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Abstract:
Detecting sources of bias in transcriptomic data is essential to determine signals of Biological significance. We
outline a novel method to detect sequence specific bias in short read Next Generation Sequencing data. This
is based on determining intra-exon correlations between specific motifs. This requires a mild assumption that
short reads sampled from specific regions from the same exon will be correlated with each other. This has been
implemented on Apache Spark and used to analyse two D. melanogaster eye-antennal disc data sets generated
at the same laboratory. The wild type data set in drosophila indicates a variation due to motif GC content that is
more significant than that found due to exon GC content. The software is available online and could be applied
for cross-experiment transcriptome data analysis in eukaryotes.
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1 Introduction

Next-Generation sequencing technologies have had a transformative effect in Genomics [1] and Transcriptomics
(RNA-Seq) [2]. On the other hand, RNA-Seq remains susceptible to a variety of systematic biases. Some are
comparatively generic, such as library preparation protocols [3]; others are specific to the sequencing platform
[4], [5] (recently there has been attention drawn to cross-contamination in multiplexed samples [6] – the effect of
this on RNA-Seq studies remains to be seen); others due to differential expression and splicing analysis [7], [8],
[9]; finally there are biases due to assembly [10]. Disentangling these issues is difficult and it is clear that there
is a need for approaches to detect bias that are not dependent on, for example, differential expression analysis
or other types of analysis that are carried out at the end of the extensive pipeline of computational steps taken
to derive the data set.

Sequence-specific bias in the RNA-Seq data has already been identified – namely GC-content and dinu-
cleotide frequencies [11], [12] and motif content in hexamer primer regions [13]. In addition to this, transcript
length is also a confounding factor and should be taken into account [11].

With this in mind, we propose a novel method to detect possible sources of sequence-specific bias in short
read data. This is based on the observation that ideally the number of short reads around a region in an exon
will be correlated with short read counts in another region on the same exon. This approach is based on a
similar observation made for microarrays [14]. This approach requires assembly of the short reads to a reference
genome but does not require any further analysis steps.

All of the software developed for this paper is available on request or can be downloaded directly from
https://doi.org/10.5281/zenodo.801378.

2 Methods

2.1 Intra-Exon Motif Correlations

As discussed previously, a method that can quantify sequence specific biases in deep, transcript analysis is
necessary. Here we will describe a novel analysis method, based on analysing sequence motif correlations, that
employs the MapReduce formalism of Apache Spark [15] to quantify bias in next-generation sequencing (NGS)
Hugh P. Shanahan is the corresponding author.
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data at the exon level. This is necessary in order to provide the capacity to process the amounts of data typical
in transcriptomic datasets [16].

In an ideal transcriptomic data set mapped reads would be of sufficient length to span entire exons, and
would therefore be uniformly distributed across an exon (Figure 1, part A). However, RNA-Seq from NGS
generates short reads, the length of which is dependent on the sequencing platform, and as a result mapped
reads are typically not distributed uniformly across exons (Figure 1, part B) [17]. Furthermore the number of
mapped reads is a function of the number of fragments sequenced and the feature length (i.e. length of the
exon), for this reason a number of normalisation methods are used to quantify the number of mapped reads
to a feature such as Reads per Kilobase Million (RPKM) [18], and Transcripts per million (TPM) [19]. A review
of normalisation methods can be found in [20]. This method investigates the distribution of mapped reads in
large datasets.

Figure 1: (A) Ideal distribution of RNA-Seq reads mapped to an exon if the reads were contiguous and of sufficient
length. (B) Typical distribution of RNA-Seq reads mapped to an exon. Grey regions on the exon represent the CDS and
other colours represent the 5′cap, 5′UTR, 3′UTR and Poly-Adenylated tail (red, green, purple, blue) correspondingly.

One can estimate the number of reads required for this calculation. Typically one would require as a min-
imum 10 reads per motif site on an individual exon to establish a reasonable signal. Assuming coverage of
reads over an entire exon then one requires on average 10l/r reads per exon, where l is the average length of
an exon (approximately 200 bp, noted in Section 3) and r the average length of a read (approximately 50 bp).
As there are nearly 105 exons in D. melanogaster [21] then a minimum of 4 million reads are required. The data
sets discussed in this text have 12.9 million reads (wild-type) and 15.0 million reads (mutant) and hence satisfy
this.

