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Striatal projecting neurons, known as medium spiny neurons (MSNs), segregate into two
compartments called matrix and striosome in the mammalian striatum.The matrix domain
is characterized by the presence of calbindin immunopositive (CB+) MSNs, not observed
in the striosome subdivision. The existence of a similar CB+ MSN population has recently
been described in two striatal structures in male zebra finch (a vocal learner bird): the
striatal capsule and the Area X, a nucleus implicated in song learning. Female zebra finches
show a similar pattern of CB+ MSNs than males in the developing striatum but loose
these cells in juveniles and adult stages. In the present work we analyzed the existence
and allocation of CB+ MSNs in the striatal domain of the vocal learner bird budgerigar
(representative of psittaciformes order) and the non-vocal learner bird quail (representative
of galliformes order).We studied the co-localization of CB protein with FoxP1, a transcription
factor expressed in vertebrate striatal MSNs. We observed CB+ MSNs in the medial striatal
domain of adult male and female budgerigars, although this cell type was missing in the
potentially homologous nucleus for Area X in budgerigar. In quail, we observed CB+ cells
in the striatal domain at developmental and adult stages but they did not co-localize with
the MSN marker FoxP1. We also described the existence of the CB+ striatal capsule in
budgerigar and quail and compared these results with the CB+ striatal capsule observed in
juvenile zebra finches.Together, these results point out important differences in CB+ MSN
distribution between two representative species of vocal learner and non-vocal learner
avian orders (respectively the budgerigar and the quail), but also between close vocal
learner bird families.

Keywords: striatum, evolution, song system, language learning, FoxP1, subventricular zone

INTRODUCTION
Medium spiny neurons integrate cortico-basal ganglia-thalamo-
cortical circuits for motor learning in vertebrates (Graybiel et al.,
1994; Packard and Knowlton, 2002; Fino and Venance, 2010;
review of MSN circuits in vertebrates in Reiner et al., 1998). Vocal
acquisition by imitation is an example of motor learning, described
in mammals like humans, cetaceans and bats, and in vocal learner
birds like songbirds (passerines), parrots, and hummingbirds
(i.e., whales: Payne and McVay, 1971; dolphins: Richards et al.,
1984; Janik, 2000; bats: Esser, 1994; songbirds: Thorpe, 1958;

Abbreviations: Ac, accumbens nucleus; ac, anterior commissure; AcC, accumbens
nucleus, core region; AcS, accumbens nucleus, shell region; budg, budgerigar; CB,
calbindin; CB-StC, Calbindin-positive striatal capsule; E14, E16, embryonic day 14,
16; HA, apical hyperpallium; InP, intrapeduncular nucleus; lfb, lateral forebrain
bundle; LSt, lateral striatum; MD, mesopallium, dorsal part; MSt, medial striatum;
MStm, magnocellular nucleus of the medial striatum; MV, mesopallium, ventral
part; N, nidopallium; PalE, ectopic pallidum; PHD, posthatch day; psp, pallial-
subpallial boundary; St, striatum; StAm, striatoamygdaloid transition area; StC,
striatal capsule; StPal, striatopallidal area; StPalA, striatopallidal amygdaloid area;
To, olfactory tubercle; vo, ventral olfactory tract; VP, ventral pallium.

parrots: Farabaugh et al., 1994; Heaton and Brauth, 1999; hum-
mingbirds: Baptista and Schuchmann, 1990). Vocal learner birds
develop a special neural circuit for song learning and production,
the song system. This so called song system depends on MSN
function in its striatal subdivision (Nottebohm and Arnold, 1976;
Nottebohm et al., 1976; Striedter, 1994; Durand et al., 1997; Gahr,
2000; Roberts et al., 2002). Other birds, like chickens or quails,
only produce innate sounds and they do not develop a net-
work of telencephalic nuclei for vocal learning (Konishi, 1963;
Gahr, 2000; Puelles et al., 2007). In addition, parrots, the pro-
posed closest living relatives of passerines (Suh et al., 2011) are
also able of movement learning by imitation (Moore, 1992),
which, like song learning, implicates striatal projecting neuron
circuits.

