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Abstract 

Background:  Retroviral envelope (Env) proteins are known to exhibit immunosuppressive properties, which become 
apparent not only in retroviral infections, but also in gene-based immunizations using retroviral immunogens, where 
envelope interferes with the induction of CD8+ T cell responses towards another, simultaneously or subsequently 
delivered, immunogen.

Results:  In the Friend retrovirus mouse model, immunization with a plasmid encoding the Friend murine leukemia 
virus (F-MuLV) Leader-Gag protein resulted in induction of a strong GagL85–93-specific CD8+ T cell response, while the 
response was completely abrogated by co-immunization with an F-MuLV Env-encoding plasmid. In order to over-
come this interference of retroviral envelope, we employed plasmids encoding the cytokines interleukin (IL) 1β, IL2, 
IL12, IL15, IL21, IL28A or granulocyte–macrophage colony-stimulating factor (GM-CSF) as genetic adjuvants. Co-appli-
cation of plasmids encoding IL2, IL12, IL21, IL28A and especially GM-CSF rescued the induction of GagL85–93-specific 
CD8+ T cells in mice vaccinated with FV Leader-Gag and Env. Mice that were immunized with plasmids encoding 
Leader-Gag and Env and the cytokines IL1β, IL12, IL15, IL28A or GM-CSF, but not Leader-Gag and Env without any 
cytokine, showed significantly reduced viral loads upon a high-dose Friend virus challenge infection.

Conclusions:  Our data demonstrate the potency of cytokine-encoding vectors as adjuvants and immune modula-
tors in composite vaccines for anti-retroviral immunization.

Keywords:  Retrovirus, Envelope, Vaccine, Friend virus, Friend retrovirus, Immunosuppression, Adjuvant, Immune 
modulation
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Background
The development of an effective anti-retrovirus vaccine 
has to overcome many challenges, among them the high 
sequence variability [1], the lack of immune correlates of 
protection [2, 3], and the immunosuppressive proper-
ties of some retroviral proteins. Numerous reports have 
shown an immunosuppressive effect exerted by retrovi-
ral envelope sequences, which is mostly attributed to an 

immunosuppressive domain located in the transmem-
brane envelope protein that is highly conserved in exog-
enous and endogenous retroviral envelope sequences and 
is an important feature of the ancient retrovirus enve-
lope-derived mammalian syncytin proteins [4–7]. The 
immunosuppressive domain has recently been shown 
to evoke changes in chemokine and cytokine expres-
sion patterns, among them an induction of interleukin 
(IL) 6 and IL10 [8]. While the immunosuppressive effect 
of envelope in retroviral infection has been reported 
numerous times, an immunosuppressive effect has rarely 
been reported in the context of vaccine development. We 

Open Access

Retrovirology

*Correspondence:  wibke.bayer@uni‑due.de 
1 Institute for Virology, University Hospital Essen, University Duisburg-
Essen, Virchowstr. 179, 45147 Essen, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5885-5592
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12977-017-0352-7&domain=pdf


Page 2 of 9Bongard et al. Retrovirology  (2017) 14:28 

have demonstrated before that a simultaneous or pre-
ceding immunization with an envelope-encoding vector 
will greatly diminish or even abrogate the CD8+ T cell 
induction by an otherwise effective vaccine against other 
immunogens such as another retrovirus-derived pro-
tein or the model antigen ovalbumin [9]. Interestingly, 
we detected envelope-specific IL10-producing CD4+ T 
cells in the immunized mice which may be involved in 
the suppression of CD8+ T cell responses towards other 
immunogens.

