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Abstract: During natural conversation, people must quickly understand the meaning of what the
other speaker is saying. This concerns not just the semantic content of an utterance, but also the
social action (i.e., what the utterance is doing—requesting information, offering, evaluating, checking
mutual understanding, etc.) that the utterance is performing. The multimodal nature of human
language raises the question of whether visual signals may contribute to the rapid processing of
such social actions. However, while previous research has shown that how we move reveals the
intentions underlying instrumental actions, we do not know whether the intentions underlying
fine-grained social actions in conversation are also revealed in our bodily movements. Using a
corpus of dyadic conversations combined with manual annotation and motion tracking, we analyzed
the kinematics of the torso, head, and hands during the asking of questions. Manual annotation
categorized these questions into six more fine-grained social action types (i.e., request for information,
other-initiated repair, understanding check, stance or sentiment, self-directed, active participation).
We demonstrate, for the first time, that the kinematics of the torso, head and hands differ between
some of these different social action categories based on a 900 ms time window that captures
movements starting slightly prior to or within 600 ms after utterance onset. These results provide
novel insights into the extent to which our intentions shape the way that we move, and provide new
avenues for understanding how this phenomenon may facilitate the fast communication of meaning
in conversational interaction, social action, and conversation.

Keywords: kinematics; intention; social action; conversation; social interaction

1. Introduction

Human conversational interaction is characterized by rapid exchanges of speaking
turns between interlocutors. This fast-paced exchange of speaker turns is thought to
be possible because next speakers plan their own turn in parallel to the current speaker
uttering their turn. This is accomplished by next speakers predicting the meaning of
the ongoing utterance, including the social action (e.g., requesting information, checking
mutual understanding, etc.) that the utterance is performing. However, less is known
about whether early, visual signals, such as movement of the torso, head, or hands could
also play a role in this process by signaling intentions during interaction. The present study
is a first attempt to glean insight into this issue.

Social actions refer to what an utterance does in conversation [1], for example ques-
tioning, responding, and stating. They are core to determining the course of an interaction,
since pragmatically utterances are required to match the social actions that precede them in
a sequentially organized fashion [2–4]. However, these broad categories, such as question-
ing, are quite diverse in terms of the more fine-grained interactional work that they do and
may thus fall into several subcategories of social action [5]. For example, questions may
be designed to function as a request for information (e.g., “what time is it?”), to initiate
repair in case of misunderstandings or mishearings (e.g., “what did you say?”, “who?”), to
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criticize (e.g., “do you really think that was a good idea?”), etc. Of course, some questions
may also function in more than one way. While there is some evidence for the body playing
a role in intention signaling of broad social actions (see below), it is currently not known
if we also provide visual signals that help our addressee infer these more fine-grained
social actions. Investigating the role of bodily kinematics on signaling social actions during
natural conversation therefore provides novel insights into the granularity at which our
intentions shape the way that we move in order to communicate.

Previous research strongly suggests that instrumental movement, such as grasping a
bottle in order to do something with it, can reveal and signal our intentions to others [6–11].
In particular, movement kinematics can provide early clues to one’s concrete intentions
(i.e., proximal goal-oriented) and social intentions, allowing an observer to predict what
the person is doing before the action is complete [12,13]. In these studies, it was found that
the kinematics of the arm and hand while reaching to grasp a bottle differed in systematic
ways, such as the height of the wrist at certain points in the movements, depending on
whether the person was intending to grasp the bottle in order to pour from it, or in order
to drink from it. In particular, kinematics occurring within the time bins at 50–80% of the
total movement duration, which corresponds approximately to the first 500–800 ms of
the action, were highly predictive of the concrete intention of the action (i.e., to drink, to
pour [13]). Similarly, the social intention of a person also influences their kinematics. This
can be seen in a study showing that the kinematics of xylophone-playing movements are
exaggerated in size when the person is demonstrating a sequence for another person, or
when they are coordinating with another person [7]. Kinematic exaggeration of movements
that are intended for an observer have also been shown for communicatively intended
iconic (silent) gestures [14,15]. Of course, in all of these cases the form of the action/gesture
is the foundation for recognizing these kinematic deviations as being meaningful. These
studies demonstrate that not only what we intend to do, but the intended social effect
of what we are doing, both shape how we move. In the context of conversation, it could
be that our movements signal the intentions underlying social actions, but this is largely
uncharted territory.

The multimodal nature of human communication [16–22] suggests that visual signals
may play a role in the signaling of social action. This is because, similar to instrumental
action intentions, research suggests that social actions are processed very rapidly, during
the first 1000 ms of an unfolding utterance, and in some cases considerably faster [23,24].
While it seems possible that this fast processing is facilitated by visual signals, it is currently
not known if different social actions are indeed marked by differences in co-occurring
movement kinematics that could be used by an observer.