During the development of the mammalian striatum MSNs
segregate into two main compartments: striosome and matrix
(Gerfen et al., 1985; Gerfen, 1992; Liu and Graybiel, 1992b; Crit-
tenden and Graybiel, 2011). Striatal compartmentalization has
a functional implication. While MSNs in the matrix domain
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participate in sensorimotor and associative circuits, the striosome
MSNs are involved in the limbic system (Jimenez-Castellanos and
Graybiel, 1987; Gerfen, 1989; Eblen and Graybiel, 1995; Kincaid
and Wilson, 1996; reviewed in Crittenden and Graybiel, 2011).
The matrix domain originates late during development from the
subventricular zone (SVZ) and is characterized by the presence of
CB+ MSNs (Gerfen et al., 1985; van der Kooy and Fishell, 1987;
Liu and Graybiel, 1992b; Anderson et al., 1997; Garel et al., 1999;
Mason et al., 2005). Our recent results show the existence of a pop-
ulation of CB+ MSNs in the striatal domain of male zebra finch
(Garcia-Calero and Scharff, 2013). These cells concentrate in the
striatal capsule and Area X, a song system nucleus that participates
in learning and production of song in songbirds (Sohrabji et al.,
1990; Scharff and Nottebohm, 1991; Jarvis and Nottebohm, 1997;
Jarvis et al., 1998; Hessler and Doupe, 1999). These data suggest a
role of CB+ MSNs in Area X function. In female zebra finches a
similar CB+ MSN population appears during development, how-
ever, from PHD20 onward these neurons are no longer observed
in the Area X, although remain present in the CB+ striatal capsule
(Garcia-Calero and Scharff, 2013). Our previous work links this
event to differences in HVC inputs arrival mediated by sexual hor-
mones. HVC is another nucleus of the song system located in the
pallial subdivision that receives auditory information from Field L
and projects to different nuclei of the song system like the Area X
or the robust nucleus in the arcopallium (Nottebohm et al., 1976;
Kelley and Nottebohm, 1979).

In contrast to songbirds, the existence of a CB+ MSN popu-
lation in the striatal domain of parrots remains unclear, even in
the magnocellular nucleus of the medial striatum (MStm), which
has been described as a nucleus potentially homologous to Area X
(Striedter, 1994; Durand et al., 1997; Reiner et al., 2004). In non-
vocal learner birds a nucleus similar to Area X is not detectable in
the striatal region and the presence of a striatal CB+ MSN pop-
ulation is not yet proven (Bálint and Csillag, 2007; Husband and
Shimizu, 2011).

In this work we analyzed the presence of CB+ MSNs in the stri-
atal domain of the vocal learner bird budgerigar (psittaciformes
order) and the non-vocal learner bird quail (galliformes order), to
further characterize the differences of CB+ MSN distribution in
the striatal domain between these two avian orders and its relation
with motor learning capabilities. We studied the co-localization
of CB with FoxP1, a marker for MSNs in vertebrates (Tamura
et al., 2003; Haesler et al., 2004; Teramitsu et al., 2004) and ana-
lyzed the cellular distribution of CB+ cells in the striatal domain
of male and female budgerigars to better characterize the gen-
der differences that have been previously described in these birds
(Brauth et al., 2005). Finally, following the recent description of
a CB+ striatal capsule in zebra finch (Garcia-Calero and Scharff,
2013), we analyzed the presence of this neuroanatomical struc-
ture in budgerigar and quail striatum. We observed CB+ MSNs in
adult male/female budgerigar striatum although the distribution
appears different than in male zebra finches; in contrast, there were
no CB+ MSNs in adult male quail striatum. We also analyzed the
presence of CB+ cells in quail striatum at developmental stages
to compare the results to the previous description of this cell type
in female zebra finches during development but not at later stages
(Garcia-Calero and Scharff, 2013). In addition, we observed the

existence of a CB+ striatal capsule in budgerigar but not in quail
striatum.

MATERIALS AND METHODS
The animals were treated according to the regulations and laws
of the European Union (86/609/EEC) and the Spanish Govern-
ment (Royal Decree 223/1998) for care and handling of animals
in research.

TISSUE PREPARATION
We obtained quail embryos from fertile quail eggs collected from
domestic quails (Colinus virginianus) from local breeders. Col-
lected eggs were transferred to an egg incubator at 37.8◦C and
50–60% humidity. Adult quail, budgerigars (Melopsittacus undu-
latus), and juvenile zebra finches (Taeniopygia guttata) were also
obtained from local breeders. The embryos were anesthetized
on ice prior to sacrifice and the brains were dissected out and
fixed overnight in 4% paraformaldehyde in pH 7.4 phosphate-
buffered saline (PBS) at 4◦C. For adult quail, budgerigars, and
juvenile zebra finches, animals were overdosed with isoflurane
and subsequently perfused transcardially with the same fixative
solution as above and postfixed for 24 h at 4◦C. The tissue
was embedded in 4% agarose in PBS and 50 μm sections were
cut in horizontal planes with a Leica vibratome (VT1000 S),
to be processed for immunohistochemistry or for cresyl-violet
staining.