The immunosuppressive effect of retroviral envelopes is 
an important factor to consider in the development of an 
effective prophylactic vaccine, but it is also likely to affect 
vaccines used for therapeutic immunization in chronic 
retrovirus infections, as the immune system is envelope-
experienced and furthermore continually exposed to 
the persistently expressed retroviral envelope protein, 
and could therefore interfere with therapeutic vaccina-
tion efforts. We demonstrated before that the envelope-
mediated immune suppression can be circumvented by a 
sequential immunization where the CD8+ T cell inducing 
immunogen is applied as a first immunization separate 
from any envelope component. To generate a more gen-
erally applicable solution we now pursued the approach 
of a co-immunization with cytokine-encoding vectors as 
genetic adjuvants, aiming to change the cytokine milieu 
in a way that would favour the induction of CD8+ T cells. 
We evaluated the cytokines IL1β, IL2, IL12, IL15, IL21, 
IL28A and granulocyte–macrophage colony stimulating 
factor (GM-CSF) for their effect on CD8+ T cell induc-
tion in a DNA-based immunization, reasoning that these 
immunostimulatory cytokines might counter-act the 
envelope-mediated suppression either directly by sup-
plying stimulatory signals for CD8+ T cells or indirectly 
through their activating effects on antigen-presenting 
cells.

The experiments presented here were performed in 
the murine Friend virus (FV) infection model. FV is an 
immunosuppressive retroviral complex [10] consist-
ing of Friend murine leukemia virus (F-MuLV) and the 
replication-defective, pathogenic spleen focus form-
ing virus, that causes severe splenomegaly and lethal 
erythroleukemia in adult mice of susceptible strains, 
while mice that are genetically resistant to the FV-
induced disease develop a persistent infection without 
overt pathology [11]. Depending on the mouse strain, 
the FV infection can be a very stringent model for the 
development of prophylactic vaccines, or for therapeu-
tic interventions such as immunotherapy or therapeutic 
immunization against an established, chronic infection 
[12–24]. While the FV infection of mice differs in target 
cell tropism and pathological mechanisms from human 
retrovirus infections, like the infection with human 

immunodeficiency virus or human T cell leukemia 
virus, it is assumed that basic immunological mecha-
nisms that are responsible for the establishment of a 
chronic infection, and mechanisms required for virus 
control and clearance, are very similar for these retrovi-
rus infections [25].

We demonstrate here that the co-immunization with 
F-MuLV envelope-encoding plasmid DNA impairs the 
induction of Leader-Gag specific CD8+ T cells, and show 
that co-immunization with plasmids encoding select 
cytokines relieves this suppression and confers strong 
protection to highly susceptible mice. To our knowledge, 
this is the first report showing that envelope-mediated 
immune suppression can be relieved by co-delivery of 
cytokines.

Results
Rescue of Env‑suppressed GagL85–93‑specific CD8+ T cell 
responses by co‑immunization with cytokine‑encoding 
plasmids
We reported before that the co-immunization with 
Leader-Gag and Env-encoding adenovirus-based vectors 
leads to an abrogation of the induction of CD8+ T cells 
specific for the Leader-Gag derived GagL85–93 epitope [9]. 
To test whether this suppression can be relieved through 
co-immunization with cytokine-encoding vectors, we 
used DNA-based immunizations, thereby excluding a 
possible influence of vector-derived epitopes or vector-
specific immune responses, and combined plasmids 
encoding F-MuLV Leader-Gag and Env with plasmids 
encoding the murine cytokines IL1β, IL2, IL12, IL15, 
IL21, IL28A or GM-CSF; all these cytokines have impor-
tant, direct or indirect, roles in CD8+ T cell priming and 
survival [26–29].

CB6F1 mice were immunized with DNA plasmids 
encoding Leader-Gag and Env (LG + Env) with and with-
out cytokine-encoding plasmids, or as a control with 
Leader-Gag-encoding plasmid alone (see Additional 
file  1: Figure  S1 for the vaccination scheme). When the 
frequency of GagL85–93-specific CD8+ T cells was ana-
lysed by MHC I tetramer staining 2 weeks after immuni-
zation, we found a strong induction of these cells in most 
mice immunized with the Leader-Gag-encoding plasmid 
alone, whereas the response was completely abrogated 
in mice immunized with the combination of Leader-Gag 
and Env plasmids (Fig. 1a). While co-immunization with 
the cytokines IL1β and IL15 resulted mostly in low fre-
quencies of GagL85–93-specific CD8+ T cells which were 
not significantly different from the LG + Env vaccinated 
or the unvaccinated control groups, the co-immuniza-
tion with IL2, IL12, IL21, IL28A and even more so with 
GM-CSF resulted in significantly improved induction 
of GagL85–93-specific CD8+ T cell responses. When we 
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analysed the cytokine production of GagL85-93-specific 
CD8+ T cells, only mice that were immunized with the 
Leader-Gag plasmid alone had a significantly higher fre-
quency of IFNγ-producing CD8+ T cells compared to 
unvaccinated mice (Fig. 1b); about half of the mice that 
were co-immunized with GM-CSF had levels of IFNγ-
producing CD8+ T cells comparable to those induced 

