
RESEARCH ARTICLE

Assessment of problem solving ability in

novice programmers

Ines Kožuh1☯*, Radovan Krajnc2☯, Leontios J. Hadjileontiadis3,4‡, Matjaž Debevc1‡

1 Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia,

2 National Education Institute Slovenia, Ljubljana, Slovenia, 3 Aristotle University of Thessaloniki,

Department of Electrical and Computer Engineering, Thessaloniki, Greece, 4 Khalifa University of Science

and Technology, Department of Electrical and Computer Engineering, Abu Dhabi, United Arab Emirates

☯ These authors contributed equally to this work.

‡ These authors also contributed equally to this work.

* ines.kozuh@um.si

Abstract

Problem Solving (PS) skills allow students to handle problems within an educational context.

PS is a core competence of Computer Science education and affects programming suc-

cess. In this vein, this paper aims to investigate PS ability performance in primary school

pupils of a computer course, implemented according to the Neo-Piagetian theory of cogni-

tive development. The study included 945 Slovenian pupils, ranging from fourth to sixth

grade. The effects of gender, age and consecutive years of attending the course were

examined on pupils’ PS ability at the pre-operational and concrete operational stages. Pupils

completed a survey questionnaire with four types of tasks (a series of statements, if-state-

ments, loops and variables) at both stages. The analysis revealed three findings: the perfor-

mance of PS ability in all tasks was, at the pre-operational stage, associated positively with

performance at the concrete operational stage; there were no gender differences in PS per-

formance at both stages, and both the grade and consecutive year of taking the computer

course had an effect on PS ability performance at both stages. Those in the lowest grade

and those taking the course for the first year reported lower performances than their older

counterparts. These findings may help curriculum designers across the world develop effi-

cient approaches to teaching computer courses.

Introduction

Problem Solving (PS) has been recognised as a 21st century skill due to the recent digital trans-

formation of the economy around the globe. A common initiative of important institutions

worldwide is to encourage education to focus more on the development of PS skills. The

Global Agenda Council on Employment [1, 2] and the European Commission [3] thus encour-

age educational systems to invest more in the formation and development of PS skills in order

to adapt to the current and future needs of labour markets around the world.

Practicing PS skills can be aided by learning computer programming, which is being widely

promoted in primary school curricula. In 2014, European Schoolnet, a knowledge-building

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Kožuh I, Krajnc R, Hadjileontiadis LJ,

Debevc M (2018) Assessment of problem solving

ability in novice programmers. PLoS ONE 13(9):

e0201919. https://doi.org/10.1371/journal.

pone.0201919

Editor: Etsuro Ito, Waseda University, JAPAN

Received: March 29, 2018

Accepted: July 24, 2018

Published: September 12, 2018

Copyright: © 2018 Kožuh et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0201919
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201919&domain=pdf&date_stamp=2018-09-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201919&domain=pdf&date_stamp=2018-09-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201919&domain=pdf&date_stamp=2018-09-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201919&domain=pdf&date_stamp=2018-09-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201919&domain=pdf&date_stamp=2018-09-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201919&domain=pdf&date_stamp=2018-09-12
https://doi.org/10.1371/journal.pone.0201919
https://doi.org/10.1371/journal.pone.0201919
http://creativecommons.org/licenses/by/4.0/


network of 30 Ministries of Education in Europe, revealed that 16 out of 21 European coun-

tries participating in the study had already integrated programming into their curriculum at a

national, regional or local level [4]. In addition to its implementation into the primary school

curriculum, it has also appeared in secondary education, where computer science courses have

been adopted as a compulsory secondary school subject in many countries around the world,

including in England, Australia, New Zealand, and Finland [5].

Accordingly, it is urgent for teachers to recognise the gap between the employed teaching

methods and learners’ preferences and needs, and to consider how to train 21st century skills

[6]. In this regard, recent research has focused intensively on investigating the effects of visual-

ised programming and teaching approaches in computer science education on students’ PS

abilities and thinking [7–12] and the development of new visual environments and learning

systems where students were encouraged to develop their programming abilities through PS

orientation [13–15].