IMMUNOHISTOCHEMISTRY
For immunostaining, the sections were treated with 0.3% hydro-
gen peroxide in PBS+ 0.3% Triton (PBT) for 15 min to inactivate
endogenous peroxidase activity. After several washes in PBT,
sections were blocked in PBS containing 0.3% Triton X-100 and
3% BSA, and incubated in the primary antiserum for 2 days
at 4◦C. Following this incubation and standard washes in PBT,
the sections were incubated in a secondary biotinylated anti-
serum for 2 h at room temperature (RT; Vector, Burlingame,
CA, USA). After washing, the sections were incubated in avidin-
biotin complex (ABC kit; Vector; 0.003% dilution) for 1 RT.
The immunolabeling was revealed by 0.05% diaminobenzidine
(DAB; Sigma-Aldrich, Steinheim, Germany) in 0.05 M Tris
buffer (pH 7.6), containing 0.03% H2O2. The following pri-
mary antibodies were used: rabbit anti-Calbindin (Swant); mouse
anti-FoxP1 (Abcam). For immunofluorescence staining, appro-
priate secondary antibodies coupled to fluorescent dyes were used:
anti-rabbit Alexa 488, anti-mouse Alexa 594 (Molecular Probes
Europe BV, Leiden, Netherlands, 1:200). For control of immuno-
histochemistry we prepared negative control sections by leaving
out the primary antibody; these control sections showed no
staining.

ANTIBODY CHARACTERIZATION
Calbindin (rabbit anti-Calbindin, Swant; Bellinzona, Switzerland,
dilution 1:1000). The CB polyclonal antibody detects a single band
in Western blots of chick brain tissue (Suarez et al., 2006). Con-
trols made by Suarez et al. (2006) incubating brain sections with
the primary antibody pre-adsorbed with the immunizing peptide
(1 mg of the recombinant protein for 1 ml of the diluted antibody)
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did eliminate staining. This antibody was also used previously in
zebra finch (Heyers et al., 2008).

FoxP1 (mouse anti-FoxP1, ab-32010, Abcam, Cambridge, MA,
USA, dilution 1:2000). The monoclonal antibody against FoxP1
detects the full length native protein (purified) of mouse and rec-
ognizes FoxP1 protein in MSNs of mouse striatal domain (Banham
et al., 2001; Arlotta et al., 2008). The FoxP1 monoclonal antibody
detects a single band in Western blots of Hek cells overexpressing
zebra finch FoxP1 (Abcam, datasheet). This antibody does not
recognize closely related molecules FOXP2, FOXP3, or FOXP4.

IMAGE CAPTURE, MANIPULATION, AND FIGURE ASSEMBLY
Digital photomicrographs were obtained with digital camera
DC500 or DC350 (Leica, Wetzlar, Germany) and Leica TCS-NT
confocal microscope. Digital images were processed for con-
trast and brightness with Photoshop software (Adobe Systems
Mountain View, CA, USA).

QUANTIFICATION
For the quantification of co-localization patterns (CB/FoxP1),
confocal images were analyzed using ImageJ (NIH, http://rsb.info.
nih.gov/ij/) software. Double-labeled cells were counted from
four different rostrocaudal levels of the striatal domain of two
adult male budgerigars, one adult female budgerigar, one adult
male quail, and three quail embryos. Data were expressed as
average ± STD.

RESULTS
CB+ MSN IN THE STRIATAL DOMAIN OF MALE/FEMALE ADULT
BUDGERIGAR
We analyzed the presence of CB+ MSNs in the adult male
(n = 2) and female (n = 1) budgerigar striatum, from rostral
to caudal levels (Figures 1 and 2, where Figure 1A: diagram
of budgerigar telencephalon showing the main neuronatomi-
cal subdivisions). We show cresyl-violet staining in parallel to
our immunohistochemistry preparations for comparative pur-
poses (Figures 1C,E,I). In our description we used the striatal
subdivisions proposed by Puelles et al. (2007). The striatum is
subdivided in two distinct radial subdomains. The most dor-
sal sector is close to the pallial /subpallial border (psp) and it
contains the medial striatum (MSt) in the periventricular zone,
and the lateral striatum (LSt) in the intermediate stratum. This
domain finishes caudally in the striatoamygdaloid transition area
(StAm). The striatal capsule overlaying the striatum is described
in a different section of the present work. The second subdomain,
adjacent to the pallidal region, is called the striatopallidal area
(StPal) in Puelles et al. (2007). This field encloses the periven-
tricular part of the StPal, the intrapeduncular nucleus (InP),
and ends caudally in the striatopallidal amygdala (StPalA). The
periventricular part of the StPal domain was not clearly detected
in our cresyl violet and CB stainings and we decided to include
it in the MSt as it has been done in previous studies in par-
rots (i.e., Roberts et al., 2002). We also examined the olfactory
tubercle (To) extending along the striatal surface of the two
radial domains. The accumbens nucleus (Ac) appears surround-
ing the ventral horn of the lateral ventricle in the most rostral
sections.

