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Abstract: Frequent bacterial/fungal infections and occurrence of antibiotic resistance pose increasing
threats to the public and thus require the development of new antibacterial/antifungal agents and
strategies. Carbon dots (CDs) have been well demonstrated to be promising and potent antimicrobial
nanomaterials and serve as potential alternatives to conventional antibiotics. In recent years, great
efforts have been made by many researchers to develop new carbon dot-based antimicrobial agents
to combat microbial infections. Here, as an update to our previous relevant review (C 2019, 5, 33), we
summarize the recent achievements in the utilization of CDs for microbial inactivation. We review
four kinds of antimicrobial CDs including nitrogen-doped CDs, metal-containing CDs, antibiotic-
conjugated CDs, and photoresponsive CDs in terms of their starting materials, synthetic route,
surface functionalization, antimicrobial ability, and the related antimicrobial mechanism if available.
In addition, we summarize the emerging applications of CD-related antimicrobial materials in medical
and industry fields. Finally, we discuss the existing challenges of antimicrobial CDs and the future
research directions that are worth exploring. We believe that this review provides a comprehensive
overview of the recent advances in antimicrobial CDs and may inspire the development of new CDs
with desirable antimicrobial activities.

Keywords: antibacterial; bactericidal; disinfection; carbon nanodots; carbonized polymer dots

1. Introduction

Owing to the long-term use and overuse of antibiotics, pathogens have become resis-
tant to almost all existing traditional antibiotics by mutating or acquiring drug-resistant
genes from other organisms. It is urgently necessary to develop novel effective antimicro-
bial compounds as potent alternatives to the conventional small-molecule antibiotics to
address the issue of microbial drug resistance. The great advancement of nanoscience and
nanotechnology has offered a new solution for the development of antimicrobial materials.
Several types of nanomaterials are known to exhibit antibacterial properties. Particularly,
inorganic metal and metal oxide nanoparticles have been intensively investigated for their
potential use as antimicrobial agents [1,2]. Although these metal (e.g., Au and Ag) and
metal oxide (e.g., Fe2O3, CuO, and ZnO) nanoparticles possess antimicrobial activities, the
release of metal ions may cause nonspecific biological toxicity, which urgently requires the
development of safer antimicrobial nanomaterials [3,4]. Among the large variety of antimi-
crobial nanomaterials, carbon dots (CDs) have received ever-increasing attention, mainly
due to their easy preparation and functionalization, great water dispersity, and satisfactory
biocompatibility. One appealing merit for CDs is that their property and function can be
easily manipulated during the synthesis or post-modification stage, which is highly useful
for antibacterial applications. CDs are zero-dimensional carbonaceous nanoparticles with
sizes no more than 20 nm, also termed “carbonized polymer dots”, “carbon quantum dots”,
or “carbon nanodots” [5–11]. CDs can be prepared from a wide variety of natural materials
such as biomass and waste, and a huge array of chemical agents [12,13]. There are two
well-known CD preparation strategies: bottom-up strategy and top-down strategy. The
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synthetic approaches for CDs include hydrothermal/solvothermal reaction, pyrolysis, soni-
cation, microwave irradiation, etc. [12]. The broad applications of CDs in sensing [12,14–16],
optoelectronics [17], energy [18], catalysis [12,19], and nanomedicine [20–24], have been
demonstrated since their discovery in 2004 [25].

Currently, three antimicrobial mechanisms have been reported for CDs, including
cell wall/membrane disruption, reactive oxygen species (ROS) generation, and DNA dam-
age [23]. The inhibitory action of CDs on microorganisms depends on the composition, size,
shape, and surface chemistry of CDs. It is extremely difficult to explain the antimicrobial
mechanisms of CDs without performing careful structural characterizations of the CDs.
Specifically, the catalytic activity, the crystallographic structure, the surface state (defect or
functionalization), and charge transfer are important factors that contribute to the antimi-
crobial activity of CDs. However, currently, except for the several studies that mentioned
the effect of surface functionalization on the antimicrobial activity of CDs [7,24,26], detailed
evaluations of the other factors are still lacking in the current CD-based antimicrobial
studies. As a result, more attention should be paid to the investigations of the effect of the
other factors on the antimicrobial activity of CDs in the future.

In 2019, we have reviewed the advancements of CDs in sensing and killing microorgan-
isms in terms of their preparation, functionalization, toxicity, and underlying antimicrobial
mechanism [16]. Nevertheless, the past three years have witnessed the booming applica-
tions of CDs in the antimicrobial field. Hence, an update on this topic is essential to embrace
the latest progress in this field. Numerous CDs have been reported for antimicrobial therapy
in recent years, and they can be classified into four types including nitrogen-doped CDs,
metal-containing CDs, antibiotic-conjugated CDs, and photoresponsive CDs (Scheme 1).
We discuss their raw materials, synthetic approaches, modification methods, antimicrobial
abilities, and the related antimicrobial mechanisms if available in detail below. Furthermore,
we also introduce the advances in the applications of the antimicrobial CDs in industry
and medicine. Finally, we discuss the current limitations of antimicrobial CDs and propose
some research directions.
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industrial applications.