by immunization with Leader-Gag plasmid alone, but 
responses did not reach statistically significant difference 
compared to mice immunized with LG + Env.

Cytokine‑adjuvanted immunization does not interfere 
with the induction of F‑MuLV‑binding antibodies
The cytokines were selected for their potential effects 
on CD8+ T cell induction, but their modulatory effects 
might well introduce a new bias in the immune response 
and interfere with antibody induction; therefore, we ana-
lysed F-MuLV binding antibody levels after immuniza-
tion. We found low antibody levels in mice immunized 
with Leader-Gag plasmid alone or with the combination 
of Leader-Gag and Env plasmids, and antibody levels of 
mice that were co-immunized with plasmids encoding 
IL1β, IL2, IL12, IL15, IL21 or IL28A were not significantly 
different; interestingly, mice that were co-immunized 
with GM-CSF had significantly higher binding antibody 
levels than both unvaccinated mice and mice vaccinated 
with LG  +  Env (Fig.  2). These findings demonstrate 
that the cytokine co-immunization, while rescuing the 
induction of GagL85–93-specific CD8+ T cells, does not 
interfere with antibody induction, and can even lead to 
improved antibody responses.
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Fig. 1  Induction of GagL85–93-specific CD8+ T cells by co-immuniza-
tion with cytokine-encoding plasmids. CB6F1 mice were immunized 
once with a DNA plasmid encoding Leader-Gag, a mix of plasmids 
encoding Leader-Gag and Env (LG + Env), or a mix of plasmids 
encoding Leader-Gag, Env and cytokines as indicated; 25 µg of 
each plasmid were injected intramuscularly followed by in vivo 
electroporation. Two weeks after immunization, the frequency of 
GagL85–93-specific CD8+ T cells in blood cells was analysed by MHC 
I tetramer staining (a), the production of IFNγ by GagL85–93-specific 
CD8+ T cells was analysed by intracellular cytokine staining after pep-
tide restimulation (b). Data were acquired in two to four independent 
experiments with three to four mice per group per experiment. Each 
dot indicates an individual mouse, the bars indicate the mean values. 
Data were analysed by Kruskall–Wallis One Way Analysis of Variance 
on Ranks and Dunn’s multiple comparison procedure, statistically 
significant differences (P < 0.05) compared to unvaccinated mice are 
indicated by *, significant differences compared to mice immunized 
with the combination of Leader-Gag and Env plasmids (LG + Env) are 
indicated by #
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Fig. 2  Binding antibody responses to plasmid combination vac-
cines. CB6F1 mice were immunized once with a DNA plasmid 
encoding Leader-Gag, a mix of plasmids encoding Leader-Gag and 
Env (LG + Env), or a mix of plasmids encoding Leader-Gag, Env 
and cytokines as indicated; 25 µg of each plasmid were injected 
intramuscularly followed by in vivo electroporation. Two weeks after 
immunization, blood samples were collected and F-MuLV-binding 
antibodies were analysed. The figure shows absorption values for 
plasma samples diluted 1:50 in PBS. Data were acquired in two to 
four independent experiments with three to four mice per group per 
experiment. Each dot indicates an individual mouse, bars indicate 
median values. Data were analysed by Kruskall–Wallis One Way Analy-
sis of Variance on Ranks and Dunn’s multiple comparison procedure 
for statistical significance; statistically significant differences (P < 0.05) 
compared to unvaccinated mice are indicated by *, significant dif-
ferences compared to mice immunized with the combination of 
Leader-Gag and Env plasmids (LG + Env) are indicated by #
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Cytokine‑adjuvanted immunization induces strong 
protection from high‑dose FV challenge infection
To determine if the rescued induction of 
GagL85–93-specific CD8+ T cells would result in adequate 
protection, we performed an FV challenge experiment 
and infected mice with the high dose of 5000 spleen focus 
forming units FV 3  weeks after the immunization. To 
monitor disease development, we palpated the spleens 
of mice twice a week (Fig. 3a) and found that while mice 
immunized with Leader-Gag-encoding plasmid alone 
showed no increase in spleen size over the entire obser-
vation period, mice that were immunized with plasmids 
encoding Leader-Gag and Env had severely enlarged 
spleens from day 10. Mice that were co-immunized with 
IL12, IL15, IL28A or GM-CSF on the other hand were 
able to control disease development and had significantly 
smaller spleens than unvaccinated mice over the entire 
observation period.