The CB immunostaining was similar in male and female
budgerigars, with minor differences in the area occupied by the
vocal nucleus MStm (i.e., Figures 1D,H; gender differences in
MStm size were previously reported in Brauth et al., 2005). We
observed CB+ cells in the medial region of the striatum in male
and female budgerigars; the lateral part of the striatum was
almost devoid of CB immunoreactivity, although not completely
(Figures 1B,D,F,G,H and 2). The CB+ medial striatal area encom-
passed the MSt and the nucleus Ac (Figure 1). In addition, in
our most rostral sections, there was a strip of CB labeled cells
extending from the medial striatal domain to more lateral regions
(black arrow in Figures 1B and 2A). This CB positive band delin-
eated roughly the anterior and lateral edges of the MStm (compare
with cresyl-violet in Figure 1C). In parrots, neurochemical studies
(Durand et al., 1998; Roberts et al., 2002; Feenders et al., 2008) and
zenk (an activity-dependent immediate early gene) upregulation
during vocal activities (Jarvis and Mello, 2000; Brauth et al., 2002;
Feenders et al., 2008) have been previously used to describe the
MStm. This vocal nucleus, which is part of the medial striatum,
was poor in CB immunoreactive cells (Figures 1B,D,H and 2A,C).
This result contrasts with the previous data published in zebra
finch by Garcia-Calero and Scharff (2013). In addition, the Ac in
the medial area of the striatal domain showed a clear distinction
between the core and the shell subdivisions of this nucleus as it was
previously reported in the budgerigar by Roberts et al. (2002) and
in chicken (Bálint and Csillag, 2007; Garcia-Calero and Puelles,
2009). The core region was devoid of CB+ cells in contrast to the
shell region (Figure 1G).

The lateral area although almost devoid of CB+ cells in both
male and female budgerigars (Figure 1), still presented some
scattered positive cells (Figure 2A). This region includes the clas-
sical LSt, which ends caudally in the the StAm, and was also
poor in CB immunopositive cells (Figures 1B,D,F,H). The InP,
immersed in the lateral forebrain bundle (lfb) mainly lacked CB+
cells (Figure 1F). The To extends in the pial surface covering
the striatal domain and in contrast to the other lateral structures
described before, this nucleus showed a rich population of CB+
cells (Figures 1B,D,D′,H).

We studied our CB preparations according to the type of CB+
cell labeled in male and female budgerigars. To date two differ-
ent types of CB+ neurons have been described in the mouse
striatal domain. One is dispersed in the striatum, with high CB
immunoreactivity and corresponds to interneurons (Bennett and
Bolam, 1993). The second type is located in the matrix domain
and shows weak CB staining. This second group corresponds to
projecting MSNs (Bennett and Bolam, 1993). In agreement with
this study, Garcia-Calero and Scharff (2013) found these two dif-
ferent CB+ cell populations in male Area X of zebra finch. We
observed some scattered heavily labeled CB+ cells (some example
pointed with black arrows in Figures 2B,C) whereas most of cells
showed weaker CB signal in budgerigar striatum. We analyzed
the co-localization of CB protein with FoxP1, a transcription fac-
tor expressed in vertebrate striatal MSNs but not in interneurons
(Haesler et al., 2004; Tamura et al., 2004; Teramitsu et al., 2004), to
distinguish the two types of CB+ neurons described before. The
vast majority of our CB+ cells were also FoxP1+ (97.65% ± 2%
in n = 2 males and 98.5% ± 2.5% in n = 1 female; white arrows
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FIGURE 1 | Diagram of budgerigar telencephalon (A) and coronal

sections through the striatum of adult male (B–G) and female (H,I)

budgerigars showing CB immunostaining (B,D,D′,F–H) and cresyl-violet

staning (C,E,I) from rostral to caudal levels. The respective staining and
gender are indicated at the upper right-hand corner of each panel. Dorsal is

oriented toward the top of the photos, medial (bordering the ventricle) to the
left. Black arrow in (B) point to the CB+ stream delimiting the MStm. Black
rectangle in (D) delineates the region magnified in (D′). The asterisk in D, E
and I indicates an artifact (fold at brain surface). For abbreviations, see list.
Scale bar = 2.5 mm in (B–D,E,F,H,I); 0.25 mm in (D′,G).

in Figures 2D–F). These results classify these cells as MSNs. The
few heavily labeled CB+ cells dispersed in the striatal region were
likely interneurons (white arrow head in Figures 2D–F), like in
the mouse striatum. In the areas poor in CB+ cells we also found
that some of them co-localized with FoxP1 (data not shown).