To provide a first larger-scale systematic investigation into whether visual movements
may be providing cues to specific social actions, we use naturalistic dyadic conversation
and motion tracking data from a conversational corpus to test two main questions. We
ask whether visual kinematics during questions differ depending on the specific social
action that the question is serving. In the present study, we focus on six such social actions
conveyed through questions which occurred frequently in the conversational data: request
for information, other-initiated repair, providing an evaluation or stance, checking mutual
understanding, expressing active participation, or indicating the speaker’s wondering or
thinking in a self-directed manner. We here focus our analysis on a 900 ms time window
(ranging from 300 ms prior to utterance onset to 600 ms post utterance onset). This choice
of time-window was motivated by the fact that social action recognition based on speech
alone also seems to be possible within this time frame [23,24], as well as by the fact that
co-speech visual signals can start prior to utterance onset, but also some time after the
utterance has begun [25,26]. Due to variation in utterance length, this means that the time
window includes most of the utterance for some of them, but only the beginning for others.
However, it does allow for a first insight into the potential of movement contributing to
fast social action recognition within a specified timeframe for cognitive processing.
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In the present analysis, we do not investigate specific movements (e.g., individual
communicative gestures, types of head movements or particular postures). Instead, we
focus on whether there is evidence at the level of movement more generally, in part inspired
by the literature on links between instrumental actions and intentions which, too, tends
to focus on generic descriptors such as movement height (or relative position) or velocity.
This allows us to examine if there is any evidence in the kinematics at all, without a priori
assumptions about specific movement categories. In order to do this, we calculate four basic
kinematic features that characterize movements in geometric space. Movement Magnitude,
which captures the three-dimensional space that an articulator has moved during our
window of observation. Magnitude is taken as a simple measure of movement extent that
can capture various types of movements (such as a nod, a potentially meaningful shift in
posture, a manual gesture, or even moving the hands out of the lap to prepare a manual
gesture). In other words, a general indicator of the extent of bodily involvement. Lateral
Position, which captures movement to the left or right, such as postural shifts or sideways
leans. Anterior/Posterior Position, which captures movement forward and backwards.
This can relate to leaning forward, thrusting the head forward, or gesturing towards the
interlocutor, but also moving oneself backward from the starting position (e.g., to “distance”
oneself from what is being said). Movement Velocity, which captures the peak velocity
of the articulator. This can capture visual salience of a movement, even if the movement
is small. Together, these basic kinematic features can characterize even very different
movements produced across different bodily articulators, capturing size (spatial salience),
velocity (temporal salience), and changes in location. Due to this research charting largely
novel territory, extant literature is scarce, and our analyses are primarily exploratory at this
stage. However, the aim is to use these first investigations to lay the groundwork for more
targeted future studies in this domain. Thus, this study aims to provide novel insights
into whether there is any evidence that co-speech movement kinematics are shaped by the
fine-grained intentions underlying the social actions of conversation at all.

2. Methods
2.1. Participants

The project utilized a corpus of 34 dyads (mean age: 23.10 ± 8 years; 51 females,
17 males) engaged in face-to-face interaction. Dyads consisted of pairs of acquaintances,
who were all Dutch native speakers, without motoric or language problems and with
normal or corrected-to-normal vision.

2.2. Data Collection

Dyads engaged in three recording sessions, each lasting 20-min. In the first 20 min,
participants held a free, entirely unguided conversation. In the second session, participants
discussed one of three themes: privacy, social media, or language in teaching. Participants
were instructed to share their opinions about these themes and to discuss their agreements
and disagreements per theme. Participants read examples of the themes before starting
with the second task. If a dyad finished discussing one theme, they could choose another.
During the third session, participants were asked to imagine their ideal holiday that is
affordable on their own budget. They discussed these ideas with their partner with the aim
of devising a holiday plan that they would both enjoy. These different sessions were used
to encourage a variety of conversational social actions typical of interactions interlocutors
often engage in (described below). Given that participants varied substantially in terms
of the precise content, their perspectives, and moods, for example, even when discussing
the same broad topics, we are confident that the data captured in this corpus is quite
representative of everyday talk.

The conversations were recorded in a soundproof room at the Max Planck Institute for
Psycholinguistics in Nijmegen, The Netherlands. Participants were seated directly facing
each other.
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Two video cameras (Canon XE405) were used to record frontal views of each partici-
pant, two cameras recorded each participant’s body from a 45-degree angle (Canon XF205
Camcorder), two cameras (Canon XF205 Camcorder) recorded each participant from a
birds-eye view while mounted on a tripod, and finally one camera (Canon Legria HF G10)
recorded the scene view, displaying both participant at the same time. All cameras recorded
at 25 fps. Audio was recorded using two directional microphones (Sennheiser me-64) for
each participant (see the Appendix A for an overview of the set-up). Each recording session
resulted in seven video files and two audio files, which were synchronized and exported
as a single audio-video file for analysis in Adobe Premiere Pro CS6 (MPEG, 25 fps), result-
ing in a time resolution of approximately 40 ms, the duration of a single frame. Motion
tracking was captured using two Microsoft Kinect V2s for each participant, with one used
to capture facial kinematics (using Brekel Pro Face 2.39) and the other for capturing body
movement (using Brekel Pro Body 2.48). Only data from the body recordings are discussed
here. The Kinect was used as it is able to capture movements in three-dimensional space,
and has been shown to be valid for reliably quantifying hand/arm kinematics [27], torso
kinematics [28], as well as head posture [29]. In order to calibrate the motion tracking
devices (Kinect for Windows 2) participants held a T-pose for three seconds. A hand clap
was used in order synchronize the audio and visual recordings. In order to synchronize
the Kinect with the video recordings, we used a custom Python (v.3.7) script that aligns the
audio recording from the video with the audio recording from the Kinect. We additionally
manually checked whether the beginning and end of the synchronized audio streams
indeed matched, ensuring an offset did not accumulate during the recording time. See
Figure 1 for a visual overview of the recording set-up.
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Figure 1. View of recording set-up as seen from participant A’s (left) camera. Visible in this still frame
is also one of the Microsoft Kinects, behind participant A’s left shoulder, as well as the tripods for
two of the other Kinects, and the two microphones (center).