Three weeks after the FV challenge infection, we 
sacrificed the mice and removed the spleens. At this 
time point, unvaccinated mice had severely enlarged 
spleens, while spleens from mice that were immunized 
with Leader-Gag-encoding plasmid alone showed no 
increased weight (Fig.  3b). Spleens of about half of the 
mice that were immunized with Leader-Gag and Env 
plasmids had a severely increased weight, but mice that 
were co-immunized with IL1β, IL12, IL15, IL21, IL28A 
or GM-CSF were able to tightly control splenomegaly, 
and their spleens were significantly smaller than those of 
unvaccinated control mice. Similarly, when we analysed 
the viral load in spleen cells, unvaccinated mice all had 
very high viral loads, and while some mice immunized 
with LG + Env had low or even undetectable viral loads, 
about half of them had very high viral loads comparable 
with unvaccinated mice, and there was no statistically 
significant difference between LG + Env immunized and 
unvaccinated mice. On the other hand, mice that were 
immunized with Leader-Gag plasmid alone, or mice 
that were immunized with Leader-Gag and Env in com-
bination with IL1β, IL12, IL15, IL21, IL28A or GM-CSF 
had significantly reduced viral loads that were below the 
detection limit in most of the mice (Fig. 3c).

To ascertain that the strong protection observed after 
co-immunization with cytokine-encoding plasmids was 
not mediated by direct effects of the cytokines on the FV 
infection, but in fact attributable to their effects on the 
FV-specific vaccine-induced immune response, we per-
formed a control experiment and administered only the 
cytokine-encoding plasmids to CB6F1 mice. We used the 
cytokines IL1β, IL12, IL15, IL28A and GM-CSF as these 
cytokines had demonstrated the most profound effects 
on the viral loads in the co-immunization experiment. 
Three weeks after cytokine plasmid administration, mice 

were infected with 5000 spleen focus forming units FV. 
To monitor disease development, we palpated the spleens 
of infected mice twice a week, and did not find a signifi-
cant difference between unvaccinated mice and mice that 
received the cytokine-encoding vectors (Additional file 2: 
Figure S2A); similarly, there was no significant difference 
between the groups in spleen weight (Additional file  2: 
Figure S2B) or spleen viral loads 3 weeks after FV infec-
tion (Additional file 2: Figure S2C). Some of the mice that 
received the IL12-encoding plasmid exhibited somewhat 
reduced spleen weight and spleen viral loads, which may 
indicate a direct or indirect effect of IL12 expression 
alone on FV infection. On the other hand, application of 
plasmids encoding IL1β, IL15, IL28A or GM-CSF had no 
effect on the course of the FV infection.

Our findings demonstrate that cytokine-adjuvanted 
immunization leads to a rescue of GagL85–93-specific 
CD8+ T cell responses from envelope-mediated immune 
suppression and induces strong protection from FV 
infection.