In summary, we detected CB+ MSNs in male and female
budgerigar striatum, located mainly in the medial regions of the
striatal domain, with the exception of the vocal nucleus MStm that

lacks this cell type, in contrast to the striatal vocal nucleus Area X
in zebra finch.

CB+ MSNs IN QUAIL STRIATAL DOMAIN AT ADULT STAGES AND
DURING DEVELOPMENT
We analyzed the presence of CB+ cells in the striatal domain
of adult male quail (n = 1) and quail embryos (n = 3) at
different developmental stages (Figure 3). In adult male quail
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FIGURE 2 | Coronal sections through the striatum of adult

male budgerigar showing CB immunostaining (A–C) and

immunofluoresecence of CB in cyan and FoxP1 in magenta (D–F). The
respective staining is indicated at the upper right-hand corner of each
panel. Dorsal is oriented toward the top of the photos, medial (bordering
the ventricle) to the left. Black arrow in (A) point the CB+ stream

delimiting the MStm. Black arrows in (B,C) point to CB+ cells with high
immunoreactivity. White rectangle in (D) delineates the region magnified in
(E,F). White arrows in (D–F) indicate cells with co-localization of CB and
FoxP1; white arrow head in (D–F) indicates a CB+ but FoxP1 negative cell.
For abbreviations, see list. Scale bar = 2 mm in (A); 62.5 μm in (B,C);
31.25 μm in (D–F).

FIGURE 3 | Coronal sections through the striatum of adult quail

(A–C) and quail embryos at E14 and E16 (D–I) showing CB

immunostaining (A–G) and double immunofluoresecence of CB in

cyan and FoxP1 in magenta (H,I). The respective staining and
stage are indicated at the upper right-hand corner of each panel.

Dorsal is oriented toward the top of the photos, medial (bordering
the ventricle) to the left. (H,I) show no co-localization of CB+ cells
with FoxP1+ cells. For abbreviations, see list. Scale bar = 2 mm in
(A,D–F); 62.5 μm in (B,G); 0.25 mm in (C); 65 μm in (H);
31.25 μm in (I).
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a short number of heavily stained CB+ cells appeared sparsely
distributed in the striatal domain, from rostral to caudal lev-
els, including the medial and lateral striatum (MSt and LSt), the
StAm and the StPal regions with the InP included (Figures 3A–C).
This pattern of CB expression was similar to the previously pub-
lished CB immunostaining of chicken striatum (Bálint and Csillag,
2007). In the shell region of the nucleus Ac (AcS) we observed an
increase in extracellular CB immunoreactivity accompanied by an
increase in the number of CB+ somata, when compared with
other striatal regions (Figures 3A,C). In contrast, the accumbens
core region (AcC) was devoid of CB immunoreactive perikarya
(Figures 3A,C). This result was also similar to the data from Bálint
and Csillag (2007) in the nucleus accumbens of adult chicken. We
checked the type of CB+ cell observed in adult quail striatum
studying the co-localization with FoxP1 in the striatal domain, as
we previously did in budgerigar. We did not detect co-localization
of the two proteins neither in adult male (data not shown) nor
at developmental stages (Figures 3H,I). This result indicated that
CB+ cells in quail male striatum did not correspond to the MSN
type described in budgerigar (present results).

Garcia-Calero and Scharff (2013) did not detect CB+ MSNs in
the striatal domain of zebra finch females from PHD20 onward.
However, during development, female zebra finches had CB+
MSNs in the striatal domain similar to males. To figure out if
this is also the case in quail, we analyzed the presence of CB+
cells in the striatal domain of quail at different developmental
stages (E14, n = 1 and E16, n = 2: Figures 3D–I). We also stud-
ied the co-localization of these cells with the MSN marker FoxP1
(Figures 3H,I). We obtained a similar pattern of CB immunos-
taining between embryos and adult quails in most of the striatal
domains. There was no co-localization of CB and FoxP1 in the
striatal region (Figures 3H,I).

In conclusion, we detected a few CB+ cells in the striatal
domain of quail at adult and developmental stages. These cells
appeared sparsely distributed and did not co-localize with FoxP1,
suggesting that these cells were not MSNs.

