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 Long-Lasting Impact of Early Life 
Immune Stress on Neuroimmune 
Functions  
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 Fever Results from a Cross Talk between the 

Immune and the Nervous System 

 Fever is often confused with hyperthermia. While hy-
perthermia refers to a passive increase in body tempera-
ture, fever is the result of a regulated increase in the ther-
moregulatory set point  [1] . Several studies strongly sug-
gest that the thermoregulatory center is located in the 
preoptic region of the hypothalamus  [2, 3] . The most 
commonly used model of experimental fever involves a 
systemic injection of lipopolysaccharide (LPS), an active 
ingredient of the outer membrane of Gram-negative bac-
teria which activates immune competent cells  [4] . Upon 
LPS binding to its receptor complex composed of toll-like 
receptor 4 (TLR4) and CD14  [5–7] , a cascade of intracel-
lular signaling pathways is activated, culminating in the 
translocation of the nuclear factor κB (NFκB) from the 
cytoplasm into the nucleus  [8, 9] . NFκB binds to the pro-
moter regions of several proinflammatory genes includ-
ing interleukin (IL)-1β, IL-6, and tumor necrosis factor-α 
(TNF-α) and induces their expression  [10] . A large body 
of evidence suggests that the proinflammatory cytokines 
or their secondary signals access the fever-controlling re-
gion of the hypothalamus via either hormonal or neuro-
nal pathways  [11–13] . This immune-to-brain signaling 
leads to the induction of cyclooxygenase type 2 (COX-2) 
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 Abstract 

 Fever is one major cardinal sign of disease. It results from an 
intricate interplay between the immune system and the cen-
tral nervous system. Bacterial or viral infections activate pe-
ripheral immune competent organs which send inflamma-
tory signals to the brain and lead to an increase in body
temperature. The increased body temperature creates a 
conducive environment to optimize the body’s fight against 
the infection. A large body of experimental evidence sug-
gests that early life bacterial or viral infections can lead to
a long-lasting impact on this natural febrile response. The 
early life pathogenic encounter heightens the hypotha-
lamic-pituitary-adrenal axis response, dampens the innate 
immune system, and consequently reduces the febrile re-
sponse to a subsequent immune challenge during adult-
hood. This ‘programming’ effect operates only when such 
early life immune challenges occur during a critical window 
of either prenatal or postnatal development. In this review, 
the mechanisms underlying the long-lasting impact of peri-
natal immune challenge on adult fever are addressed. 
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within the preoptic area of the hypothalamus  [14, 15] . 
COX-2 is the rate-limiting enzyme for the synthesis of 
prostaglandin of the E 2  series (PGE 2 ). Once produced, 
PGE 2  binds to its E-prostanoid receptor type 3 (EP3) lo-
cated in the preoptic area of the hypothalamus  [16–18] . 
PGE 2 -EP3 interaction leads to a reduced GABAergic in-
hibitory tone and an enhanced glutamatergic stimulatory 
effect on heat production from brown adipose tissue  [19] . 

  While the proinflammatory cytokines are involved in 
the initiation of fever, they also activate an antipyretic 
pathway via a concerted action on the hypothalamic-pi-
tuitary-adrenal (HPA) axis  [10, 20, 21] . Cortisol (corti-
costerone in rodents), the end product of HPA axis activ-
ity, is known to dampen inflammation and its resulting 
febrile response  [22–24] , likely via an inhibitory action on 
the NFκB signaling pathway  [25] . In addition to the anti-
pyretic effect of cortisol, anti-inflammatory cytokines 
such as IL-4 and IL-10  [26–29]  and neuropeptides such 
as vasopressin are also known as endogenous antipyretics 
 [30–32] .

  Neonatal Immune Challenge Alters Adult Fever 

 Fever is regarded as a malaise that needs to be ‘treated’. 
However, it is now accepted that fever is an adaptive re-
sponse to pathogens. It creates a conducive environment 
to help the immune system fight off the infection  [1, 33] . 
Thus, any alteration in the ability to mount an appropri-
ate febrile response could have a negative health impact. 
A large body of evidence strongly suggests that early life 
experience with pathogens could ‘reprogram’ the febrile 
response to pathogens encountered during adulthood. 