However, in existing research, there are a lack of studies examining the effects of the teach-

ing of programming when following specific knowledge taxonomies, on students’ PS ability

performance outcomes. This is of special importance due to the inclusion of young novice pro-

grammers into the learning process, who have only just started learning programming. In the

first and second years they should gain domain knowledge and learn about the tools of pro-

gramming, as well as acquiring PS strategies for simple problems. In this process, teachers

have to respond to students’ reactions in the classroom efficiently and quickly. In this regard,

teachers can use various well-known taxonomies for lesson planning and assessing knowledge,

such as Bloom’s taxonomy [16,17], Marzano’s taxonomy [18] or SOLO Taxonomy [19]. How-

ever, teachers frequently need additional tools and methods that allow them, in an easy and

structured way, to develop students’ capabilities in abstract thinking and the understanding of

specific concepts. Moreover, teachers often perceive Bloom’s taxonomy to be fairly complex

for monitoring the comprehension of computer science concepts among primary school stu-

dents, as well as for the development of tasks and activities [20]. Despite recent advancements

in programming tools and environments, the teaching of programming still remains a chal-

lenge for school teachers at various levels of education [21–24].

Accordingly, the Neo-Piagetian theory can prove invaluable in teaching programming. The

reason is twofold. Firstly, Lister [25] recognised the strength of the Neo-Piagetian theory,

which allows teachers to consider novice programmers’ behaviours not as a manifestation of

cognitive dysfunction or mental laziness, but rather as a normal stage of cognitive develop-

ment. Consequently, students’ behaviours are less exasperating for teachers and they can focus

more efficiently on the teaching process. Secondly, due to its simplicity, the Neo-Piagetian the-

ory is suitable for urgent didactic interventions when teachers, based on the recognised stu-

dent’s level of abstract thinking, react with suitable questions, activities and tasks.

Even though the advantages described above prevail, the theory still has some shortcom-

ings, such as not being directly adequate for grading [20]. Besides that, even if Gluga, Kay,

Lister, and Teague [9] focused on the benefits of the Neo-Piagetian theory for classifying

assessment materials, they conducted research intensively with educators. As a result, little is

known about how students’ PS ability performance, which is crucial for programming, could

be measured with the Neo-Piagetian theory of cognitive development. In light of this, our

study attempted to investigate Slovenian primary school novice programmers’ PS ability per-

formance according to a Neo-Piagetian approach. This may be a valuable contribution to

research in the field since most of the studies regarding the global use of technology at a school

level have been carried out in North America, Western Europe and Asia, while less studies

have been conducted in South America, Africa, Oceania and Eastern Europe [26].

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 2 / 21

https://doi.org/10.1371/journal.pone.0201919


In particular, the aim of the current study is to investigate students’ PS ability performance

at pre-operational and concrete operational stages, which are two of the four types of Piaget’s

executive control stages. Since students were able to choose the computer course in the fourth,

fifth and the sixth grades, and which could be their first, second or third time (although not

third time for fourth graders), the aim was to investigate the effects of these on students’ PS

ability performance at the abovementioned stages. For this purpose, the following research

questions were examined:

RQ1: Is there a statistically significant relationship between pupils’ performance of PS ability

when completing the tasks at the pre-operational stage and concrete operational stage for a

series of execute commands, if-clauses, loops and variables?

RQ2: Is there a gender difference in performance of PS ability at the pre-operational and the

concrete operational stages?

RQ3: What is the effect of the attending grade of the primary school on performance of PS

ability at the pre-operational and the concrete operational stages?

RQ4: What is the effect of the consecutive year of taking the computer course on performance

of PS ability at the pre-operational and the concrete operational stages?