2. Antimicrobial CDs
2.1. Nitrogen-Doped CDs
2.1.1. Nitrogen-Doped CDs Derived from Biomass

When we prepared our previous review in 2019, a large number of fluorescent CDs
synthesized from different natural sources had been harnessed for microbial imaging, but
few CDs derived from biomass had been utilized as antimicrobial agents [16]. Neverthe-
less, in the last three years, the development of green synthetic methods for fabricating
antimicrobial CDs from different natural carbon precursors has attracted considerable
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interest (Table 1), and such a method is facile, cost-effective, and eco-friendly. CDs prepared
from Lawsonia inermis (Henna) [27], oyster mushroom (Pleurotus species) [28], osmanthus
leaves [29], tea leaves [29], Ananas comosus waste peels [30], Impatiens balsamina L. stems [31],
Aloe vera leaves [32], medicinal turmeric leaves (Curcuma longa) [33], rosemary leaves [34],
sugarcane bagasse pulp [35], waste tea extract [36], waste jute caddies [37], Forsythia [38],
and Artemisia argyi leaves [39], have been reported to possess antimicrobial activities. It
is interesting to find that all these biomass-derived CDs contain the nitrogen element,
which might be from the proteins, animo acids, and nucleic acids in biomass. For instance,
Wang et al. synthesized CDs (ACDs) from Artemisia argyi leaves through a smoking sim-
ulation approach (Figure 1A) [39]. ACDs have spherical morphology with a diameter of
2–5 nm (Figure 1B). ACDs displayed selective antibacterial ability toward Gram-negative
bacteria like Escherichia coli (E. coli), ampicillin-resistant E. coli (ARE E. coli), kanamycin-
resistant E coli (KRE E. coli), Pseudomonas aeruginosa (P. aeruginosa), and Proteusbacillus
vulgaris (P. vulgaris), but not Gram-positive bacteria such as Staphylococcus aureus (S. aureus)
and Bacillus subtilis (B. subtilis) (Figure 1C). ACDs could kill 100% Gram-negative bacteria
at 150 µg mL−1. The antibacterial mechanism study demonstrated that ACDs could only
disrupt the cell walls of E. coli rather than those of S. aureus, since according to the high
magnification images in (d and h), only the E. coli cells showed shrunken and damaged
cell structures (Figure 1D). In addition, ACDs could change the secondary structure and
thus the activity of cell wall-related enzymes in Gram-negative bacteria. More interestingly,
ACDs could strongly prevent the biofilm formation of E. coli. The development of ACDs
is of great value for the treatment of infections associated closely with Gram-negative
bacteria. Saravanan et al. prepared CDs by one-step hydrothermal treatment of medicinal
turmeric leaves (Curcuma longa) [33]. The as-prepared CDs exhibited antibacterial activities
toward both Gram-negative bacteria (E. coli and Klebsiella pneumoniae (K. pneumoniae)) and
Gram-positive bacteria (S. aureus and Staphylococcus epidermidis (S. epidermidis)) due to their
release of ROS. Collectively, these naturally derived CDs from biomass represent potent
candidates as new antimicrobial agents to combat antibiotic-resistance of microorganisms.

Table 1. Nitrogen-doped CDs derived from biomass for killing microorganisms.

Raw Materials Preparation Method Size *
(nm)

Charge
(mV)

QY
(%) Ref.

Lawsonia inermis (Henna) Hydrothermal treatment 3–7 −39 28.7 [27]
Oyster mushroom Hydrothermal treatment 8 – – [28]
Osmanthus leaves Hydrothermal treatment 4–9 −20 – [29]

Tea leaves Hydrothermal treatment 3–7 −20 – [29]
Ananas comosus waste peels Hydrothermal treatment 2.4 ± 0.5 – 10.65 [30]
Impatiens balsamina L. stems Hydrothermal treatment 2–4.5 22.47 54 [31]

Aloe vera leaves Hydrothermal treatment 10–20 – – [32]
Medicinal turmeric leaves Hydrothermal treatment 1.5–4.0 −7 – [33]

Rosemary leaves Hydrothermal treatment 16.1 ± 4.6 – – [34]
Sugarcane bagasse pulp Hydrothermal treatment 1.7 ± 0.2 – 17.98 [35]

Waste tea extract Hydrothermal treatment 0.85 – 3.26 [36]
Waste jute caddies Hydrothermal treatment 6.05 – 14.5 [37]

Forsythia Microwave treatment 2.6 – – [38]

Artemisia argyi leaves Smoking simulation
method 2–5 – – [39]

* Size means the diameter distribution (or average diameter) of CDs which was determined from the corresponding
TEM result.
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Figure 1. Biomass-derived nitrogen-doped antimicrobial CDs. (A) Scheme depicting the synthesis
of ACDs. (B) Left: Transmission electron microscopy (TEM) image and high-resolution TEM image
(inset) of ACDs. Right: corresponding size distribution. (C) Effect of 150 µg mL−1 ACDs on
the growth of E. coli, kanamycin-resistant E. coli (KRE. coli), ampicillin-resistant E. coli (ARE. coli),
P. aeruginosa, P. vulgaris, S. aureus, and B. subtilis. (D) Scanning electron microscopy (SEM) images of
E. coli incubated without ACDs (a and b) and with ACDs (c and d), and S. aureus incubated without
ACDs (e and f) and with ACDs (g and h). ACDs could only disrupt the cell walls of E. coli rather than
those of S. aureus. (A–D) Reproduced with permission from [39]. Copyright 2020, The Royal Society
of Chemistry.