  The indication that early life immune challenge could 
alter the febrile response in adults stemmed from a series 
of studies showing that injection of a mild dose of LPS 
into neonatal rodents leads to an enhanced HPA axis ac-
tivity during adult life  [34–36] . Because corticosterone, 
the end product of HPA axis activity, dampens fever, it 
was hypothesized that a neonatal immune challenge 
could alter the adult fever response. Indeed, LPS admin-
istration to rats during the neonatal period led to a damp-
ened febrile response to LPS when these animals reached 
adulthood  [37–42] . The programming effect of an early 
life immune challenge on fever seems to be dependent on 
the developmental stage at which the immune system was 
initially mobilized. LPS injection on either postnatal day 
(PND) 7 or PND28 did not alter adult LPS fever, but ad-
ministration of LPS on PND14 or PND21 attenuated 
adult LPS fever  [43] . Interestingly these attenuated febrile 

responses were associated with blunted LPS-induced 
COX-2 expression in the fever-controlling regions of the 
hypothalamus  [40, 43] .

  These long-lasting effects were also accompanied by 
an enhanced, albeit transient, adult HPA axis responsive-
ness to LPS. This enhanced HPA axis responsiveness was 
lost when adult animals were subjected to adrenalectomy 
combined with a constant supply of physiological doses 
of corticosterone or when adult rats were given RU486,
a glucocorticoid receptor antagonist  [39] . Similarly, the 
heightened HPA activity led to attenuated levels of circu-
lating proinflammatory cytokines (IL-β, IL-6, and TNF-
α)  [39]  and to reduced levels of their gene expression in 
the hypothalamus  [44] , likely through a reduced activity 
of the NFκB signaling pathway  [39] . These attenuated cy-
tokine responses were also abolished by either adrenalec-
tomy or blockade of glucocorticoid receptors  [39] . Thus, 
it seems that the long-lasting impact of an early life im-
mune challenge on the adult febrile response is strongly 
linked to the heightened HPA responsiveness.

  Homotypic versus Heterotypic Stimulations 

 The programming effect of neonatal immune chal-
lenge is not limited to bacterial LPS. In fact, early life ex-
posure to the viral mimetic polyinosinic:polycytidylic 
acid (Poly I:C), a TLR3 activator, also dampened adult 
Poly I:C-induced fever and resulted in an upregulated 
HPA axis response to TLR3 activation during adulthood 
 [37] . It is now clear that the HPA axis is at the center of 
the programming effects of TLR3 and TLR4 activations. 
Thus, one could assume that neonatal immune activation 
of TLR4 (with LPS) leads to a heightened HPA axis re-
sponsiveness and would consequently dampen the adult 
fever response to TLR3 activation and vice versa. This was 
not the case. Early life exposure to Poly I:C did not affect 
adult LPS-induced fever. Inversely, neonatal exposure to 
bacterial LPS did not affect Poly I:C-induced fever in 
adults  [37] . The requirement of this homotypic stimula-
tion is further supported by the lack of an LPS program-
ming effect on adult IL-1β-induced fever  [40] . In order to 
sustain this long-lasting programming effect on fever, it 
seems necessary that the same receptor (e.g. TLR3 or 
TLR4) should be activated at both neonatal and adult 
ages. Thus, these homotypic stimulations (LPS-LPS or 
Poly I:C-Poly I:C) effects may operate through a specific 
action on their own signaling pathways  [6, 9, 45] . Finally, 
it is interesting to note that early life injection of a non-
lethal dose of live  Escherichia coli  does not impact adult 
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LPS fever, but rather it leads to a prolonged adult fever 
induced by  E. coli   [46] . This apparent discrepancy is 
probably related to distinct acute inflammatory respons-
es triggered by LPS and live  E. coli   [47] . This distinct acute 
inflammatory response could be brought about by the ad-
ditional action of the different active components of  E. 
coli  (in addition to LPS) on different TLRs leading to dif-
ferent intracellular signaling pathways and gene expres-
sion.