The results of this study may be of interest to teachers and educators of programming, who

create the formal teaching process and design formal instructions, accordingly. Moreover, the

results may help designers of curricula for computer courses on a national scale receive feed-

back on the implementation of specific curricular practices, which may be shared between var-

ious educational systems.

Background

Problem solving skills and computer science education

PS skills refer to the capability of tackling issues and problems in different domains, such as

personal, social and work. PS skills, along with critical thinking and collaborative learning

skills, are viewed as a necessary part of problem-based learning [27]. When students learn

through the experience of solving problems, they can learn both content and thinking strate-

gies [28], while thinking about a complex problem or task fosters even deeper learning [29].

PS can apply to different fields, such as Psychology, Economy, Statistics, etc., and is also a

core competence in computer science education [13,30–34]. Such widespread importance of

PS has recently been recognised by several decisive international institutions, which emphasise

investing in PS skills. For instance, the Global Agenda Council on Employment [1 p. 7, 2]

reports that “policy-makers and social partners across the world have become increasingly

concerned with the match between their workforces’ skills and their labour market’s needs.”

Among these employees’ skills are both PS and ICT skills. Moreover, in 2016, the European

Commission released A New Skills Agenda for Europe [3], where a significant lack of digital

skills in Europe was recognised at all levels due to the rapid digital transformation of the econ-

omy. Almost half of the EU population lacks basic digital skills and the number of unfilled

vacancies for ICT professionals is expected to almost double by 2020. Thus, European Union

Member States have been called on “to invest more in digital skills‘formation (including Pro-

gramming/Computer Science)” [3 p. 7].

Thus, teaching programming has been incorporated into the primary school curriculum as

a part of computer science education in several European countries [4]. For instance, in Slove-

nia, as a European country, programming has been incorporated into the national curriculum

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 3 / 21

https://doi.org/10.1371/journal.pone.0201919


in primary schools as an optional subject and PS has been defined as one of the five main cur-

riculum pillars.

In computer science education, various aspects of PS have been examined. On the one

hand, some authors [32,35–37] write about students’ PS performance, which consists of pro-

grammers’ PS strategies and program development skills. On the other hand, Gluga et al. [9]

argue that not all students are capable of a certain performance of PS, as it depends largely on

their general abstract reasoning skills. Accordingly, PS ability and students’ performance mea-

surement need to be discussed. For instance, when students’ PS ability is at the highest possible

level, they solve problems in writing programs as a five-step process [9 p. 23]: “(1) Abstract the

problem from its description, (2) Generate subproblems, (3) Transform subproblems into

sub-solutions, (4) Recompose, and (5) Evaluate and iterate.”

The Neo-Piagetian theory of cognitive development in computer science

education

For the abovementioned reasons, in computer science education teachers have frequently a

need for differentiating students according to their PS ability performance. One possible way

is the Neo-Piagetian theory. It is based on the classical Piagetian theory, where a child who

shows a certain level of abstract reasoning on a given problem is considered to exhibit the

same level of abstract reasoning on many other problems. While the classical Piagetian theory

argues that intellectual development of the individual depends on biological maturity, accord-

ing to the Neo-Piagetian theory, people are thought to progress in abstract thinking regardless

of their age, but rather as they gain expertise in a specific problem domain [25]. According to

Piaget, students can be classified into four different groups, depending on their level of abstract

thinking. They can either be at the sensorimotor, pre-operational, concrete operational or for-

mal operational stage.

Firstly, at the sensorimotor stage, students can trace and understand the code with up to

50% accuracy. The latter means that students can understand how the program works, usually

based on the teacher’s intervention questions. When tracing code, students have to put in a

certain degree of effort. Instead of reading the code, they instead insert random data and try to

find an answer. Secondly, at the pre-operational stage, students can trace code and conclude

how the code works without any problems. However, they “tend not to abstract from the code

to see a meaningful computation performed by that code” [9 p. 32]. For students, the lines in a

piece of code are only weakly related. Inductive reasoning is used to derive a function of a

piece of code by examining the input/output causal relationships. Thirdly, at the concrete

operational stage, students are capable of routine reasoning about programming abstractions,

which is limited to already known real situations and less on hypothetical situations. More-

over, students can write small programs with well-defined specifications, while they may have

difficulties when writing large programs. They are also capable of deductive reasoning, which

is used to derive a function just by reading the code behaviour [9]. Finally, at the formal opera-

tional stage, students can reason logically, consistently and systematically about hypothetical

situations.