2.1.2. Nitrogen-Doped CDs Derived from Nitrogen-Containing Compounds

In addition to biomass, nitrogen-doped CDs can also be prepared from nitrogenous
compounds such as proteins [40], amino acids [41–44], natural amines [45–47], quaternized
compounds [48,49], polyethyleneimine (PEI) [50–53], diethylenetriamine (DETA) [45,54], 2,2′-
(ethylenedioxy)-bis(ethylamine) [55], p-phenylenediamine [56], and m-phenylenediamine [57]
for antimicrobial purposes.

Nitrogen-doped CDs have been obtained using protein (protamine sulfate) as the
raw material. Zhao et al. reported the simple and fast synthesis of multifunctional blue-
emitting protamine sulfate (PS)-based CDs (PS-CDs) by a one-step microwave-mediated
approach (Figure 2A) [40]. PS-CDs featured great antibacterial efficacy against S. aureus
with a minimum inhibitory concentration (MIC) of 25 µg mL−1 and methicillin-resistant
S. aureus (MRSA) with an MIC of 37.5 µg mL−1. Furthermore, PS-CDs displayed high
water-dispersity, low cytotoxicity, and excellent blood compatibility. The authors also
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revealed the antibacterial mechanism of PS-CDs: PS-CDs bound to bacteria by electrostatic
interaction, damaged cell membrane, entered the cells, and disrupted the normal survival
functions of the bacteria. To conclude, this work employs protein as a raw material to
prepare CDs that can be internalized easily by bacteria to realize bactericidal effect.
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Several CDs prepared from amino acids such as arginine [41], alanine [42,43], L-
tryptophan [58,59], cysteine [43,44], lysine [59], and arginine [59] have been reported to
possess antimicrobial activities. Suner et al. synthesized nitrogen-doped arginine CDs
(termed Arg CDs) utilizing citric acid as the carbon source and arginine as the amine
source by a microwave-mediated approach (Figure 2B) [41]. Arg CDs displayed an MIC of
6.250 mg mL−1 against S. aureus. To enhance the antimicrobial activity of Arg CDs, two
nanocomposites, Arg-Ag CDs and Arg-Cu CDs, were synthesized by generating Ag and
Cu nanoparticles (NPs) within Arg CDs. Arg-Ag CDs and Arg-Cu CDs exhibited an MIC of
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0.062 and 0.625 mg mL−1 against S. aureus, respectively. In addition, Arg-Ag CD possessed
0.125 and 0.312 mg mL−1 minimum bactericidal concentration (MBC) values against S.
aureus and E. coli, respectively. Pandey et al. prepared CDs from citric acid and β-alanine
through a microwave-mediated method [42]. The as-synthesized CDs repressed the growth
of diverse Gram-negative bacteria such as E. coli, Salmonella, Pseudomonas, Agrobacterium,
and Pectobacterium species.

Besides proteins and amino acids, other natural amines have been explored as pre-
cursors to construct antimicrobial CDs, such as histamine [45], cadaverine [45], putrescine
dihydrochloride [45], spermine tetrahydrochloride [45], L-glutathione [46], and spermi-
dine [47]. As an example, Hao et al. prepared positively charged CQDs (PC-CQDs) from
citric acid and L-glutathione (Figure 2C) [46]. PC-CQDs exhibited high antibacterial ac-
tivity against S. aureus, E. coli, P. aeruginosa, and MRSA. PC-CQDs strongly attached to
the bacterial cell surfaces due to their small size and the surface groups –NH2 and –NH,
entered the cells, and induced the conformational change of DNA and the production of
ROS, leading to the rupture of the bacterial cells. It is worth noting that PC-CQDs did not
cause detectable drug resistance or hemolysis. No drug resistance was observed in S. aureus,
E. coli, and MRSA incubated with PC-CQDs for over 30 days. Moreover, PC-CQDs were
deployed for the antibacterial treatment of mixed S. aureus- and E. coli-infected wounds
in rats with low in vivo toxicity, showing the same therapeutic effect as the traditional
antibiotic levofloxacin hydrochloride.