Informed consent was obtained before and after filming. Participants were asked to
fill in a demographic’s questionnaire prior to the study, and four questionnaires at the end
of the study. Information was obtained about the relationship between the conversational
partners and their conversation quality, and the Empathy Quotient [30], the Fear of Nega-
tive Evaluation scale [31], and a question assessing explicit awareness of the experimental
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aim were also collected (the questionnaire data was not included in the present analyses
since no specific hypotheses related to this study pertained to them). Information from
these questionnaires is not discussed in the current study. Participation was compensated
with 18 euros. The corpus study was approved by the ethics committee of the social
sciences department of the Radboud University Nijmegen.

2.3. Data Annotation: Questions

Manual annotation first captured all questions (and responses, which are not part of
the focus of the present analyses). An automatic orthographic transcription of the speech
signal was made using the Bavarian Archive for Speech Signals Webservices [32]. Questions
were identified and coded in ELAN (5.5; [33,34]), largely following the coding scheme of
Stivers & Enfield ([35]). In addition to this scheme, more rules were applied on an inductive
basis, in order to account for the complexity of the data in the corpus. Specifically, a holistic
approach was adopted, taking into consideration visual bodily signals, context, phrasing,
intonation, and addressee behaviour. Non-verbal sounds were excluded (e.g., laughter,
sighs). This was done by two human coders, one native speaker of Dutch, and one highly
proficient speaker of Dutch. Interrater reliability between the two coders was calculated
with raw agreement [36,37] and a modified Cohen’s kappa using EasyDIAg [38] on 12% of
the total data (4 dyads, all tasks). EasyDIAg is an open-source tool that has been used as
a standard method for calculating a modified Cohen’s kappa. It is based on the amount
of temporal overlap between annotations, categorization of values, and segmentation of
behaviour. A standard overlap criterion of 60% was used. Reliability between the coders
resulted in a raw agreement of 75% and k = 0.74 for questions, and a raw agreement of 73%
and k = 0.73 for responses, indicating substantial agreement. The precise beginnings and
endings of the question annotations were segmented using Praat (5.1, [39]) based on the
criteria of the Eye-Tracking in Multimodal Interaction corpus (EMIC; [40,41]). This resulted
in a total of 6778 questions (duration Mdn = 1114 ms, range = 99–13,145 ms, IQR = 1138 ms).