THE CB+ STRIATAL CAPSULE IN BIRDS
A CB+ striatal capsule was previously described in male and
female zebra finches (Garcia-Calero and Scharff, 2013). This

structure, underlying the pallial/subpallial boundary, developed
at early postnatal stages and contained a dense population of CB+
MSNs. This solid band of CB+ cells co-localized with DARPP-
32, FoxP1, and FoxP2 and was located under a CB negative
but DARPP-32/FoxP1/FoxP2 positive striatal belt (Figure 3G in
Garcia-Calero and Scharff, 2013; white arrow in Figure 4A, present
results; and data not shown for FoxP2). These authors suggested
that the striatal capsule described in chicken by Puelles et al. (2007)
consisted of two bands perpendicular to the pial surface in the stri-
atal domain of zebra finch. In mammals, a CB+ striatal capsule
is described at least during developmental stages (Liu and Gray-
biel, 1992a). In this work we analyzed the existence of a CB+
striatal capsule in the two birds species studied: budgerigar and
quail. We also show CB and FoxP1 staining in the pallial/subpallial
border of male zebra finch at PHD12 for comparative
purposes.

In adult male/female budgerigars, we observed a CB+ stri-
atal capsule in the medial and lateral striatal regions close to
the limit with the pallium (adult male: Figures 4B,C). This
capsule is composed of CB+ MSNs (CB+/FoxP1+ cells) like
the ones described in zebra finch, but the cells were not as
densely packed as in songbirds. In addition, we did not find
a CB negative but FoxP1+ striatal capsule (white arrow in
Figure 4A) dorsally to the CB+ FoxP1+ band, as seen in zebra
finch (compare Figures 4A,B). Finally, in adult and develop-
ing quail embryos a CB+ striatal capsule was not observed and
only dispersed CB+ positive cells with high CB-immunoreactivity
were detected in the boundary with the pallial domain
(Figure 4D).

In conclusion, a CB+ striatal capsule was observed in budgeri-
gar striatum, similar to the one found in zebra finches. This
structure was not detected in quail. A CB negative but FoxP1 pos-
itive lamina overlaying the CB+ striatal capsule was not observed
in budgerigar, in contrast to zebra finch.

DISCUSSION
The main goals of the present study were: (a) A description of
the CB+ MSN population in the striatal domain of male and
female budgerigars (vocal learner birds) in contrast to quail (a
non-vocal learner bird); (b) To analyze the lack of this cell type

FIGURE 4 | Pallial/subpallial border in zebra finch at PHD12 (A),

adult male budgerigar (B,C) and adult quail (D) showing double

immunofluorescence of CB in cyan and FoxP1 in magenta (A,B)

and CB immunostaining (C,D). Dorsal is oriented toward the top of

the photos, medial (bordering the ventricle) to the left. The white arrow in
(A) points to the CB negative, Foxp1 positive domain over the CB+
striatal capsule. For abbreviations, see list. Scale bar = 62.5 μm in (A);
65 μm in (B); 0.25 mm in (B,D).
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in the striatal nucleus for song learning MStm in budgerigars in
contrast to zebra finches; (c) the description of a CB+ striatal
capsule in vocal learner but not in non-vocal learner birds.

CB+ MSNs IN VOCAL-LEARNER BIRDS VS. NON-VOCAL LEARNER
Budgerigars and zebra finches are able to learn sounds by imita-
tions, contrary to other birds like chicken or quail that are only
able to produce innate sounds. Parrots are also capable of com-
plex motor learning like movement learning by imitation (Moore,
1992). These differences in learning capabilities are also reflected,
for example, in the existence of a song system in vocal learners in
contrast to non-vocal learner birds (Nottebohm et al., 1976; Gahr,
2000). In the present work, we described a new significant differ-
ence in the striatal domain of vocal learner and non-vocal learner
birds: CB+ MSNs were widely distributed in the medial striatal
domain of male and female adult budgerigars, whereas, there was
no production of CB+ MSNs in quails at developmental stages or
in the adult.

Previous studies reported the existence of CB+ cells in the stri-
atal domain of non-vocal learner birds like chicken (i.e., Bálint
and Csillag, 2007; Husband and Shimizu, 2011), however, these
studies did not define the type of neurons (interneuron or pro-
jecting neuron). In our work, CB+ cells are dispersed in the quail
striatal domain, show high CB-immunoreactivity and do not co-
localize with the MSN marker FoxP1. We propose that this CB+
cells are likely interneurons. In addition, a CB+ MSN population
was described in songbirds striatum located mainly in the nucleus
for song learning Area X (Garcia-Calero and Scharff, 2013). These
results show important differences in the cytoarquitecture of the
striatal domain between vocal learner and non-vocal learner birds
that could relate with differences in neurofunctional capabilities
like vocal learning or movement learning by imitation. This cor-
relates directly with the role that CB protein could play in this
neuron type (see below).