Quantifying sequence-specific deviations in the distribution of mapped reads across an exon is achieved by
picking a short sequence motif – specifically motifs of length 4, which we refer to as 4-mers, e.g. GGGG,GGGA,
and so on. The choice of 4-mers is motivated at the end of this section. These can occur at various positions
within the sequence of the exon. Pairs of these motif occurrences are picked based on their distance apart from
each other within the exon and the number of overlapping reads covering each motif position in the pair was
counted (Figure 2). The distance between the motif pairs is termed the motif-spacing. Motif-spacings of 10, 50,
100 and 200 bp were chosen. In an ideal transcriptomic data set the counts for each motif in the pair would
be identical as reads mapped to the exon under inspection would be uniformly distributed and hence over all
such possible pairs in that transcriptome there would be perfect correlation. Noise and bias due to length of
the transcript will significantly reduce the correlation but if there is no sequence specific effect these averaged
correlations should not vary across different motifs.
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Figure 2: Quantification of read coverage using short pairs of sequence motifs (specifically 4-mers) within the reads
shown in yellow. The colours and designation are the same as in Figure 1. (A) Ideal distribution of RNA-Seq reads
mapped to an exon if the reads were contiguous and of sufficient length – motif-pairs show perfect correlation. (B) Typ-
ical distribution of RNA-Seq reads mapped to an exon – motif-pairs show variable correlation.

In the implementation of this approach discussed in this paper reads which are mapped across exons are
included in the analysis. It is key to note, however, that in this analysis the correlations being computed are
between motifs that lie on the same exon and hence alternative splicing effects are not considered here.

In order to thoroughly examine the effect of sequence-specific motifs on uniformity of read distribution the
Spearman’s rank correlation coefficient for all 4-mer motifs ranging from AAAA to GGGG (i.e. 44 combinations)
is computed. This choice of length of motif represents a trade-off. Specifically shorter lengths of motifs would
increase the computational size of the problem significantly as the number of instances of each motif grow
across the exon. On the other hand, larger lengths of motifs would significantly reduce the statistics and hence
increase the noise accordingly.

2.2 Using Spark as a Computational Framework

The implementation of this analysis method comprises of two main phases (depicted in Figure 3). In the first
phase, motif count and position information is distilled for all exons in the sam reads input tuple S. All reads in
S must first be partitioned by exon, and the occurrences of the motif in the read sequence sk and their positions
counted. This is carried out using the MapReduce formalism on the Apache Spark platform. Details of the
implementation of MapReduce, Spark and the Hadoop computational ecosystem can be found elsewhere [22],
[23], [24].
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Figure 3: Overview of method for quantifying sequence-specific deviations in read distribution. Phase I, the distributed
phase, comprises 3 map steps and a reduce step on Apache Spark, with intermediate data being stored on HDFS. Phase
II, the non-distributed phase, counts analysis phase utilises raw motif count and position data generated by phase I,
which has been stored on the local file system.

The key point to note is that computations revolve around simple data structures called tuples. These are
ordered lists; the simplest of which is a key-value pair. Defining k as the key and v as the value then the tuple
in this case is written in the form 〈k,v〉. We note that typically k is a string which acts as an identifier. For exam-
ple, one key we used was a string constructed from the start and end position, recorded in absolute genomic
positions with respect to the chromosomes, e.g. the key “00024790580002481026” is constructed from positions
“2479058” and “2481026”. Sets of N tuples of this type are described as ⟨𝑘, 𝑣⟩u�

u�=1. The value v can be a more
complex data type. In addition tuples can be composed of keys with a specified list of values.

The Map step, in general, implements a function which converts a tuple into a set of other tuples, i.e.

⟨𝑘, 𝑣⟩ → ⟨𝐼u�, 𝑤u�⟩u�
u�=1, (1)

i.e. a tuple which is a simple key-value pair is mapped to a set of key-value pair tuples.
The Reduce step converts a tuple composed of values with the same key into a single key-value tuple, i.e.

⟨𝑘, 𝑣1, … , 𝑣u�⟩ → ⟨𝐼, 𝑊⟩. (2)

With these decompositions, the analysis of tuples can be massively parallelised. In this case, this analysis re-
quires 3 map steps and a reduce step.

The MapReduce steps are daisy-chained such that the output of one MapReduce step is the input of the
next step until the final reduce step. The order and function of these steps is outlined in Table 1.

Table 1: MapReduce steps employed in the distributed phase I of our analyses method.

Name of step Designation Purpose

1. GTF-SAM map μS Partitions reads in S by exons in G
2. MOTIF map μM Returns a set of positions in which the

motif occurs in the read
3. VECTOR map μV Maps each occurrence of the motif

with a value of 1
4. MOTIF reduce ϱM Aggregates counts for the motif at

given positions in the exon

4
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Phase I utilises as input widely-used transcriptomic data file formats: SAM aligned reads and GTF genome annotation (which we
represent at tuple sets S and G respectively) and yields distilled motif counts data Cn,m comprising of exon, position of motif and count
for each exon and each motif. Data in Cn,m is then processed by a non-distributed phase II to compute correlations which can quantify
sequence-specific deviations in the distribution of mapped reads across exons.