2.4. Data Annotation: Social Action Categories

From the total annotated questions, a subset of questions from each participant were
additionally coded for their social action category. This resulted in a total of 2078 question
utterances included in the present study. As part of the larger project the present analysis
forms part of a detailed coding manual for social actions was developed, leading to a set
of inductively generated categories into which all of these questions would fit. Questions
may sometimes perform more than one single social action [5], but for the purpose of the
present analysis, we considered the primary social action classification for each question
only. For the present analysis, questions from six discrete categories were used. More
fine-grained sub-categories were also defined, but these are not used in the present analyses.
Information Requests (InfReq; n = 693) refer to any questions that ask for new information
of a factual or specific nature (e.g., “what time is it?”, “what is this?”), or requests for
elaboration or confirmation. Understanding Checks (UndCheck; n = 365) refer to requests
for the interlocutor to confirm information, particularly when the speaker believes to
already know the answer but wants to check (e.g., while making travel plans, “And you
said you wanted to travel next week?”; referred to as CHECK questions by Jurafsky,
2003 [42]), or to confirm that the interlocutor is following the relevant information in the
conversation (e.g., “you know what I mean?”). Self-Directed questions (SelfDir; n = 360)
refer to questions that are not directed at the other speaker (e.g., “now where are my keys?”
while looking in a bag; “ . . . or actually, was that somewhere else?”), that may be used to
fill pause and show the interlocutor that the current speaker is thinking and wants to keep
the turn. Stance or Sentiment questions (StanSem; n = 246) refer to questions that express
disapproval or criticism (e.g., “where do you think you’re going?”), seek confirmation
or approval (e.g., “isn’t it beautiful today?”), challenges to the interlocutor to prove or
justify something (e.g., “but you didn’t do that, did you?”), or corrections to something the
interlocutor previously stated (e.g., “wasn’t it the other way around?”). Other-initiated-
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repair questions (OIR; n = 126) are used to resolve possible misunderstandings (e.g., “what
do you mean?”) or mishearings (e.g., “what did you say?”) [43]. Active participation
questions (ActPart; n = 161) included news receipts (e.g., A: Hey that was the same
spot we took off for Honolulu. Where they put him on, at that chartered place B: Oh
really?; Heritage, 1985, p. 302) that may or may not encourage elaboration, surprise
expressions (e.g., “what?”, “really?” in response to surprising information), expressing
disbelief, scepticism or incredulity towards what was just said (e.g., “You’re going by
plane?!”, asked when the speaker cannot believe that their interlocutor is flying to a nearby
city that can be easily accessed by train or car; Crespo Sendra et al., 2013, p. 3 [44]), or
backchannels (e.g., “is that right?”, “really?”). Questions intended for structuring, initiating
or maintaining conversation (SIMCO; n = 74) include topic initiations (e.g., “So you go back
over the summer, I assume?” [45]). Plans and actions questions (PlanAct; n = 53) suggest
engaging in a particular action, proposing a future action or decision by the interlocutor,
offers and invitations (e.g., “can I get you some coffee?” [46]). Following the same procedure
as for question-response annotation, interrater reliability for the social action categories
was calculated for 10% of the total number of question annotations (n = 686). Reliability
between the two coders was calculated as 76% raw agreement and k = 0.70, again indicating
substantial agreement. Due to having fewer than 100 occurrences each (i.e., fewer than the
total number of dyads), we excluded SIMCOs and PlanAct from further analyses.

2.5. Kinematic Data Extraction

We extracted motion tracking data from three visual articulators: the torso (upper
point between shoulders), head (top of head), and hands (center—both hands). These
data were extracted from a 900 ms window, starting 300 ms prior to utterance onset,
and ending 600 ms after utterance onset. We extracted the data in three 300 ms bins in
order to preserve any variance in these features across the time window and include
this information as a covariate in our models. Because the questions varied in length
(see Appendix A Table A1), this time window includes sometimes just the beginning
and sometimes up to the entire utterance. However, to keep the already rather complex
analysis (including three different articulators, four kinematic measures and a set of six
different social actions) as focused as possible, we here do not analyze movement by time
bin but based on the 900 ms time window as a whole, the timeframe in which, from a
cognitive processing perspective, social action recognition tends to take place [23,24]. More
fine-grained and relative temporal analyses would go beyond the scope of the current study.
However, by taking the utterances’ total duration into account in our models, this approach
still allows us to determine whether bodily kinematics are associated with social action
category within this 900 ms time window, and ensures that any association is unlikely to
be explained by just interpersonal differences or differences in utterance duration between
the categories.

Within the specified time window, we calculated four kinematic features. Magnitude
captures the overall space in which the articulator moved during a time bin. In other words,
it provides the maximum distance of the tracked point from its origin (i.e., its location at
the beginning of the time bin). Lateral Position captures how much an articulator moves
to the left or right during a time bin. Higher absolute values indicate further away from
center along the x-axis. Anterior/Posterior Position captures how much a visual articulator
moves towards or away from the interlocutor during a time bin. Higher values therefore
indicate that the speaker (or more specifically, the articulator) is relatively closer, while
lower values mean the speaker is relatively further away along the z-axis. Note that
these values are with reference to the distance between participant and the Kinect device,
but transformed in orientation, because the Kinect was physically at an angle from the
participant the proximity value indicates the distance directly in front of or behind the
participant. Peak Velocity captures the maximum velocity of the articulator within the
time window. This value is taken as the derivative of absolute displacement, meaning that
velocity is always positive. For the hands, these values are calculated as the maximum
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(in the case of magnitude, lateral position and peak velocity), or minimum (i.e., most
proximal—in the case of anterior/posterior position) value achieved by the two hands. To
avoid convergence issues due to differences in scale between model variables (see below
for modeling procedure), we rescaled the proximity values based on standard deviation.

All data extraction and kinematic feature calculation was done using custom scripts
running in Python (v3.7). Interfacing between Python and Elan annotations was done
using the module pympi-ling [47].