Discussion
Retroviruses are notorious for their immunosuppres-
sive potential, and while the severe immunodeficiency 
syndrome associated with progressive HIV infection 
has to be attributed to the depletion of CD4+ T cells in 
advanced infection, all retroviruses also exhibit acutely 
immunosuppressive properties. The immunosuppressive 
activity is generally assumed to be exerted by a domain 
in the transmembrane envelope protein which is highly 
conserved across exogenous and endogenous retroviral 
envelope sequences [5–8, 30]. The immunosuppressive 
properties of retroviral envelope are rarely addressed in 
immunization studies, and there are only few reports 
showing a dampening effect of envelope on the immune 
responses to other immunogens [31–34]. We have 
recently published the observation that immunization 
with an envelope-encoding adenovirus-based vector 
leads to a reduction or even abrogation of CD8+ T cell 
induction to other simultaneously or subsequently deliv-
ered immunogens [9]. In contrast to other reports [31], 
our experiments did not demonstrate a relief of the sup-
pression when the envelope vaccine and the CD8+ T cell 
inducing vaccine were spatially separated, and while we 
did not find a significantly changed induction of regula-
tory CD4+ T cells by envelope-encoding adenovirus in 
comparison to adenovirus encoding another transgene, 
we did find production of IL10 by envelope-specific 
CD4+ T cells, hinting at the establishment of a suppres-
sive cytokine milieu. Because of these changes in the 
cytokine milieu, we addressed the suppressive effect in 
the context of DNA immunization and sought to relieve 
suppression by co-immunization with cytokine-encoding 
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Fig. 3  Protection from FV challenge infection by co-immunization with cytokine-encoding plasmids. CB6F1 mice were immunized once with a 
DNA plasmid encoding Leader-Gag, a mix of plasmids encoding Leader-Gag and Env (LG + Env), or a mix of plasmids encoding Leader-Gag, Env 
and cytokines as indicated; 25 µg of each plasmid were injected intramuscularly followed by in vivo electroporation. Three weeks after immuniza-
tion, mice were infected with 5000 spleen focus forming units FV. The development of splenomegaly was monitored by palpation of the spleen 
twice a week (a). Three weeks after FV challenge, mice were sacrificed and spleen weight (b) and viral loads in spleen cells were determined (c). 
Data were acquired in two to four independent experiments with three to four mice per group per experiment. The bars in (a) indicate the mean 
values, whiskers indicate the standard error of the means. Each dot (b, c) indicates an individual mouse, bars indicate mean (b) or median (c) values. 
Data were analysed by Kruskall–Wallis One Way Analysis of Variance on Ranks and Dunn’s multiple comparison procedure, statistically significant dif-
ferences (P < 0.05) compared to unvaccinated mice are indicated by *, significant differences compared to mice immunized with the combination 
of Leader-Gag and Env plasmids (LG + Env) are indicated by #
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plasmids as genetic adjuvants. For this purpose, we 
selected the pro-inflammatory cytokines IL1β, IL2, IL12, 
IL15, IL21, IL28A and GM-CSF, all of which can directly 
or indirectly influence the induction or maintenance of T 
cell responses [26–29].

We found that IL1β and IL15 had only moderate effects 
on the induction of GagL85–93-specific CD8+ T cells, 
whereas IL2, IL12, IL21 and IL28A led to a rescue of 
GagL85–93-specific CD8+ T cell induction in most of the 
co-immunized mice; but clearly, GM-CSF had the most 
profound effect on induction of GagL85–93-specific CD8+ 
T cell responses in the presence of envelope. GM-CSF 
has been described before as an adjuvant in DNA- or 
adenovirus-based immunization against HIV infection 
or against model antigens [35–38], in virus-like particle-
based immunization against Hanta virus infection [39], 
and in experimental cancer immunization in pre-clinical 
[40] and clinical studies [41, 42]. In all of these studies, 
GM-CSF was reported to have an enhancing effect on 
CD8+ T cell responses, which it may exert indirectly by 
promoting the activation and maturation of dendritic 
cells [43].

