as cancer-free references. The
ROC analysis and AUC calculations were per-
formed using the R library pROC [47].

qPCR amplicon design

Ten qPCR amplicons specific for the marker loci
and three control amplicons were designed. The
marker amplicons were selected to overlap or be as
close as possible to the marker CpGs determined
by the Illumina HumanMethylation450 microar-
ray (Table 2). In addition to 10 marker amplicons,
3 qPCR amplicons specific for universally methy-
lated loci that serve as cfDNA load controls were
designed (Table S2). The pairs of primers and the
probes for all qPCR amplicons were designed to be
specific for the methylated sodium bisulphite trea-
ted DNA. The size of the amplicons was designed
to be as short as possible (60–90 bp) to perform
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well on the fragmented cfDNA template (Table
S2). Primers and probes were designed to overlap
at least 7 CpGs combined (at least two CpGs each,
closer to the 3’ end for primers) to be specific only
for the methylated template. Where possible,
probes from the Human Universal Probe Library
Set (Roche Diagnostics, Indianapolis, IN, USA)
were utilized, otherwise custom probes with 5’
6-FAM – 6-carboxyfluorescein and 3’ Iowa Black®
FQ labels were designed. The primers and the
custom probes were manufactured by Integrated
DNA Technologies (Coralville, IA, USA).

Clinical blood samples

The studied population (Table 3) consisted of 18
NSCLC patients and 47 healthy volunteers
recruited between 2018 and 2019 at the
University of Arizona, Tucson, Arizona, USA.
Institutional Review Board Approval No
1,803,355,376 was obtained prior to the study
initiation and all patients and healthy volunteers
signed the informed consent. The cancer cohort
consisted of stage I-III NSCLC patients (Table 3),
here the blood draws were performed before sur-
gical resection of tumours and some of these
patients had follow up draws either 3 days or 3
months after the surgery. In addition, cancer
cohort contained several stage IV (metastatic)
NSCLC patients (Table 3) that were undergoing
various forms of treatment at the time of blood
draw. All cases had pathologically confirmed non-
small cell lung cancer at the time of blood draw.

Blood sample processing and cfDNA extraction

Whole blood was collected in Streck cell-free DNA
BCT tubes (La Vista, NE), and stored for no longer
than 3 days at room temperature until processing.
Collection of plasma was done by spinning the
BCT tubes at 1,600 g for 10 min at room tempera-
ture, the plasma fraction was then transferred to
2 ml microfuge tubes. The plasma was then spun
at 16,000 g for 10 min at room temperature to
remove residual cellular debris. The plasma was
then carefully transferred to a new 2 ml microfuge
tube and stored at −80°C. cfDNA was extracted
from 2 ml of plasma using Qiagen QIAamp
Circulating Nucleic Acid Kit according to the

manufacturer’s instructions, eluted in 50 µl into
low bind tubes (1.7 ml Microtube (Maximum
Recovery) Cat#22-281LR, Olympus Plastics,
Genesee Scientific, El Cajon, CA) and stored at
−80°C.

Two-step qPCR

Thewhole amount of cfDNA from2ml of plasmawas
sodium bisulphite (BS) treated using EZ DNA
Methylation-Gold Kit (Zymo Research, Irvine, CA,
USA) according to the manufacturer’s instructions
and eluted in 20 µl of water into low bind tubes. First-
round PCR amplification was performed in a 50 µl
reaction volume using 25 µl of PerfeCta qPCR
SuperMix Low ROX (Quanta Biosciences,
Gaithersburg, MD, USA), 5 µl of 10x mix of all ampli-
con primers (final concentration 385 nMeach primer)
and 20 µl of BS converted cfDNA. The reaction con-
ditions were denaturation at 95°C for 3 min, and then
15 cycles of 95°C for 15 s, 57°C for 30 s, and 72°C for
30 s. The reaction product was then diluted 200-fold
and used in the second-step qPCR. The qPCRmixture
consisted of 10 µl of PerfeCta qPCR SuperMix Low
ROX,500 nM each amplicon-specific primer, 200 nM
amplicon-specific probe and 5 µl of the 200-fold
diluted product from the first step in a 20 µl total
reaction volume. The qPCR was conducted on ABI
Prism 7500 Sequence Detection System (Applied
Biosystems, Foster City, CA, USA), the reaction con-
ditions were 95°C denaturation for 3 min followed by
50 cycles of 95°C for 15 s and 60°C for 45 s.

qPCR data analysis

The threshold cycles (Cts) for individual markers
were determined using fixed marker-specific
thresholds to keep consistency between individual
qPCR runs. Although the qPCR was run for 50
cycles the data generated after 40 cycles were not
adding additional resolution between the groups
and therefore undetermined Cts or Cts higher
than 40 were set to 40. The data were then con-
verted by a formula 40 – Ct. This way Ct 40 was
set as a background (zero) and the values that are
still in log2 transformed scale but are increasing
with the level of DNA methylation specific signal
were obtained. These values for all markers or the
means of these values for all markers or marker
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subsets were used in the plots and ROC analysis.
Since the DNA methylation signal from markers
spans several orders of magnitude, nonparametric
tests were used to test differences between the
groups (Wilcoxon rank sum test) or correlation
between variables (Spearman’s rank correlation
coefficient). The optimal marker subset was deter-
mined by running ROC analysis for all possible
1023 marker combinations and selecting a marker
subset with the largest AUC. Due to the overall
increase in cfDNA amount in the post-surgery
samples, the DNA methylation signal for Figure
4(c,d) was normalized for cfDNA load using the
mean signal from the three universally methylated
control amplicons listed in Table S2. Normal
human blood DNA (20 ng, 1:1 mix of male and
female, Promega, G147A, G152A) spiked with 1%
of DNA from MDA-MB231 cancer cell line, that
has all marker loci fully methylated, was used as
a positive control. The signal from the positive
control was also used to estimate the amount of
methylated marker copies per ml of plasma.
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