2.6. Analyses

We used two sets of linear mixed models for our analyses of interest. The kinematic
features described above were the dependent variables. All models included time bin as
well as utterance duration as a covariate. Time bins were included in the model in order
to account for fluctuations within the time window that would be lost when summing
or averaging over the entire time window (e.g., peak velocity may be very high at one
particular point but low across the rest of the window—in this case, only one time bin
would show a high peak velocity, whereas that may not be representative of the entire
window). Utterance duration was included in order to ensure that any inherent differences
in utterance length between or within social action categories could not account for kine-
matic differences. We additionally tried to fit models with pair/participant as a nested
random intercept, but otherwise used ‘file’ (i.e., a unique identifier for each participant)
when convergence issues were encountered. Random slopes were modeled whenever this
did not result in model convergence failures, singular fits, etc. This null model, containing
only random terms and the covariates described above, was compared against a model of
interest that also included social action category as a predictor variable, and when possible,
a per-participant random slope. When not possible, this is noted in the results. Model com-
parison was done with a chi-squared test. In the case of significant model fit for the model
of interest, we used post hoc contrasts to determine which social action categories differed
from one another. p-values for these contrasts were adjusted using the Tukey method for
comparing a family of six (i.e., the number of social action categories) conditions, across
15 comparisons. All analyses were performed in R [48], with the lme4 package used for
the linear mixed models [49] (p. 4), emmeans used for post hoc comparisons [50], and
sjPlot [51] and raincloud plots [52] used for visualization of the results.

3. Results
3.1. Torso Movements

In terms of torso movements, we found no evidence for anterior/posterior position
being affected by social action category, χ2(5) = 11.007, p = 0.051. However, we did find
evidence for a difference in torso movement size, χ2(5) = 31.76, p < 0.001. Specifically,
we found that Information Requests (estimate = 0.12 ± 0.04, z-ratio = 3.292, p = 0.013),
Understanding Checks (estimate = 0.16 ± 0.04 mm, z-ratio = 4.156, p < 0.001), Stance
or Sentiment questions (estimate = 0.21 ± 0.04 mm, z-ratio = 5.243, p < 0.001), and Self-
Directed questions (estimate = 0.14 ± 0.04 mm, z-ratio = 3.610, p = 0.004) all showed larger
torso movements compared to Active Participation questions, while torso movements
accompanying Stance or Sentiment questions were also larger than Information Requests
(estimate = 0.09 ± 0.03 mm, z-ratio = 3.313, p = 0.012) as well as other initiated repairs
(estimate = 0.13 ± 0.04, z-ratio = 3.165, p = 0.019). We additionally found evidence for
lateral movement being affected by social action category, χ2(5) = 12.681, p = 0.027. How-
ever, no individual contrasts were significant. Finally, we also found peak velocity to be
affected by social action category, χ2(5) = 40.054, p < 0.001. We specifically found that
torso movements accompanying Information Requests had a higher peak velocity than
those accompanying Other-Initiated Repairs (estimate = 1.373 ± 0.47 cm/s, z-ratio = 2.905,
p = 0.043), those with Self-Directed Questions had higher peak velocity than those with
Information Requests (estimate = 1.24 ± 0.34, z-ratio = 3.708, p = 0.003) as well as Un-
derstanding Checks (estimate = 1.19 ± 0.38, z-ratio = 3.167, p = 0.019), Other-Initiated
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Repairs (estimate = 2.61 ± 0.51, z-ratio = 5.14, p < 0.001) and Active Participation questions
(estimate = 2.34 ± 0.47, z-ratio = 4.987, p < 0.001), while torso movements accompanying
Stance or Sentiment questions had higher peak velocity than those accompanying Active
Participation questions (estimate = 1.599 ± 0.50, z-ratio-3.183, p = 0.018). See Figure 2 for
an overview of these findings. No model reported here contained random slopes.
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Figure 2. Relationship between torso movement and social action category. Panels (A,C,E) show
raincloud plots of the raw distribution (y-axis) across each of the social action categories (x-axis).
The raincloud plots show the overall density of the distribution (shaded curve), the boxplots show
the median and interquartile range, while the black dots show the individual data points. Panels
(B,D,F) depicts the marginal effects of the mixed model (i.e., the predicted values when holding
other model terms, such as utterance duration and per-participant intercepts, constant). In panels
(B,D,F) social action categories are given on the x-axis, and kinematic values are given on the y-axis.
Significant differences between pairs of categories are indicated with colored lines between the
categories. p-values are given for each of these comparisons, with the text color corresponding to the
larger value in the comparison. Abbreviations: InfReq = Information Request; UndCheck = Under-
standing Check; SelfDir = Self-Directed Question; OIR = Other-Initiated-Repair; StanSem = Stance or
Sentiment; ActPart = Active Participation.
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3.2. Head Movements