It is assumed that the development of a highly potent 
anti-retroviral vaccine requires the induction of both cel-
lular and humoral immune responses [44–46]; therefore 
employing a CD8+ T cell promoting cytokine to relieve 
the envelope-mediated suppression should not interfere 
with the induction of antibodies and thereby introduce 
a new bias. Importantly, none of the cytokines tested 
in our experiments had a diminishing effect on anti-
body induction, and GM-CSF co-immunization actually 
resulted in an increase in binding antibody levels, which 
is well in accordance with the literature that reports a 
simultaneous promotion of CD8+ T cell and antibody 
responses by GM-CSF [36]. We showed recently that a 
rationally designed adenovirus-based vaccine could con-
fer a high level of protection from FV challenge infection 
similar to the gold standard, attenuated anti-FV vaccine 
F-MuLV-N, albeit by different mechanisms [9]; indeed 
the DNA-based, cytokine-adjuvanted vaccine that we 
present here proves similarly effective, and furthermore 
might be applicable as a therapeutic vaccine as induction 
of CD8+ T cell responses does not rely on the vaccinee 
being envelope naïve.

The envelope-mediated immunosuppression is not 
only of concern for the development of prophylactic anti-
retroviral vaccination strategies, but also for therapeutic 
vaccine approaches. A chronically infected individual is 
envelope-experienced and chronically envelope-exposed; 
furthermore, the chronic phase of FV infection is charac-
terized by an expanded population of regulatory T cells 
(Treg) [47–51] that are creating an immunosuppressed 

state and interfering with effector functions of CD8+ T 
cells. Immunotherapeutic interventions targeting regula-
tory T cells, such as depletion of Treg cells or blocking of 
inhibitory ligands, have shown effective in reducing viral 
loads in the chronic FV infection [22, 23]; a combination 
of a therapeutic immunization using cytokine-adjuvanted 
DNA vaccines, which circumvents the suppression by 
envelope, with immunotherapeutic interventions such 
as Treg depletion and the blockade of inhibitory ligands 
may result in additive or even synergistic effects on the 
chronic FV loads and shall be investigated in the future. 
While IL21 was not the most effective cytokine in the 
prophylactic immunization, it may be a promising can-
didate for therapeutic application. IL21 can act on many 
cellular targets, among them antigen presenting cells 
such as dendritic cells, but also directly on T cells [52], 
and it was suggested to be able to substitute for IL2 as a T 
cell growth factor [53].

Our results show that select cytokines are able to 
relieve the immunosuppression exerted by retroviral 
envelope and suggest that cytokine-adjuvanted vaccines 
may be powerful tools in anti-retroviral vaccine design.

Methods
Cells and cell culture
A murine fibroblast cell line from Mus dunni [54] 
was maintained in RPMI medium (Invitrogen/Gibco, 
Karlsruhe, Germany) supplemented with 10% heat-inac-
tivated fetal bovine serum (Invitrogen/Gibco) and 50 µg/
ml gentamicin; cells were maintained in a humidified 5% 
CO2 atmosphere at 37 °C.

Plasmid DNA
The plasmids encoding the F-MuLV proteins Env or 
Leader-Gag under control of the cytomegalovirus imme-
diate early promoter have been described before [55]. 
Plasmids encoding the murine cytokines IL2, IL12, IL15, 
IL21 or GM-CSF are based on the pShuttle-CMV expres-
sion plasmid and have been described before [16]. Plas-
mids encoding murine IL1β or IL28A were constructed 
by PCR amplification of the coding sequences from 
cDNA of an influenza-infected mouse lung and sub-
cloning into the pVax plasmid (ThermoFisher Scientific, 
Darmstadt, Germany). Since mature IL1β does not have 
a conventional export signal, the leader peptide of the tis-
sue plasminogen activator was added at the N-terminus 
to allow efficient secretion of the cytokine.

All plasmids were purified by cesium chloride gradient 
centrifugation and absence of endotoxin contamination 
was verified by Limulus amebocyte lysate assay (detec-
tion limit 0.1 EU/ml; ThermoFisher Scientific, Schwerte, 
Germany).
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Mice
Female CB6F1 hybrid mice (BALB/c x C57BL/6 F1; 
H-2b/d Fv1b/b Fv2r/s Rfv3r/s) and female BALB/c mice were 
purchased from Charles River Laboratories (Sulzfeld, 
Germany). All mice were used when they were between 8 
and 9 weeks of age.