In addition to natural amines as introduced above, other nitrogen-containing agents have
also been chosen to prepare nitrogen-doped CDs as antimicrobial agents, including quater-
nized compounds [48,49], PEI [50–53], DETA [45,54], 2,2′-(ethylenedioxy)-bis(ethylamine) [55],
p-phenylenediamine [56], m-phenylenediamine [57], etc. Our group prepared quater-
nized CDs through one-step solvothermal treatment of glycerol and dimethyloctadecyl[3-
(trimethoxysilyl)propy]ammonium chloride (Si-QAC) for selective Gram-positive bacterial
inactivation (Figure 2D) [48]. The synthesized quaternized CDs could selectively interact
with the Gram-positive bacteria due to the distinct surfaces of Gram-positive and Gram-
negative bacteria. The quaternized CDs possessed a zeta potential of +33 mV, ensuring
their successful electrostatic interaction with negatively charged bacterial cells, while the
presence of long alkyl chains in the CDs enabled them to interact with the bacterial cells via
hydrophobic interaction. Therefore, the CDs could firmly adhere to (or insert into) the bac-
terial cell surface which changed the charge balance of the bacterial surface, resulting in the
inactivation of Gram-positive bacteria both in vitro and in vivo. At the same time, the CDs
featured strong fluorescence emission, which was utilized for fast Gram-type identification.
In this way, the CDs may hold the potential for treating Gram-positive bacteria-caused
infections. More interestingly, in a later study, we have demonstrated that the CDs showed
excellent biofilm penetration capacity due to their small size and could effectively inhibit
the biofilm formation and eradicate the formed biofilms [22]. Thus, the CDs represent a
highly efficient strategy to combat biofilm-involved infections. In another report, Li et al.
fabricated different types of polyamine-modified carbon quantum dots (CQDs) includ-
ing CQD600, CQD1w, and CQD2.5w, via simple hydrothermal treatment of citric acid and
branched PEI (bPEI) with different molecular weights [50]. CQD2.5w possessed higher
antibacterial and antibiofilm activities against S. aureus and E. coli than CQD1w and CQD600,
since the larger molecular weight of bPEI yielded a larger amount of protonated amines on
the surface of the CQDs, giving rise to enhanced electrostatic interaction between CQDs
and bacterial cells, and the longer surface corona of the CQDs making their penetration
into biofilms easier. Additionally, all the three CQDs had negligible cytotoxicity. However,
the reason why longer surface corona of CQDs can give rise to their easier penetration into
biofilm was not explained, which requires future investigation. Further, Zhao et al. devel-
oped nitrogen-doped CDs (NCQDs) as an antimicrobial nanoagent against Staphylococcus to
treat infected wounds [54]. NCQDs were made from D(+)-glucose monohydrate and DETA
by a heat fusion method. NCQDs displayed antibacterial activity toward Staphylococcus,
especially against MRSA. Transmission electron microscopy (TEM) analysis showed that
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NCQDs could damage the cell structures of S. aureus and MRSA, but not E. coli. NCQDs
exhibited the same therapeutic effect as vancomycin in the treatment of MRSA-infected
wounds with negligible toxicity to the main rat organs such as heart, kidney, liver, lung,
and spleen.

2.2. Metal-Containing CDs

There are different types of metal-containing CDs that can be used as antimicrobial
agents: metal ion-doped CDs [36,60–62], metal nanoparticle-decorated CDs [41,60,63–65],
CD/metal oxide nanocomposites [66–70], and CD/metal sulfide nanocomposites [71]. First,
CDs doped with metal ions such as Cu2+ [36] and Ag+ [60] have been explored as antimi-
crobial materials. Qing et al. reported water-dispersible Cu2+-doped CDs (Cu2+–CDs) for
antibacterial application [36]. Cu2+–CDs were prepared by one-step hydrothermal car-
bonization of cupric acetate monohydrate (Cu(Ac)2•H2O) and waste tea extract. Cu2+–CDs
showed an inhibitory effect on S. aureus with an MIC of 0.156 mg/mL. Moreover, Cu2+–CDs
possessed low cytotoxicity and appealing biocompatibility. Second, CDs can serve as re-
ducing and stabilizing agents to generate metal nanoparticles on their surface, forming
metal nanoparticle-modified CDs for killing microorganisms [41,60,63–65]. For instance,
antimicrobial silver nanoparticle-decorated CDs (CD-2) were prepared using a two-step
method, in which CDs (PEI-CD) were first obtained by hydrothermal treatment of PEI,
and Ag+ was then reduced to Ag NPs in the presence of formaldehyde and the resultant
Ag NPs were bound onto the surface of PEI-CD to produce CD-2 (Figure 3A) [60]. By
inducing membrane disruption and intracellular DNA/protein damage, CD-2 displayed
high and broad-spectrum antimicrobial activities against Gram-positive bacteria (S. aureus),
Gram-negative bacteria (E. coli, P. aeruginosa, and P. vulgaris), and fungi (S. cerevisiae), with
excellent biocompatibility. Third, CDs were integrated with metal oxide to form CD/metal
oxide nanocomposites [66–70]. As an example, Gao et al. fabricated CD/ZnO/ZnAl2O4
nanocomposites which possessed an excellent antibacterial property with antibacterial
ratios of 97% and 94% against S. aureus and E. coli, respectively [68]. Within the antibacterial
concentration range, the nanocomposites were nontoxic to human cells. As shown in
Figure 3B, the authors proposed a dual-mode antibacterial mechanism for the nanocompos-
ite. On the one hand, the binding of the CD/ZnO/ZnAl2O4 nanocomposites to the surface
of the bacteria blocked the channels of the bacterial nutrient supply from the environment,
accelerating apoptosis in the bacteria. On the other hand, the nanocomposites could gener-
ate singlet oxygen that damages DNA/RNA, proteins, and phospholipids in the bacterial
cells. Also, the presence of CDs in the nanocomposites resulted in strengthened electrostatic
interaction between the nanocomposites and the bacteria, and increased singlet oxygen
production, which enhanced the bacterial elimination effect of the nanocomposite. Lastly,
CD/metal sulfide nanocomposites have been constructed for combating microorganisms.
Gao et al. synthesized carbon quantum dots (CQDs) through aldol polymerization reaction
using acetone as the carbon source (Figure 3C) [71]. Then CQDs/Ag2S/CS nanocomposites
were prepared through an in situ growth method using polyvinylpyrrolidone (PVP) as the
crosslinking agent. The CQDs/Ag2S/CS nanocomposites exhibited excellent antibacte-
rial property against E. coli and S. aureus with an MIC of 0.1 mg/mL, and against MRSA
with an MIC of 0.25 mg/mL. The CQDs/Ag2S/CS nanocomposites strongly bound to
the surface of the bacteria, leading to the destruction of cell wall and cell membrane and
inducing the bacterial cell death (Figure 3C). Notably, no drug resistance was observed for
the CQDs/Ag2S/CS nanocomposites.
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from [68]. Copyright 2021, The Royal Society of Chemistry. (C) Scheme illustrating the formation of
CQDs/Ag2S/CS and its antibacterial effect. Reproduced with permission from [71]. Copyright 2021,
Elsevier Inc.