In terms of head movements, we found that anterior/posterior position was signifi-
cantly related to social action category, χ2(25) = 18.908, p = 0.002. Post-hoc comparisons
showed that head movements accompanying Understanding Checks had closer proximity
(i.e., larger A/P position values) compared to those accompanying Requests for Informa-
tion (estimate = 0.13 ± 0.03, z-ratio = 4.047, p < 0.001). Note that effect sizes cannot be
directly interpreted due to these values being scaled to facilitate modeling. We found
no evidence for size of movement being related to social action category, χ2(5) = 8.654,
p = 0.124. This magnitude model did not contain random slopes. We found no evidence
for lateral position of the head being associated with social action category, χ2(5) = 4.769,
p = 0.445. Finally, we found that peak velocity of the head was associated with social action
category, χ2(5) = 11.607, p = 0.041. However, we found no significant contrasts between the
pairs of categories. See Figure 3.
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Figure 3. Relationship between head movement and social action category. Panels (A,C) show raincloud plots of the raw
distribution of kinematic values (y-axis) across each of the social action categories (x-axis). The raincloud plots show the
overall density of the distribution (shaded curve), the boxplots show the median and interquartile range, while the black
dots show the individual data points. Panels (B,D) depict the marginal effects of the mixed model (i.e., the predicted values
when holding other model terms, such as utterance duration and per-participant intercepts, constant). In panels (B,D), social
action categories are given on the x-axis, and kinematic values are given on the y-axis (note that anterior/posterior position
is scaled to range = 0.1–12.7) is given on the y-axis. Note that in this model, there were no significant contrasts between social
action categories. Abbreviations: InfReq = Information Request; UndCheck = Understanding Check; SelfDir = Self-Directed
Question; OIR = Other-Initiated-Repair; StanSem = Stance or Sentiment; ActPart = Active Participation.

3.3. Manual Movements

In terms of hand movements, we found that anterior/posterior position was signif-
icantly related to social action category, χ2(5) = 27.895, p < 0.001. Specifically, we found
that Active Participation questions were more proximal than other-initiated-repairs (esti-
mate = 0.17 ± 0.05, z-ratio = 3.126, p = 0.022), Self-Directed questions (estimate = 0.18 ± 0.04,
z-ratio = 4.084, p < 0.001) and Understanding Checks (estimate = 0.13 ± 0.04, z-ratio = 3.009,
p = 0.032), while Stance or Sentiment questions were more proximal than Self-Directed
questions (estimate = 0.15 ± 0.04, z-ratio = 3.871, p = 0.001). Note that effect sizes cannot be
directly interpreted due to these values being scaled to facilitate modeling. We additionally
found that the size of hand movements was significantly related to social action category,
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χ2(5) = 14.687, p = 0.012. Specifically, we found that hand movements with Understanding
Checks were larger than with Active Participation questions (estimate = 0.98 ± 0.27 mm,
z-ratio = 3.626, p = 0.004). We found no association between lateral position of the hands
and social action category, χ2(5) = 10.336, p = 0.066. Finally, we found that peak velocity of
the hands was associated with social action category, χ2(5) = 13.662, p = 0.017. Specifically,
hand movements with Understanding Checks had higher peak velocity than those with
Active Participation questions (estimate = 8.554 ± 2.80, z-ratio = 3.054, p = 0.027). See
Figure 4 for an overview of these results.

None of these models contained random slopes.
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Figure 4. Relationship between hand movement and social action category. Panels (A,C,E) show
raincloud plots of the raw distribution (y-axis) across each of the social action categories (x-axis).
The raincloud plots show the overall density of the distribution (shaded curve), the boxplots show
the median and interquartile range, while the black dots show the individual data points. Panels
(B,D,F) depicts the marginal effects of the mixed model (i.e., the predicted values when holding other
model terms, such as utterance duration and per-participant intercepts, constant). In panels (B,D,F)
social action categories are given on the x-axis, and kinematic values are given on the y-axis Note
that anterior/posterior position is scaled to range 0.1–15.3. Significant differences between pairs of
categories are indicated with colored lines between the categories. P-values are given for each of these
comparisons, with the text color corresponding to the larger value in the comparison. Abbreviations:
InfReq = Information Request; UndCheck = Understanding Check; SelfDir = Self-Directed Question;
OIR = Other-Initiated-Repair; StanSem = Stance or Sentiment; ActPart = Active Participation’.
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4. Discussion

Our findings provide the first quantitative evidence for movement of the torso, head,
and hands kinematically signaling specific social action categories during conversation.
Specifically, we found that movement magnitude of the torso and hands differed between
several categories, as did proximity of the hands to the addressee. Proximity of the head
was also related to social action category, although no specific contrasts between categories
survived statistical correction.

Our finding of torso, head and hand movements being related to social action cat-
egories suggests that, similar to concrete (e.g., grasping to drink or to pour) and more
coarse-grained social intentions (e.g., the intention to communicate), what we intend to
do with a question also influences the way that we move while producing the utterance.
While this study was largely exploratory due to the novelty of our research question, we
can see several patterns emerging from our results. For example, active participation
questions (e.g., a backchannel “really?”) show much smaller movement magnitudes of the
torso compared to other categories. While one may suggest that such effects may also be
confounded by differences in duration (i.e., requests for information are likely to be, on
average, longer than active participations), this was controlled for by including the total
utterance duration in the null model. Therefore, in the case of significant models, social
action category explained more variance in the kinematic data than just the differences
in utterance duration. We would speculate that active participation, at least in the case of
backchannel questions, may be accompanied by smaller magnitude movements and lower
peak velocity for the very reason they occur in the backchannel and are therefore intended
to attract less visual attention, which movement of prominent visual articulators such as
the torso would otherwise add. It is also possible, however, that questions expressing
active participation are associated with other visual signals not captured here, such as
facial signals.