The first map step is μS map which partitions reads by exon. This utilises the annotation data (stored in the
tuple G) and returns a key for the exon the read is mapped to (mapping occurs prior to our analysis by the
read-alignment software). After application, the output of the μS map step are the partitioned reads E. E is a list
of key-value pair tuples comprising of the exon-key (which we discuss later in this section) and the raw read
data as the value, and is defined below:

𝐸 = ⟨𝑒, 𝑆(𝑒)⟩u�
u�=1 (3)

The second map step μM takes a read and returns an exon key e and vector P of the positions in which the
motif occurs for that exon. The third map step μV and final reduce step ϱM transform and aggregate the data
by exon en,m, position qn,m and count zn,m. This processing yields tuple Cn,m, which is the final output from the
distributed phase, where q is the motif position on the exon e and z is the count of motifs overlapping position
q. The indices n, m are the indices of the count tuple and 4-mer motif on a given exon e respectively. Cn,m is
defined below:

𝐶u�,u� = ⟨𝑒u�,u�, 𝑞u�,u�, 𝑧u�,u�⟩ (4)

Counts in Cn,m that are in the lowest quartile (typically 2) are discarded to reduce noise. Each set of counts is
of the overlapping motif m at positions separated at a spacing of d bp on the exon with a tolerance t of ±2 bp
for 10 and 50 spaced motifs, and ±4 bp for 100 and 200 bp spaced motifs. The resulting motif-pair counts tuple
Wn,m takes the form below:

𝑊u�,u� = ⟨𝑒, 𝑞u�,u�, 𝑣u�,u�, 𝑞u�,u�, 𝑤u�,u�⟩ where 𝑞u�,u� = 𝑞u�,u� + 𝑑 ± 𝑡. (5)

where vn,m, wn,m are the counts in the motif-pair for motif m on each exon e at a fixed separation of d bp.
With this tuple, correlations for each motif are computed over all exons. In order to probe the effect of the

GC content of the exon, the GC content of each exon is estimated by computing the average GC content of all
the reads that have overlap with each exon (i.e. using E). Cn,m is partitioned into bins of varying GC-content.

2.2.1 Computing Correlations

The tuple Wn,m carries all the pairs of counts vn,m and wn,m of short reads in an exon that have overlap with a
given motif m at two positions on the exon that are a specific spacing apart, as outlined in Figure 2. Hence one
can compute the corresponding paired ranks of the counts for each motif m and compute the Spearman’s rank
correlation coefficient.

3 Results

In order to test this approach we used RNA-Seq data generated from the eye-antennal imaginal discs of D.
melanogaster. This data set is composed of wild type and the homozygous glass mutant gl[60j] [25] using Illu-
mina HiSeq 2000’s. This data is deposited at GEO with the ID GSE39781. The data was also assembled previ-
ously using TopHat V2 [26] using default settings. In this analysis one replicate from each case was used.

The data quoted here is for a spacing of 200 bp. In Figure 4 a histogram of exon lengths for D. melanogaster
is plotted (data derived from version 6.15) of the Exon Fasta entries of Flybase [21]. Over 50% of the exons have
a length that is greater than 200 bp.

5

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Alnasir and Shanahan DE GRUYTER

Figure 4: Histogram of exon lengths. The horizontal scale is logarithmic.

In the supplementary materials, equivalent data in Section 3.1 and Section 3.2 is shown for the other sepa-
rations and the picture is largely the same.

3.1 Motif Correlations

In Table 2 the motifs with highest and lowest 10 Spearman’s rank correlations are listed for the wild type and
mutant data.

Table 2: Lowest and highest correlations for motifs in wild-type and Glass mutant data with a separation of 200 bp using
Spearman’s rank correlation.