2.3. CDs Derived from Antibacterial Compounds (Including Antibiotics)

Antimicrobial CDs have also been developed by using traditional antibiotics and
common antibacterial compounds as the raw materials to trade the old for the new, such as
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kanamycin sulfate [72], levofloxacin hydrochloride [73,74], quaternary ammonium com-
pounds [22,48,49,75,76], and 2,4-dihydroxybenzoic acid [77]. Luo et al. prepared CDs
(termed CDs-Kan) from kanamycin sulfate by a one-step hydrothermal method [72]. CDs-
Kan were demonstrated to preserve the main bactericidal functional groups of kanamycin
like the amino sugar and amino cyclic alcohol, which ensured their good antibacterial
activity. Specifically, CDs-Kan inhibited the growth of E. coli and S. aureus with good bio-
compatibility. Wu et al. reported cationic levofloxacin-derived CDs (LCDs) with enhanced
antibacterial activities and low drug resistance (Figure 4A) [74]. LCDs were synthesized
from levofloxacin hydrochloride through a simple one-pot hydrothermal method. With
the preservation of the active groups from levofloxacin, LCDs featured notable bactericidal
activity against S. aureus and E. coli with an MIC of 0.125 µg/mL, which was lower than that
of levofloxacin hydrochloride. It is worth noting that LCDs displayed low drug resistance,
good aqueous dispersity, and outstanding biosafety, while retaining the broad-spectrum
antibacterial activity of levofloxacin. In addition to S. aureus and E. coli, LCDs could kill
other microorganisms including MRSA, Enterococcus faecalis (E. faecalis), S. epidermidis, Lis-
tera monocytogenes (L. monocytogenes), P. aeruginosa, and Serratia marcescens. LCDs could
enter the bacterial cells via electrostatic interaction between the positively-charged LCDs
and the negatively-charged bacteria. Once entering the bacterial cells, LCDs produced
ROS to destroy cell membrane and the normal state of bacteria, causing cell death. LCDs
were deployed for the treatment of bacteria-infected wounds and pneumonia in mice with
enhanced therapeutic efficacy without harming normal tissues as compared to levofloxacin.
Zhao et al. fabricated quaternary ammonium carbon quantum dots (QCQD) from 2,3-
epoxypropyltrimethylammonium chloride and diallyldimethylammonium chloride via
the hydrothermal reaction (Figure 4B) [75]. QCQD displayed admirable bactericidal effect
toward Gram-positive bacteria, including S. aureus, MRSA, E. faecalis, L. monocytogenes, and
S. epidermidis. QCQD also featured satisfactory biocompatibility as demonstrated by in vivo
and in vitro toxicity assays. Thus, QCQD were successfully utilized in the treatment of
MRSA-infected pneumonia in mice, prompting the regression of pulmonary inflammation
in the mouse lung. As revealed by the quantitative proteomics, the antibacterial ability
of QCQD could be attributed to the fact that QCQD might mainly act on ribosomes and
upregulate the proteins involved in RNA degradation, causing interference to the protein
translation, posttranslational modification, and protein turnover in bacterial cells.

Meanwhile, CDs can be employed as the carriers of existing antibiotics to realize the
controlled release of these antibiotics. Saravanan et al. prepared N@CDs by hydrother-
mal treatment of m-phenylenediamine (Figure 4C) [57]. N@CDs exhibited antibacterial
activities against E. coli and S. aureus with an MIC of 1 and 0.75 mg/mL, respectively.
Additionally, N@CDs were applied as nanovehicles for sustained time-dependent release
of the traditional antibiotic ciprofloxacin in the physiological condition.

2.4. Photoresponsive CDs
2.4.1. Photodynamic Therapy (PDT)

In PDT, photosensitive agents (photosensitizers) are sensitized by light in the pres-
ence of oxygen to generate ROS such as free radicals and singlet oxygen [78,79]. The
produced ROS can break DNA, inactivate enzymes, and oxidize amino acids, resulting in
cell necrosis/apoptosis. PDT represents a promising alternative to antibiotics in killing
microorganisms, because of its fascinating advantages such as high spatial controllability,
antibiotic resistance independence, and low cumulative toxicity. The photo-generated elec-
trons and holes of CDs that are related with PDT action mechanism entail various catalytic
processes [80]. Meanwhile, CDs have a relatively wide visible spectral region. These prop-
erties enable CDs to be promising antibacterial photosensitizers. After irradiation with light
of a given wavelength, some bare CDs can produce ROS that are capable of inactivating
microorganisms, and these CDs can thus serve as potent antimicrobial photosensitizers.
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properties and antibacterial mechanism. Reproduced with permission from [75]. Copyright 2020,
Elsevier Ltd. (C) Scheme showing the preparation of N@CDs for delivering the traditional antibiotic
ciprofloxacin to kill bacteria. Reproduced with permission from [57]. Copyright 2020, American
Chemical Society.