Stance or sentiment questions (e.g., “isn’t that quite far away?”—potentially indicating
an affective response to the previous speaker’s plan or suggestion in the way they are em-
bedded in the interaction), were found to be accompanied by the largest torso movements,
with significantly greater magnitude than requests for information, active participations,
and other-initiated repairs. While speculative, this may due to the affective nature of such
utterances, given that affect can also influence bodily movement [53], which may involve
moving the torso forwards or backwards to express such evaluative or affiliative stances,
including distancing oneself from a statement or showing ones agreement with it.

The relatively small torso movement magnitudes associated with other-initiated-repair
questions may relate to the so-called “freeze-look” that speakers sometimes use. The freeze-
look refers to when a speaker briefly “freezes” their posture while fixing their gaze on their
interlocutor, which is particularly salient when the person providing the freeze-look was
expected to provide a response to an interlocutor’s question. This phenomenon, which
has been described both for spoken [54,55] as well as signed languages [55,56], may thus
provide a visual signal through a lack of movement.

Results from our analysis of head motion suggest that proximity to the addressee
is also influenced by the category of social action. However, we only found one signif-
icant contrast between categories. Specifically, understanding checks showed closer
proximity (i.e., larger anterior/posterior position values) than requests for information.
This may relate to a general signal of thrusting the head forward when expressing
uncertainty [43,57,58]. The fact that we did not find a similarly strong effect of other-
initiated-repairs despite them also expressing a lack of understanding and having been
associated with forward thrusts in past research [57,58] is intriguing and may hint at an
interesting interplay between articulators; other-initiated repairs are often signaled facially,
for example [59,60]. However, the fact that other social action categories do not differ in
head movement proximity may also suggest that such a signal may be commonly used
across most question categories. Additionally, our finding of relatively few significant
contrasts between social actions when looking at head movement kinematics, despite the
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extensive literature showing that head movements are involved in dyadic coordination [61–
63], may be due to a difference in roles. More specifically, it may be that head movement
kinematics are so tightly linked to torso movements, that we do not see distinct effects
in the head, at least at this level of analysis. Future studies should investigate whether
other factors within the interaction may play a role which may lead to more fine-grained
analyses that shed further light on these issues.

Results from hand motion kinematics show several interesting, somewhat unexpected
effects. We see that, while repair initiations have been previously linked to movements
towards the addressee (e.g., leaning forward, thrusting the head forward [43,58,64]), other-
initiated repairs in our study showed relatively lower movement magnitudes of the torso
in comparison to stance or sentiment questions, and the hands were also further from
the addressee during other-initiated repairs than during information requests, stance or
sentiment questions, and active participation questions. One possible interpretation of
this finding is that individuals in our study simply did not move their torso or hands
closer to their addressee during other-initiated repair questions. However, previous studies
have qualitatively described these movement effects in individual examples of other-
initiated repairs, rather than contrasting them with other social actions. Therefore, a
more likely explanation for our finding is that the other categories we have compared
them to here simply show stronger proximity effects than other-initiated repairs. In
this interpretation, other-initiated repairs may indeed be associated with movements
that bring visual articulators of the repair initiator closer to the interlocutor, as has been
described in the literature before [43,58,64]. However, this form of increase in proximity, by
moving anteriorly towards the interlocutor, may be even more strongly employed for other
social actions, such as requests for information, stance or sentiment questions, and active
participation questions. Manual gestures may also be produced with closer proximity to
the interlocutor (i.e., reaching farther into interpersonal space) when discussing shared
goals or plans [65]. This is particularly interesting given that active participation questions
conversely showed quite low movement magnitude and peak velocity in the torso. This
finding is further discussed below. Importantly, proximity of articulators to the interlocutor
is likely most salient as a signal of social action when it is a (relatively sudden) deviation
from a previously less-proximal position. While our current results provide evidence for
systematic differences between social action categories, an interesting avenue for future
research would be to investigate how proximity dynamically changes, especially in the
case of other-initiated repair (such as when comparing torso or hand position before and
after onset of the utterance).

We additionally found that active participation questions weref accompanied by lower
magnitude hand movements, at least compared to questions that check for understanding.
This is particularly interesting since the hands showed closer proximity in active participa-
tion questions compared to understanding checks. This suggests that while the hands (start
to) produce larger movements during understanding checks, this movement does not seem
to reduce the distance between speaker and addressee. Although this is only one contrast,
this finding also more generally fits with the finding from the torso movements, which
similarly showed active participation questions having lower magnitude than several
other categories, and the speculative interpretation relating to their backchannel status we
have offered in connection with the torso movements above may also hold for manual
movements. The interpretation of active participation questions as being less ‘urgent’ in
the conversation, such as the case of backchannels, is also supported by the low move-
ment magnitude and peak velocity of the torso during active participation questions. This
could be indicative of speakers positioning themselves closer to the interlocutor during, or
immediately before these questions, but not using large, salient movements to do so.