As we have mentioned before, the striatal domain in mammals
is subdivided in striosome and matrix compartments. The strio-
some subdivision appears early during striatal development; the
matrix compartment (the one containing the CB+ MSN pop-
ulation) is produced later during development from the SVZ
(van der Kooy and Fishell, 1987; Anderson et al., 1997; Garel
et al., 1999; Mason et al., 2005). Mutations of genes important
for the development and functionality of the SVZ, like Dlx1/Dlx2
and Ebf1, generate abnormalities in the differentiation of matrix
neurons and impair in CB+ MSN production (Anderson et al.,
1997; Garel et al., 1999). These findings indicate that CB+ MSNs
originate from the striatal SVZ and show a late neurogenesis. A
SVZ in the striatal domain is also described in birds (Striedter
and Charvet, 2008; Charvet and Striedter, 2009). Parrots show
an important expansion of the SVZ at embryonic and post-
hatching stages and that correlates with a delay and expansion
in time of neurogenesis and telencephalic enlargement (Striedter
and Charvet, 2008). Moreover, the SVZ is thicker in embryonic
parrots than in age-matched quails (Striedter and Charvet, 2008).
In addition, hatchling zebra finches have a large SVZ similar in
thickness and extent to that of parrots (Charvet and Striedter,
2009). Taken together, these results could explain the pres-
ence of CB+ MSNs in parrots and zebra finches in contrast

to quails. Moreover, CB+ MSN production was observed in
the male zebra finch at postnatal stages, which indicates a late
neurogenesis for this cell type in songbirds (Garcia-Calero, unpub-
lished observations). In this sense, the well noticed neurogenesis
delay in the SVZ of parrots and songbirds in contrast to non-
vocal learner birds could translate directly in the production
of a new cell type (CB+ MSNs): shifts in neurogenesis tim-
ing could provide be the basis for CB+ MSN production in
birds.

It would be interesting to know the possible role that the CB+
MSNs play in the striatal domain of budgerigar and zebra finch.
CB protein in mammals is linked to rapid regulation of intracellu-
lar calcium levels critical for synaptic plasticity, a cellular process
underlying learning and memory (reviewed in Schwaller et al.,
2002). New studies focused on the function of CB protein and
CB+ MSN in the process of motor learning in budgerigar and
zebra finch could be interesting to assess the implication of this
cell type in the acquisition of new intellectual capabilities during
bird evolution.

To sum up, changes in CB+ MSN production among bird
groups could be a consequence of differences in SVZ development
and function. In this sense, quails do not produce CB+ MSNs in
the striatal domain, in contrast to parrots and male and female
zebra finches. The role of CB+ MSNs in complex motor learning
process must be revisited.

CB+ MSNs IN VOCAL LEARNER BIRDS
As we mentioned before, parrots and songbirds are able to learn
sounds by imitation and to accomplish this, they have developed a
special system for vocal acquisition (Paton et al., 1981; Brauth et al.,
1994; Striedter, 1994; Heaton and Brauth, 1999; Jarvis and Mello,
2000; Roberts et al., 2002). Recently, Suh et al. (2011) showed by
retrotransposon analysis that parrots are the closest living relatives
of passerine birds. Studies suggest that vocal learning existed in a
common ancestor of parrots and songbirds and that the neural
system for vocal acquisition could be homologous between both
orders (Suh et al., 2011). In this sense, MStm in budgerigar stria-
tum is potentially homologous to zebra finch Area X. On the other
hand, hodological studies on the bird song system (i.e., Striedter,
1994; Durand et al., 1997) have shown that the connectivity pat-
tern of parrots and songbirds song nuclei differs, and that probably
the song system is not homologous between both orders. In the
present work we described the allocation of a CB+ MSN popula-
tion in budgerigar striatal area. These cells were distributed mainly
in the periventricular region of the striatal radial domain. The
lateral stratum only showed dispersed CB+ cells, with the excep-
tion of the superficial olfactory tubercle. In addition, the MStm
was poor in CB+ MSNs. This result contrasts widely with previ-
ous data published by Garcia-Calero and Scharff (2013) in zebra
finch, which locate CB+ MSNs solely in the Area X and CB+
striatal capsule of juvenile and adult males. Therefore, budgeri-
gars and zebra finches are able to produce CB+ MSNs but the
allocation of this cell type in the striatal domain changes among
species.