Immunization
CB6F1 mice were immunized intramuscularly into the 
M. gastrocnemius with 25 µg each of the respective plas-
mids in 30 µl PBS. Immediately following the DNA injec-
tion, in  vivo electroporation was performed using the 
BTX AgilePulse system (BTX Molecular Delivery Sys-
tems, Holliston, MA) or the Ichor electroporation system 
(Ichor Medical Systems, San Diego, CA) using electropo-
ration protocols described before [56, 57]. Electropora-
tion with both devices gave similar results.

FV and challenge infection
Uncloned, lactate dehydrogenase-elevating virus (LDV)-
free FV stock was obtained from BALB/c mouse spleen 
cell homogenate (10%, wt/vol) 14 days post infection with 
a B cell-tropic, polycythemia-inducing FV complex [58]. 
CB6F1 mice were challenged by the intravenous injection 
of 5000 spleen focus-forming units.

The development of FV-induced disease was moni-
tored by palpation of the spleens of infected mice twice 
a week under general anaesthesia, and spleen sizes were 
rated on a scale ranging from 1 (normal spleen size) to 
4 (severe splenomegaly) as described previously [59]. If 
mice showed overt signs of severe disease before the end 
of the experiment as rated by pre-determined termina-
tion criteria, they were euthanized and excluded from 
further analysis.

Infectious center assay
Mice were sacrificed 21 days after FV infection by cervi-
cal dislocation, the spleens were removed and weighed, 
and single-cell suspensions were prepared. Serial dilu-
tions of isolated cells were seeded onto M. dunni cells, 
and cells were incubated under standard tissue culture 
conditions for 3 days. When cells reached ~100% conflu-
ence, they were fixed with ethanol, labelled with F-MuLV 
Env-specific Mab 720 [60], and then with a horseradish 
peroxidase-conjugated rabbit anti-mouse Ig antibody 
(Dako, Hamburg, Germany). The assay was developed 
using aminoethylcarbazole (Sigma-Aldrich, Deisenhofen, 
Germany) as substrate to detect foci. Resulting foci 
were counted, and infectious centers (IC)/108 cells were 
calculated.

Binding antibody ELISA
For the analysis of F-MuLV-binding antibodies, Max-
iSorp ELISA plates (Nunc, Roskilde, Denmark) were 
coated with whole F-MuLV antigen (5 µg/ml). After coat-
ing, plates were blocked with 10% fetal calf serum in PBS, 
and incubated with plasma dilutions. Binding antibodies 
were detected using a polyclonal rabbit-anti-mouse HRP-
coupled anti-IgG antibody and the substrate tetrameth-
ylbenzidine (TMB+; both Dako Deutschland GmbH, 
Hamburg, Germany); absorption at 450  nm wavelength 
was analysed after addition of an equal volume of 1 N 
H2SO4.

Tetramer staining of F‑MuLV‑specific CD8+ T cells
F-MuLV-specific CD8+ T cells were analysed in periph-
eral blood 2  weeks after immunization. Erythrocytes 
were lysed, and cells were stained with PE-coupled MHC 
I tetramer (containing the H-2Db restricted F-MuLV gag-
leader epitope AbuAbuLAbuLTVFL in which cysteine 
residues of the original amino acid sequence GagL85–93 
(CCLCLTVFL) were replaced by amino-butyric 
acid (Abu) to prevent disulfide bonding [61]; MBL, 
Woburn, MA), PerCP-anti-CD43, eFluor450-anti-CD8, 
BV510-anti-CD44 (Becton–Dickinson, Heidelberg, Ger-
many) and Fixable Viability Dye eFluor 780 (eBioscience, 
Frankfurt, Germany).

Data were acquired on an LSR II flow cytometer (Bec-
ton–Dickinson, Mountanview, CA) and analyzed using 
FlowJo software (Tree Star, Ashton, OR).