Our results are therefore in line with the idea that our intentions, even at the level
of fine-grained social actions occurring in conversation, are (partially) revealed in the
way that we move. A fruitful direction for future research would be to determine to
what extent these kinematic differences indeed serve as information for the addressee
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in such a way that they may facilitate quick social action recognition. It is important to
note that, just as in previous studies of intentions and kinematics, we do not assume that
the kinematic parameters themselves (e.g., size, proximity) are sufficient to recognize the
intention. Instead, the specific kinematics likely guide our interpretation. For example,
in Trujillo and colleagues’ [14,66] work showing that communicative intentions could be
recognized from gesture kinematics, observers accomplished this recognition based on how
the kinematics differed within a specified form, and within the context of two potential
intentions. In other words, the form (i.e., the action itself) must be recognized first, and
the specific kinematic profile of the movements guided interpretation of the associated
intention within the context of the experiment [14,66]. Similarly, in the case of social actions,
we take these kinematic features to be systematic changes of whatever the person is doing
while producing the utterance. If these kinematic changes indeed facilitate social action
recognition for observers, this is likely indeed a facilitation effect, rather than completely
and independently revealing the social action. In other words, social action recognition
will likely still require holistic information about the unfolding movement, as well as the
interactional context, speech, prosody, or all of the above. The recognition of the social
action, thus already somewhat constrained or informed by these other factors, may then be
further facilitated by integrating this kinematic information, and/or vice versa.

An interesting question for future research is to bring these findings together with
the field of interpersonal synchrony, which has shown that dyads synchronize their bodily
movements throughout an interaction, even at a millisecond time-scale. Our findings sug-
gest that any effects of social actions on movement kinematics must occur on top of such
synchrony patterns, or may otherwise temporarily disrupt patterns of synchrony, because
social actions are often complementary in nature (giving-receiving, requesting-offering,
inviting-declining, questioning-responding etc.), and this would likely be apparent in
their corresponding movements (as corroborated by the present findings). How these
two kinematic dynamics (i.e., ongoing synchrony and the effect of social actions) inter-
act and influence one another, is an open question that would be informative for better
understanding the fine-grained dynamics of interpersonal movement coordination, and
how intention signaling fits into, and is shaped by, the larger dynamic of social interaction
(as well as how variation in interpersonal synchrony may affect this, e.g., [67,68]). As
part of such a future endeavor, looking in detail at the reciprocal relationship between
interlocutors, and how one interlocutor’s social action kinematics influences those of the
other’s social action kinematics (e.g., as has been shown for kinematic variations of recip-
rocal actions [69]) would be a highly interesting extension of the current work. Finally,
future research should also investigate whether these patterns of social action kinematics
generalize across neurodiverse populations, such as autistic individuals.

4.1. Limitations

The interpretations of our findings discussed above come with several limitations.
First, these findings come from a corpus of conversation where many layers of behaviour
are intertwined and influence one another. Therefore, we cannot draw any causal conclu-
sions about these relationships. However, this paradigm allows a more ecological starting
point for investigating this interesting, and thus far under-researched question. A second
potential limitation is that our analyses do not take into account what the bodily action
is that our kinematics are measuring. In other words, we cannot draw inferences about
particular gesture types, specific forms of torso leans, particular head movements, etc.
However, the kinematic information within this very early window (i.e., between 300 ms
prior to utterance onset and 600 ms after onset) still provides interesting insights into the
minimal information that is available to an interlocutor who is attempting fast recognition
of the social action being performed by the current speaker. Further research should inves-
tigate whether these different social action categories are associated with the initiation of
particular bodily actions, or whether these kinematic differences may relate to more subtle
movements that systematically differ between categories. Future studies are also needed to
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look into more detail at how early exactly the kinematic signals occur with respect to the
relative length of the utterances and the time by which a response would be required to be
able to link it more informatively to early social action recognition in conversation [24]. The
current study also does not account for different levels of familiarity between interlocutors,
which may affect communicative behaviors [70]. A final limitation is that the scarcity of
past research on the topic of movement kinematics in connection with social actions makes
it difficult to draw strong causal conclusions regarding the differences between categories.
This means that, for example, it is currently difficult to determine what a meaningfully
large effect size would be that affects how the listener perceives the ongoing utterance.
Future studies utilizing social action attribution paradigms will be needed to shed more
light on this issue. While this means that our study is somewhat exploratory in nature, we
believe that the main effect of several different articulator kinematics differing between
categories is a very useful starting point for future research to explore these differences
further. Both more fine-grained quantitative corpus analyses taking into account movement
types and interactional context, as well as experiments testing for causal relations would
be a fruitful continuation from the present study.

4.2. Conclusions

In sum, our study is the first to investigate how, during naturalistic conversation,
movement of several prominent visual articulators (i.e., the torso, head, and hands) is
shaped by the social action being performed by an utterance. These findings suggest that
the kinematic expression of intentions carries over into the fine-grained social actions
that our utterances perform in conversation, and thus provide a foundation for future
experimental research and the development of situated models of language processing as
well as social robots.
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