Wild-type Glass mutant

Motif Correlation Motif Correlation

11*Lowest
 GGGG 0.047 GGGT 0.009
 CCCC 0.076 AGGG 0.016
 CCCG 0.077 ACCC 0.030
 GCCC 0.083 GCCC 0.040
 ACCC 0.088 CCCT 0.042
 CCCT 0.090 GGGC 0.048
 CGGG 0.108 CGGG 0.054
 GGGC 0.109 CCCA 0.054
 GGGA 0.121 TGGG 0.057
 CGCG 0.125 TCCC 0.063

11*Highest
 CGTG 0.616 CTTG 0.636
 CAAG 0.611 CACT 0.618
 CTTA 0.607 CAGT 0.609
 CTTG 0.606 ACTG 0.605
 TACG 0.606 CTCG 0.588
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 CACT 0.602 AGTT 0.584
 GTAC 0.600 CAAG 0.582
 ACGT 0.599 CGAT 0.581
 AGTC 0.597 TCGT 0.573
 CTAC 0.595 ATTG 0.566

A number of observations can be drawn from this data. In the first instance there are a very wide range of
correlations in both data sets. The outliers in the wild-type and mutant data with low correlations tend have
to higher GC-content with repeats. These can still indicate statistically significant relationships but the overall
trend of small correlations for this class of motifs is noticeable. The wild-type and mutant high outliers on the
other hand have similar correlations and a lower GC content with little or no repeats (there are no repeats longer
that 2 and those are composed of A or T). This picture is borne out at the other spacings examined which are
listed (along with their statistical significance) in the Supplementary Information.

3.2 GC Content of Motifs Versus GC Content of Exons

As noted previously, there is a clear effect on estimated expression levels due to GC content and dinucleotide
frequencies [11], [12]. As outlined in Section 2.2 the raw count data was sub-divided as a function of the GC-
content of the motif and exon and correlations recomputed. In Figure 5 boxplots are drawn of the resulting data.
In (A) of Figure 5 it can be seen that there is a notable variation of the correlation as a function of the GC content
of the motif in the wild-type data set. On the other hand, no variation can be seen in (B) with the variation of
the exon GC content indicating that there is an effect is due to the motif rather than the overall GC content of
the exon. In (C) and (D) we see no variation for the mutant-type data set. We note also that the correlations for
the mutant data in (C) and (D) are significantly smaller than those in (A) and (B).

Figure 5: Comparison of correlations as a function of Motif and Exon GC content. The data exhibits a wider spread of
correlations as each data point is based on data that has been binned as a function of Motif and Exon GC content.

A similar pattern occurs for the other spacings used in this analysis which are listed in the Supplementary
Information.
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4 Conclusions

In this paper we have proposed a novel method to probe sequence-specific biases in short read RNA-Seq data.
The approach is based on the assumption that short reads from one region on an exon will be correlated with
short reads from another region of the same exon. The short reads must be assembled with a reference genome
but requires no further pre-processing. The assembly is used to identify which short reads overlap with the
position of motifs (in this case of length 4) within all exons. In this respect, this could be obviated further by
using motif identification approaches outlined in [27].

We have presented an initial analysis of two data sets drawn from D. melanogaster [25]. In this case we have
shown that both data sets exhibit a bias that is dependent on GC content, namely in the motifs that exhibit the
lowest correlations for both the wild-type and mutant data. The effect appears not to be specific to particular
sequences – as we can see in Table 2 the motif GGGG and CCCC have the lowest correlations in the wild-type
data but do not appear in the ten lowest correlations for the mutant data. Outliers with low correlations may
still represent a statistically significant relationship between the counts of overlapping reads with a specific
motif on an exon with read counts of the same motif on another site on the same exon a specific distance apart.
On the other hand, when we distinguish the effect of GC content of the exon and motif there is evidence that the
wild-type data set exhibits bias that is specific to the GC content of the motif rather than the overall GC content
of the exon and the there is no noticeable effect for the mutant data set and more specifically, the correlations are
significantly smaller for the mutant data set. These effects are largely independent of changing the separation
between occurrences of motifs.

It is important to note the consequences of this. These are two RNA-Seq data sets that have been generated
in the same lab on the same species. Hence it is reasonable to assume that the protocols to prepare the sample
and performing the sequencing are the same. Furthermore the data sets are gathered from the same type of
tissue. There will be differences in the transcriptome because of the genetic perturbation; however we expect
only a fraction of changes in expression and splicing. In the same respect, multi-mapped reads, as outlined in
[28], [29], may represent a source of bias if reads map to many locations but are only recorded in the above
count data in one location. However, as we expect only a fraction of the transcriptome to be perturbed the
difference between them, the changes in correlations should remain overall relatively small. What is observed
are changes in correlations that represent a much more significant change in the distribution of the short reads
between these two data sets. Hence there is a source of variance that is unaccounted for between these data
sets.

Beyond this present study, the method described in this paper could potentially be used as a tool to more
specifically probe the biases in RNA-Seq data (apart from the differential expression and splicing analysis)
individually with relevant data sets.
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