The abovementioned principles of the Neo-Piagetian theory can be helpful in a teaching

process on a large scale. The use of the theory can be argued with constructivist approaches to

programming learning where learning is seen as an active knowledge construction process.

Particularly, gaining knowledge involves both learning facts and finding connections between

already known and new pieces of information [15,38–41]. However, teachers are not supposed

to teach knowledge, but rather to take on the role of trainers encouraging students to acquire

knowledge by themselves, e.g. through problem-based learning [15].

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 4 / 21

https://doi.org/10.1371/journal.pone.0201919


Effects on problem solving ability performance in computer science

education

Students’ PS ability performance can be affected by gender, age and programming experience.

The findings of existing research revealed that the effects of gender and age vary across levels

of education. Among primary school students, Kalelioğlu [8], found a slight increment in the

female students’ reflective thinking skills towards PS versus the males’ skills when learning

programming, by using the code.org site. In contrast, Bruckman, Jensen, and DeBonte [42]

conducted a study with 475 children and found no gender differences in programming perfor-

mance when using a computer-supported collaborative environment. In higher education,

male students develop programming skills easier than female students [43], while also fewer

and fewer female students are attracted to computer science-related activities [44].

However, the variation in students’ ages in one class may constitute a problem for computer

science teachers. For instance, according to the national curriculum for Slovenia, the computer

science course is an optional subject and can be selected by pupils between the third and the

sixth primary school grades (the pupils’ age is between 8 and 11 years). Since pupils attend

computer courses optionally, they can attend the computer course for the first, second or third

year. Consequently, teachers face the problem of heterogeneous groups of students, who could

not be differentiated based on age, meaning that the year of attending the course is not a suffi-

cient criterion since students may develop their PS abilities differently over time.

Regarding programming experience, many visual programming environments provide

child novice programmers with visual support in understanding programming concepts and

building codes. For instance, the Scratch environment allows pupils to engage in drag-and-

drop programming, where language blocks from the block palette are dragged and attached to

other blocks [45]. The pupils then receive visual feedback showing them the execution of the

scripts, so that they can understand how these scripts work [46]. The Scratch environment

allows students to learn “fundamental concepts such as programming logic, variables, and con-

trol structures like branching with if-then-else, looping with while constructs, and input/out-

put capabilities, among many other things” [10 p. 151]. In addition to Scratch, a wide range of

programming tools are available on the market for novice users to learn about programs, such

as Hopscotch (http://www.gethopscotch.com/), Alice (http://www.alice.org/index.php), Tyn-

ker (https://www.tynker.com/) and many others.

Feng, Gardner and Feng [10] recognise two main advantages of these block-based program-

ming environments. First, block-based languages possess a low barrier to entry, which allows

students with no prior programming experience to develop the required skills easily and to

stay motivated in order to continue learning. Second, these environments are suitable for vari-

ous users of different ages and at different levels of programming experience, from primary

school pupils and college students to professionals. However, when pupils aged 6–11 years are

taught programming, Chiprianov and Gallon [11] were concerned about the idea of first learn-

ing programming through puzzles. They suggested rather giving students time to explore

before teachers explain to them the visible components and functions. What is more, spatial

relations can also be taught through robots.