The distribution of CB+ MSNs in male and female adult
budgerigars parallels the data obtained in female and male zebra
finches at early stages. CB+ MSNs distribute widely in the rostral
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part of the medial striatum at developmental stages, both in male
and female zebra finches (i.e., Figures 1A,B,F,L–N, 2A,B, and 5A–E
in Garcia-Calero and Scharff, 2013), while at the same time the
lateral striatum only show dispersed CB+ cells (Garcia-Calero,
unpublished observations). During the course of striatal develop-
ment these cells gradually disappear in the medial striatal region
except in the Area X and the CB+ striatal capsule in males and the
latter in females. Due to the evident sexual dimorphism in CB+
MSN distribution in zebra finch striatal domain from PHD12,
Garcia-Calero and Scharff (2013) proposed that these results could
relate with estrogenic effects on Area X, mediated transynaptically
via the HVC-to-Area X afferents arrival at early juvenile stages
(Gahr, 1990; Mooney and Rao, 1994; Foster and Bottjer, 1998).
This means that CB+ MSNs are located at a similar position
(medial striatum, close to the proliferative regions) in male/female
zebra finches at early stages and male/female adult budgerigars,
however in zebra finches the HVC-inputs arrival triggers a re-
allocation of this cell population. The song system in budgerigar
has been well described and its connectivity pattern analyzed pre-
viously (Striedter, 1994; Durand et al., 1997). Budgerigars show
important similarities in song nuclei distribution to zebra finch.
However, the comparable nucleus to HVC in parrots, the central
nucleus of the lateral nidopallium (NLC), does not project directly
to the MStm, but through an intermediate relay in a mesopallial
nucleus (Striedter, 1994; Durand et al., 1997). If HVC-to-Area X
connectivity is the cause of CB+ MSNs re-allocation and main-
tenance in male zebra finch, a different connectivity pattern of
MStm nucleus in budgerigar could explain our present findings.

CB+ STRIATAL CAPSULE IN VERTEBRATE DEVELOPMENT AND
EVOLUTION
A CB+ striatal capsule was described in detail by Garcia-Calero
and Scharff (2013) in male and female zebra finches from
PHD5 onward. This neuroanatomical structure laid in the pal-
lial/subpallial boundary, forming a dense cellular band of CB+
cells that extended from the ventricular zone to the striatal sur-
face. The CB+ cells co-localized with DARPP-32, FoxP1, and
Fox2, three markers for MSNs. A DARPP-32/FoxP1/FoxP2 pos-
itive, CB negative domain overlies this CB+ strip (Figure 3G in
Garcia-Calero and Scharff, 2013). Puelles et al. (2000, 2007) has
previously described a striatal capsule in chicken at developmental
and adult stages. In adult chicken this structure appeared differ-
entially labeled in the AChE and TH stainings, and showed patchy
reaction particularly subpially. Haesler et al. (2004) also detected
a FoxP2+ band forming thicker clumps of FoxP2 positive cells in
the interface of the pallium and subpallium of adult male zebra
finches. At chicken developmental stages a thin band of Pax6+
cells, lying bellow the pallial/subpallial border, was described by
Puelles et al. (2000) and Abellan and Medina (2009). Abellan and
Medina (2009) suggested that the striatal capsule is a derivative
of this Pax6+ dorsal-most striatal domain in chicken and the
same region in mouse produced the intercalated nucleus of the
amygdala. However Garcia-Calero and Scharff (2013) observed
the CB+ striatal capsule located in the ventral Islet1+-Pax6 neg-
ative striatal domain in zebra finches. In rats, Liu and Graybiel
(1992a) described a transient population of CB+ cells located in
the boundary of the striatal domain with the pallium at early

postnatal stages. It is evident that there is not a unified criterion
about what we call striatal capsule in vertebrates, and this situa-
tion complicates the study of homologies among species and the
understanding of its functional meaning. In our study, we detected
a CB+ striatal capsule in adult budgerigar, even in the CB-poor
lateral domain. The CB+ cells co-localized with FoxP1, but the
distribution was sparser than in zebra finch. In addition, a CB-
negative, DARPP-32/FoxP1/FoxP2 positive band overlaying the
CB+ striatal capsule was solely described in zebra finch, whereas
a similar structure was not evident in budgerigar. CB+ MSNs
were not described in the striatum of quail at adult and develop-
mental stages. Moreover, a CB+ striatal capsule was not found at
any of the stages analyzed in these birds. For all these reasons, to
understand the function and evolution of this region, it would be
necessary to define what we call striatal capsule in vertebrates. In
the present report and previous ones (Puelles et al., 2007; Garcia-
Calero and Scharff, 2013) the striatal capsule is defined differently
according to the species analyzed: a radial structure subdivided in
a CB negative and a CB positive bands in zebra finch; a simple
CB+ band at the boundary of the pallial domain in budgerigar
and mouse; and an AChE/TH+, CB negative domain in adult
chicken. In addition, the present results show important molec-
ular differences in the pallial/subpallial boundary among bird
species, pointing to patterning diversity during evolution of this
region.

In conclusion, in the present work we described important dif-
ferences in the distribution and type of CB+ cells in the striatum of
representative species of vocal learner and non-vocal learner avian
orders (respectively the budgerigar and the quail). In addition, we
observed differences in the CB+ MSNs allocation between close
vocal learner bird families.
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