Pharmaceuticals 2022, 15, 1236 11 of 20

Beyond bare CDs fabricated from mushroom [81], graphite rods [82], and the polox-
amer Pluronic F-68 [83], as summarized in our previous review [16], more bare CDs have
been reported to possess intrinsic photodynamic characteristics, including graphitic carbon
nitride quantum dots (g-CNQDs) [84], red-emitting CDs (R-CDs) [77], CQDs constructed
from citric acid and 1,5-diaminonaphthalene by solvothermal reaction [85], nitrogen-
and/or sulfur-doped CDs derived from amino acids [43], nitrogen and iodine co-doped
CDs (N/I-CD) prepared by hydrothermal treatment of iohexol [86], metal-doped CDs such
as zinc-doped CDs [87], copper-doped CDs [88], and terbium-doped CDs [89]. Yadav et al.
constructed green-fluorescent g-CNQDs from melamine and ethylene diamine tetraacetic
acid (EDTA) sodium salt via a thermal polymerization method [84]. g-CNQDs could ef-
fectively produce superoxide and hydroxyl radicals with the irradiation of visible light,
eradicating ~99% E. coli and ~90% S. aureus at a concentration of 0.1 mg/mL. Moreover,
g-CNQDs featured low cytotoxicity—3.2 mg/mL g-CNQDs were nontoxic to fibroblast
cells. Liu et al. synthesized R-CDs through solvothermal treatment of 2,4-dihydroxybenzoic
acid (an organic bactericide) and 6-bromo-2-naphthol [77]. R-CDs possessed both intrinsic
antibacterial activity and antibacterial photodynamic activity toward multidrug-resistant
Acinetobacter baumannii (MRAB). R-CDs could effectively enter bacterial cells and bacterial
biofilms with few side effects on animal cells. Therefore, R-CDs were successfully utilized
for MRAB biofilm prevention and elimination as well as the treatment of MRAB-induced
infected wounds. No microbial drug resistance was observed when using R-CDs to kill
MRAB and MRSA. These findings demonstrated that R-CDs represent a potent antibacterial
agent for fighting against drug-resistant bacteria. Liu et al. fabricated zinc-doped CDs
(Zn-CDs) from citric acid, ethylenediamine, and zinc acetate by a one-step hydrothermal
method [87]. Zn-CDs produced ROS under blue light irradiation, showing bactericidal
effect toward S. aureus and Streptococcus mutans with negligible animal cell toxicity. Collec-
tively, the different types of CDs mentioned above can act as new types of photosensitizers
for photodynamic antibacterial treatment.

Besides being used as photosensitizers, CDs can be integrated with other photo-
sensitizers such as curcumin [90], black phosphorus (BP) nanosheets [91], TiO2 [92,93],
and ZnO [68,94,95] to afford photoresponsive nanocomposites. In these photosensitive
nanocomposites, CDs play different rols in obtaining improved antimicrobial PDT efficacy,
such as being used as drug carriers [90], enhancing the interaction of photosensitizers
with microorganisms [91,92], preventing the agglomeration of photosensitizers [92], or
increasing the light absorption and suppressing photogenerated electron–hole’s recombi-
nation [95]. For instance, Yan et al. developed a nano-PS system using CDs to deliver the
traditional photosensitizer curcumin (Cur) for enhanced antibacterial performance [90].
Zhang et al. decorated BP nanosheets with cationic CDs through in situ growth of CDs
from chlorhexidine gluconate on the surface of BPs, resulting in the formation of the
nanocomposite BPs@CDs (Figure 5A) [91]. Without light irradiation, BPs@CDs exhib-
ited antibacterial ability due to the electrostatic attraction between the bacteria and the
CDs on the surface of BPs@CDs. Under 660 nm laser irradiation, BPs@CDs produced
singlet oxygen, exhibiting outstanding photodynamic antibacterial capacity. Under 808 nm
laser irradiation, BPs@CDs displayed photothermal antibacterial activity. Accordingly, the
BPs@CDs exhibited synergistic intrinsic antibacterial activity, antibacterial PDT activity,
and antibacterial PTT activity toward both E. coli and S. aureus. In addition, BPs@CDs
were degradable with no noticeable cytotoxicity. Owing to their triple-mode antibacterial
capability, BPs@CDs were successfully deployed for the treatment of bacteria-associated
wounds with shortened wound healing time.
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The CD-involved antimicrobial PDT systems have been developed in the forms of dif-
ferent nanocomposites. Hydrophobic carbon quantum dots (hCQDs) with photodynamic
property made from the poloxamer Pluronic F-68 [83] were encapsulated in polymers such
as polydimethylsiloxane (PDMS) [96,97], polycaprolactone [98], and polyurethane [99],
and to construct light-triggered antibacterial nanocomposites in the form of slide [96],
nanofiber [98], and film [99]. For example, hCQDs were embedded into the PDMS polymer
matrix to generate hydrophobic CQDs/PDMS surface by a swelling-encapsulation-shrink
method [96]. The nanocomposite surface exhibited bactericidal activities against S. au-
reus, E. coli, and K. pneumoniae by producing ROS upon the excitation at 470 nm. More
importantly, the nanocomposite surface showed no toxicity towards NIH/3T3 cells.