Related works

Previous studies have addressed PS performance, ability and related skills from various per-

spectives and can be classified into two groups. The first group of studies [13–15] sought to

develop new visual environments and learning systems where students were encouraged to

develop their programming abilities through PS orientation. The second group of studies [7–

12] examined the effects of visualised programming and teaching approaches in computer

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 5 / 21

http://www.gethopscotch.com/
http://www.alice.org/index.php
https://www.tynker.com/
https://doi.org/10.1371/journal.pone.0201919


science education on students’ PS abilities and thinking. In what follows, both groups of stud-

ies are discussed in detail.

Problem solving as a core of visual programming environments and

learning systems

Chao [13] developed a visual PS environment to teach programming and examined students’

patterns of computational practices (Sequence, Selection, Simple iteration, Nested iteration,

and Testing), design strategies (Problem decomposition, Abutment composition, and Nesting

composition) and computational performance (Goal attainment and Program size) in solving

computational problems. 158 college students were included in the study and the results

revealed that the students employing a more selective approach to computational practice

tended to use the more advanced nesting composition, which may result in “goal attainment”

computational performance.

Moreover, Chung et al. [14] proposed in their study an adaptive PS oriented system for

learning programming, which can diagnose students’ learning difficulties according to the spe-

cific learning portfolios of each individual in the system. As the system classifies the learning

problems, the system encourages students to understand PS correctly and, consequently, helps

students develop professional programming abilities. In particular, when students solve a

problem by programming code, the system diagnoses the correctness of conceptual knowledge

and displays the result on the screen in real-time. Afterwards, the correctness is diagnosed by

applying strategic knowledge.

Similarly, Motschnig-Pitrik, and Holzinger [15] examined similarities between student-

centered teaching and new media. They defined new media as an adaptable tool that could

improve the quality and effectiveness of learning and teaching. Authors saw potential in its

combination with a student-centered approach, which has been shown to improve academic

results and the personal values of students. The Internet can be used as a resource for acquiring

knowledge and to support communication between students and the facilitator. This was

named Student-Centered eLearning (SCeL). As the main characteristics of SCeL, they noted

the requirement for communicative and social skills. Other requirements were: electronically

available materials and the use of a computer as a resource. Student-centered teaching requires

three basic conditions: the realness of the facilitator towards students, respects towards stu-

dents and empathic understanding or active listening by students. In comparison to other

didactic methods, student-centered teaching has the most similarities with constructivism,

which considers learning to be a knowledge construction process that is built on existing

knowledge, meaning that the learning is individual.

Effects on problem solving abilities and thinking skills in computer science

education

In existing research, an emphasis has been placed on investigating the effects of visualised pro-

gramming and teaching approaches in computer science education on students’ PS abilities

and thinking. Firstly, Lai and Yang [7] investigated the effects of visualised programming on

students’ PS abilities and logical reasoning skills. One hundred and thirty pupils attending a

computer course in the 6th grade of a primary school were included in the study. They were

divided into two groups—the first group used Scratch and the second group used Adobe Flash

to learn programming, which was also used as a tool for creating interactive content in various

domains of education, such as civil engineering and medicine [47]. Before and after learning

programming, students conducted a logic reasoning test. The findings revealed no statistically

significant effect for Scratch programming learning on pupils’ logical reasoning. However, a

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 6 / 21

https://doi.org/10.1371/journal.pone.0201919


significant and positive effect of Scratch programming learning on pupils’ PS ability was

found. Additionally, pupils mostly showed positive attitudes towards Scratch learning, except

those who demonstrated lower achievements in programming [7].

Moreover, Kalelioğlu [8] examined in his study the effects of the teaching site www.code.

org on reflective thinking skills on PS. Thirty-two primary school pupils were included in the

study and the data was obtained with a quasi-experiment, which was comprised of a five-week

experimental process and focus groups interviews, while a reflection paper from the IT teacher

was analysed as well. The findings revealed that teaching programming to primary school stu-

dents in the code.org site did not cause any differences in reflective thinking skills towards PS.

Female participants showed slightly higher mean scores in reflective thinking skills towards PS

than male participants. Pupils were found to develop a positive attitude towards programming,

and female pupils were revealed to be as successful as their male counterparts.