Intracellular cytokine staining
For the analysis of effector molecules of 
GagL85–93-specific CD8+ T cells, cells were stimulated for 
6 h in vitro with 1 µg/ml Abu-modified GagL85-93 peptide 
(AbuAbuLAbuLTVFL; Abu-modified from the original 
sequence CCLCLTVFL) in the presence of 2 µg/ml bre-
feldin A. Cells were stained with eFluor450-anti-CD8, 
PerCP-anti-CD43, BV510-anti-CD44, and FITC-anti-
interferon γ (IFNγ; Becton–Dickinson, Heidelberg, 
Germany).

Data were acquired on an LSR II flow cytometer (Bec-
ton–Dickinson, Mountanview, CA) and analysed using 
FlowJo software (Tree Star, Ashton, OR).

Statistical analyses
Statistical analyses were performed using the software 
SigmaStat 3.1 (Systat Software GmbH, Erkrath, Ger-
many), testing with Kruskal–Wallis One-Way Analysis 
of Variance on Ranks and Dunn’s multiple comparison 
procedure.



Page 8 of 9Bongard et al. Retrovirology  (2017) 14:28 

Authors’ contributions
NB and SW prepared vaccines, NB, DL, SW, MT and WB performed mouse 
experiments, NB, UD, MT and WB analysed data and wrote the manuscript. All 
authors read and approved the final manuscript.

Author details
1 Institute for Virology, University Hospital Essen, University Duisburg-Essen, 
Virchowstr. 179, 45147 Essen, Germany. 2 Department of Molecular and Medi-
cal Virology, Institute of Hygiene and Microbiology, Ruhr-University Bochum, 
Bochum, Germany. 3 Institute of Clinical and Molecular Virology, University 
Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlan-
gen, Germany. 

Acknowledgements
NB and DL were supported by the DFG-funded research training group 
RTG1949/1.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Mice used in this study were treated in accordance with the guidelines of the 
University Hospital Essen, Germany, the national law, and the Federation of 
European Laboratory Animal Science Association. The study was approved 
by the Northrhine-Westphalia State Office for Nature, Environment and Con-
sumer Protection (LANUV NRW).

Funding
This work was supported by Grants from the Deutsche Forschungsgemein-
schaft (TRR60/B4 to WB and UD, BA 4432/1-1 to WB, RTG1949/1 to MT).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 6 March 2017   Accepted: 20 April 2017

Additional files

Additional file 1: Figure S1. Experimental layout. CB6F1 mice were 
immunized with 25 µg plasmid DNA each encoding Leader-Gag, Leader-
Gag and Env, or Leader-Gag, Env and a cytokine. Antibody and CD8+ T cell 
responses were analysed two weeks after immunization. Three weeks after 
immunization, mice were challenged with 5000 SFFU FV, and plasma and 
spleen viral loads were analysed ten days and 21 days after FV infection, 
respectively.

Additional file 2: Figure S2. Immunization with cytokine-encoding vec-
tors alone. CB6F1 mice were immunized once with DNA plasmids encod-
ing cytokines as indicated; 25 µg of plasmid were injected intramuscularly 
followed by in vivo electroporation. Three weeks after immunization, mice 
were infected with 5000 spleen focus forming units FV. The development 
of splenomegaly was monitored by palpation of the spleen twice a week 
(A). Three weeks after FV challenge, mice were sacrificed and spleen 
weight (B) and viral loads in spleen cells were determined (C). Data were 
acquired in one experiment. The bars in (A) indicate the mean values, 
whiskers indicate the standard error of the means. Each dot (B, C) indicates 
an individual mouse, bars indicate mean (B) or median (C) values. The 
grey-bordered dots above the grey lines (B, C) indicate mice that were 
sacrificed before the end of the experiment due to severe disease devel-
opment; they were not included in data analysis. Data were analysed by 
Kruskall-Wallis One Way Analysis of Variance on Ranks and Dunn’s multiple 
comparison procedure; n.s. = not significant compared to unvaccinated 
mice (P > 0.05).
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