2.4.2. Photothermal Therapy (PTT)

PTT eliminates microorganisms by hyperthermia generated from photothermal agents
when they absorb light. Only one kind of antimicrobial CDs with PTT capacity had been
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reported when we prepared the previous review. Since 2019, more CDs have been reported
for antimicrobial PTT [76,100,101]. Belkahla et al. produced CDs from glucose as the
precursor through the alkali-assisted ultrasonic irradiation approach [100]. The generated
CDs possessed the heat-producing capability under illumination at 680 or 808 nm and were
employed for photothermal treatment of E. coli. Yan et al. constructed a nanosystem termed
CDs-Tb-TMPDPA, which consisted of TMPDPA (4-(2,4,6-trimethoxyphenyl)-pyridine-2,6-
dicarboxylic acid, a two-photon ligand)-sensitized Tb3+ as a temperature-sensitive module
and CDs (prepared by microwave heating of citric acid and formamide) as a photothermal
antibacterial component [101]. The CDs were coordinated to Tb3+ that was further linked
with TMPDPA through coordination interaction. The authors demonstrated that the
nanosystem could be used for temperature detection based on the temperature-dependent
fluorescence intensity (I) ratio (I(Tb3+)/I(CDs)) and the fluorescence lifetime of CDs-Tb-
TMPDPA. Besides, the authors also realized E. coli growth inhibition by utilizing the
photothermal conversion property of CDs in CDs-Tb-TMPDPA via two-photon excitation
(660 nm). This work develops a multifunctional probe for dual-mode temperature detection
and antibacterial PTT under two-photon excitation.

Moreover, CDs-involved PTT can be integrated with other antimicrobial strategies
such as PDT [90,93] and chemodynamic therapy (CDT) [102] to achieve combined antimi-
crobial therapies. For instance, N, S-doped CDs with strong fluorescence were first prepared
from citric acid and thiourea by a one-step hydrothermal route, and was combined with
curcumin (Cur) to afford CDs/Cur (Figure 5B) [90]. In CDs/Cur, the ROS yield of Cur
could be enhanced through fluorescence resonance energy transfer (FRET), while the high
photothermal conversion efficiency of the CDs due to their strong light absorption was pre-
served. As a result, upon 405 nm visible light and near-infrared light irradiation, CDs/Cur
could yield ROS and a moderate temperature increase, which seriously damaged bacterial
cell surface, leading to synergistic PDT- and PTT-promoted antibacterial effects against
E. coli and S. aureus. Furthermore, CDs/Cur displayed low cytotoxicity and negligible
hemolytic activity, which ensured their practical application. In another example, Yan et al.
developed a nanocomposite termed FeOCl@PEG@CDs by coating poly(ethylene glycol)
(PEG) and CDs on iron oxychloride nanosheets (FeOCl NSs) [102]. The hydroxyl radical
(•OH) was generated from H2O2 activation by the redox cycle of ions on FeOCl NSs, and
the heat was produced from the CDs upon the irradiation at 808 nm, inducing the death of
S. aureus and E. coli. Further, the FeOCl@PEG@CDs were successfully applied in synergistic
chemodynamic and photothermal treatment of infected wounds.

As far as we know, because only several CDs have been reported for photo-assisted
antimicrobial uses, the lethal route was not carefully investigated. Commonly, researchers
just reported that bacteria treated with CDs can produce ROS or heat upon light irradiation
which can cause cell wall/membrane damage to kill bacteria. Thus, more studies should
be performed in the future to thoroughly investigate the underlying lethal mechanism of
CD-based antibacterial phototherapy.