  Prenatal Immune Challenge and the Innate Immune 

Response 

 Prenatal immune challenge also results in altered HPA 
axis activity in adult offspring  [48] , which could impact 
the adult febrile response. Few studies have addressed this 
question. LPS injection in sheep during the last period of 
pregnancy (during the last month of gestation) increased 
corticosterone levels and dampened their eyes’ tempera-
ture response to a subsequent LPS injection at a juvenile 
age  [49] . Similarly, adult offspring of pregnant guinea 
pigs given repeated LPS injections in the last phase of 
pregnancy showed a reduced LPS-induced fever 3 h after 
LPS administration  [50] . Surprisingly, data on the long-
lasting effects of prenatal immune challenge in rats were 
missing. We recently explored the possibility that prena-
tal immune challenge impacts the adult rat febrile re-
sponse. LPS administration to dams on gestational day 
(GD) 15 resulted in a significant reduction in LPS fever in 
adult offspring. Such an effect was absent if the dams were 
given LPS on either GD12 or GD19. Interestingly, the 
adult corticosterone response to LPS was transiently but 
significantly enhanced while COX-2 induction in the fe-
ver-controlling region of the hypothalamus was reduced 
specifically in offspring born to dams given LPS on GD15 
 [51] . 

  It is unclear whether this enhanced corticosterone re-
sponse would lead to a dampened production of inflam-
matory cytokines. However, serum levels of IL-1β, IL-6, 
and TNF-α induced by LPS as well as LPS-induced mRNA 
of inflammatory cytokines in the brains of 3-week-old 
rats were reduced in those born to dams given LPS on 
GD18  [52] . Repeated prenatal LPS injections (on GD16, 
GD18, and GD20) also resulted in reduced LPS-induced 
TNF-α, but no significant change in LPS-induced IL-1β 
was observed  [53] . Thus, the dampened innate immune 
response in adult offspring born to immune challenged 
dams during pregnancy could underlie the reduced fe-
brile response.

  More than Just Fever Programming 

 A substantial amount of knowledge has been accumu-
lated on the long-lasting impact of perinatal immune chal-
lenge on many physiological parameters. Aside from the 
HPA axis alteration, perinatal immune challenge has 
broader effects on brain development and plasticity. Ex-
perimentally, early life immune stimulation has been 
shown to impact several pathophysiological parameters 
such as alteration of pain perception  [54] , impairments in 
learning and memory  [55–57] , brain cell death secondary 
to ischemia  [58] , loss of dopaminergic neurons in the ni-
grostriatal brain area (a phenomenon strongly associated 
with Parkinson’s disease)  [59, 60] , susceptibility to sei-
zures  [61] , exacerbation of experimental colitis  [62] , and 
suppression of experimental autoimmune encephalomy-
elitis, an experimental model of multiple sclerosis  [63] . 
Despite this large amount of experimental evidence on the 
long-lasting and profound impact of early life immune 
challenge, we still do not know how these ‘imprinting’ 
processes are triggered, nor do we have a good under-
standing of how they last throughout life. More research 
is needed to explore the mechanisms through which an 
early life immune challenge leaves a permanent patho-
physiological ‘trace’ in developing brains. One such prom-
ising research avenue is the lasting nongenomic modifica-
tion termed epigenetic  [64–66] . Indeed, early life challeng-
es such as stress and poor nutrition or levels of maternal 
care could ‘permanently’ turn on or off some genes via 
acetylation or methylation of their promoter regions  [67–
72] . It is conceivable that a permanent alteration in the 
expression of such genes could form the basis for a sus-
tained change in the set point of different physiological 
parameters and could explain the lasting impact of early 
life experiences on brain function and plasticity  [65, 73, 
74] . Interestingly, some of these epigenetic modifications 
could be ‘passed on’ to offspring, thus allowing these ge-
netic modifications to potentially last into future genera-
tions for, perhaps, their adaptive values  [75, 76] . Whether 
an early life immune challenge exerts its long-lasting ef-
fects via epigenetic modifications is still an open question. 

  Conclusion 

 Fever is an adaptive response to infection. Any altera-
tion of the febrile response can lead to deleterious effects. 
While exposure to pathogens invariably leads to altera-
tion of the thermoregulatory set point, the magnitude of 
the fever response can be permanently programmed by 
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early life exposure to viral and bacterial pathogens. This 
programming effect occurs during both pre- and postna-
tal periods when the brain areas involved in thermoregu-
lation are emerging and/or maturing. It has been repeat-
edly observed that early life exposure to pathogens per-
manently heightens HPA axis activity. Aside from its 
impact on the febrile response, this enhanced HPA axis 
contributes to a myriad of pathophysiological conditions. 
Future studies should explore whether the programming 
effects of early life immune challenge are sustained by epi-
genetic modifications of genes required for the thermo-
regulatory response (e.g.  cox-2 ) or are due to permanent 
plastic changes in the brain areas/structures involved in 
the neuroimmune responses.
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