3. Applications of Antimicrobial CDs in Medical and Industry Fields

CDs-involved antimicrobial strategies have been deployed in both medical and in-
dustry fields. In the medical field, antimicrobial CDs have been leveraged for coating the
surface of orthopedic implant materials [66], delivering drugs [24,57,103,104], and repairing
infected bone defects [47]. Moradlou et al. grew a thin film of CDs-incorporated hematite
(CQDs@α-Fe2O3) on a titanium substrate to yield Ti/CQDs@α-Fe2O3 [66]. CQDs were
prepared from graphite rods via an electrochemical method and used as nano-scaffolds for
the growth of CQD@α-Fe2O3 nanoparticles as core@shell nanostructures. The Ti/CQDs@α-
Fe2O3 samples exhibited sustainable antibacterial activity against S. aureus but not E. coli,
offering a way of using CDs to prepare antimicrobial materials for medical devices. In an-
other work, Geng et al. synthesized positively-charged CQDs (p-CQDs) through microwave
reaction of spermidine trihydrochloride, and prepared negatively-charged CQDs (n-CQDs)
via microwave reaction of 1,3,6-trinitropyrene (TNP) and sodium sulfite (Figure 6A) [47].
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The p-CQDs displayed effective antibacterial activity against multidrug-resistant (MDR)
bacteria and could realize the inhibition of biofilm formation, while n-CQDs notably pro-
moted bone regeneration. The nearly neutral p-CQD/WS2 hybrids were first fabricated by
depositing p-CQDs on WS2 nanosheets, and then coencapsulated with n-CQDs into the
gelatin/methacrylate anhydride (GelMA) hydrogel to obtain p-CQD/WS2/n-CQD/GelMA
hydrogel scaffold (Figure 6A). The implantation of p-CQD/WS2/n-CQD/GelMA hydrogel
scaffold in an MRSA-infected craniotomy defect model induced almost complete repair
of an infected bone defect with the new bone area of 97.0 ± 1.6% at 60 days. This work
proposes a CD-based strategy for developing biomaterials with both antibacterial and
osteogenic activities for the treatment of infected bone defects.
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Figure 6. (A) Schematic representation of the synthesis of a p-CQD/WS2/n-CQD/GelMA hydrogel
for regeneration of bone defects. Micro computed tomography (micro-CT) images of calvarial defects
treated with GelMA and p-CQD/WS2/n-CQD/GelMA hydrogels for 0 or 60 days were presented.
Reproduced with permission from [47]. Copyright 2021, Elsevier Ltd. (B) Scheme showing the
fabrication of a CQDs-coated PSF membrane for realizing the antibacterial action in the process of
forward osmosis. Reproduced with permission from [105]. Copyright 2020, Elsevier B.V.
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In the industry field, antimicrobial CDs have been utilized to construct thin-film
composite membranes for forward osmosis [105] and nanofiller [106], packaging mate-
rials [107,108], and lubricant additives [53]. Mahat et al. developed thin-film composite
membranes for forward osmosis by embedding CQDs derived from oil palm biomass into
polysulfone-selective layers, which were denoted as CQDs-PSF (PSF: polysulfone) [105].
The authors proved that the addition of CQDs into PSF membranes increased water flux
and improved antibacterial performance. In another study, Koulivand et al. constructed
antifouling and antibacterial nanofiltration membranes for efficient salt and dye rejection
by incorporating nitrogen-doped CDs (NCDs) to polyethersulfone (PES) using a phase
inversion technique [106]. The antibacterial NCDs were synthesized via hydrothermal
treatment of ammonium citrate dibasic. The obtained membrane exhibited improved pure
water flux and enhanced antifouling property. In addition, Kousheh et al. constructed a
nanocellulose film with antimicrobial/antioxidant and ultraviolet (UV) protective activities
for food packaging by introducing water-dispersible and photoluminescent CDs [107].
The antimicrobial CDs were synthesized from cell-free supernatant of Lactobacillus aci-
dophilus via a hydrothermal method. The as-synthesized CDs were embedded into bacterial
nanocellulose (BNC) film due to the hydrogen bonding interaction between CDs and the
carboxyl, hydroxyl, and carbonyl groups of BNC, leading to the formation of the CD-BNC
film. The CD-BNC film displayed a higher inhibitory activity toward Listeria monocytogenes
than E. coli. In addition to antibacterial activity, the introduction of CDs into the BNC
film also endowed the CD-BNC film with UV-blocking activity, fluorescence appearance,
and improved flexibility. The CD-BNC film could be used to fabricate nanopaper for
wrapping of food commodity and fabrication of forgery-proof packaging. In addition to
thin-film composite membranes and packaging materials, antimicrobial CDs have been
implemented as lubricant additives. Tang et al. fabricated CDs from PEG and PEI through
a hydrothermal approach [53]. The MICs of the CDs toward E. coli and S. aureus were
62.5 and 15.56 µg mL−1, respectively. Besides the antibacterial activity, the CDs featured
anti-friction property. The addition of 0.2% (wt) CDs reduced the mean friction coefficient
and wear volume of water-based lubrication by 59.77% and 57.97%, respectively. This
example suggests that CDs with antibacterial and anti-friction functions can be utilized as
an advanced lubricating additive, thus broadening the practical application of CDs.

4. Conclusions

As reviewed here, CDs are potent antimicrobial nanomaterials and represent promis-
ing alternatives to conventional antibiotics for the treatment of infectious diseases caused
by microorganisms. Nevertheless, several challenges still exist. First, the potential antibac-
terial capability and specificity of CDs are difficult to predict from their raw materials,
since it is unknown whether the antibacterial groups of raw materials can be retained
or there are newly formed antibacterial structures during the complicated CD formation
process. The CDs’ functional and biological characteristics are directly associated with
their core and particularly their surface’s functional groups, which are largely dependent
on the precursors and synthetic methods. Therefore, the structural analysis of CDs and
the clarification of the reaction mechanism of CDs are helpful to better predict the antibac-
terial activities of CDs. Second, the integration of CDs with other compounds such as
antibiotics, metal ions, hydrogels, and photosensitive materials to prepare new composite
materials with synergistic antibacterial effect represents an important research direction in
this field, which is definitely worth exploring in the future. Third, most antimicrobial CDs
possess high MICs, and usually can only kill certain types of bacteria such as Gram-positive
bacteria. Thus, it is highly desired to develop CDs with low MICs and broad-spectrum
antibacterial ability. Fourth, the current antibacterial research of CDs mainly focuses on
the killing of planktonic bacteria. In the future, it is necessary to explore the application
potential of CDs in combating bacterial biofilms, eliminating intracellular bacteria, and
killing bacteria in tumor. Fifth, despite the extensive investigations on the use of CDs for
killing bacteria, few examples have been reported on using CDs to eliminate fungi and
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viruses which can also cause severe infections, diseases, and even death to humans. Sixth,
the reproducible, large-scale, and cost-effective fabrication of CDs still limits the practical
antimicrobial applications of CDs. Seventh, studies regarding the interaction of CDs with
microbial cells, the distribution of CDs in microbial cells, the antimicrobial mechanisms of
CDs, and the possible antimicrobial resistance development of CDs are still lacking, which
will benefit the development of CDs with broad-spectrum antimicrobial activities, low
MICs, and negligible drug resistance. Finally, although CDs are generally shown to be safe
by cytotoxicity assays, the in vivo safety analyses of CDs remain largely unexplored, which
is definitely worthy of evaluation in future studies. It is hoped that the current review
will further promote the future design of functional CDs and CDs-incorporated advanced
materials for combating the microbial infection-caused diseases.
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