Secondly, the effects of various teaching approaches in computer science education on stu-

dents’ PS abilities and thinking were examined. For instance, Gluga, Kay, Lister, and Teague

[9] proposed the Neo-Piagetian theory for classifying materials used in learning and assess-

ment in computer science education. An interactive web-based tutorial for Neo-Piagetian cate-

gorization of assessment tasks was described and the results were reported in an evaluation of

the tutorial’s effectiveness. Twenty computer science educators participated, and the findings

revealed that they classified assessment tasks with 85% accuracy in the pre-operational stage,

71% in the concrete operational stage, and 78% accuracy in the formal operational stage. After

using the tutorial, self-confidence in applying Neo-Piagetian theory to classifying program-

ming questions was higher compared to before use.

Moreover, Lye and Koh [12] reviewed 27 intervention studies to find out how computa-

tional thinking can be introduced in K-12 contexts. The authors proposed that more studies,

which are focused on computational practices and computational perspectives, could be con-

ducted in a regular classroom. When programming, the “think aloud” protocol is proposed, so

that students could verbalise their thought processes, while also proposing a programming

activity to be captured and analysed. In order to foster both computational practices and

computational perspectives, “a constructionism-based problem-solving learning environment

with information processing, scaffolding and reflection activities” is proposed [12 p. 51].

Further on, Chiprianov and Gallon [11] reported preliminary results on the implementa-

tion of the computer science course emphasising computational thinking in the mandatory

national curriculum in France. Computational thinking was introduced to K-5 pupils who are

between 6 and 11 years old. While children are traditionally organised into groups of about

20–30 children per class, in the computer science course it was proposed that children be orga-

nised into groups of about 10–15. The findings revealed more interaction when learning in

groups of 4–5 children, than when compared to learning in pairs. Also, pupils demonstrated a

need for time to explore before visible components and functions were introduced to them,

while space location was initially taught through robots and, later, through puzzles.

A critical outlook

In the above-mentioned studies, emphasis was placed on new visual environments and learn-

ing systems to support students’ PS abilities. Lai and Yang [7] advantageously found significant

positive effects for learning programming in Scratch on students’ PS ability, even though Kale-

lioğlu [8] found no significant effect of teaching programming through the www.code.org site

on reflective thinking skills towards PS. Some authors [13,14] even proposed newly developed

visual programming environments, which allow students/pupils to interact constructively with

visually rich elements which support the practicing of PS skills.

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 7 / 21

http://www.code.org
http://www.code.org
http://www.code.org
https://doi.org/10.1371/journal.pone.0201919


Moreover, research on teaching approaches towards programming advantageously revealed

the positive effects of using the Neo-Piagetian theory for preparing learning materials and

assessment tasks during the teaching of programming [9]. Computer science teachers selected

appropriate tasks for each executive stage of students’ cognitive development with relatively

high accuracy. However, overall performance of the computer course may be better when stu-

dents learn in groups of 4–5 children than in pairs [11], and, with respect to gender differ-

ences, female students performed better with regard to reflective thinking skills towards PS

than male students [8].

However, existing studies did not consider the Neo-Piagetian theory of cognitive develop-

ment, where the authors would include students in the study and concurrently observe the

effects of gender and age on students’ PS ability performance through solving particular tasks

on various executive control stages. Previous studies have also not thoroughly examined why

students chose the course. Also neglected were the tendencies in the years that followed the

implementation of the Neo-Piagetian approach in the computer course. These issues are exam-

ined and addressed in the proposed work as described in the subsequent sections.

Methodology

Participants

The participants in the proposed study were 1,028 pupils from the fourth, the fifth and the

sixth years attending a computer course at all public primary schools in Slovenia where this

course was implemented. The Institutional Review Board (IRB) of the Faculty of Arts at the

University of Maribor, Slovenia, reviewed and approved the study. An online survey question-

naire for obtaining the pupils’ response (data) was developed. After data screening, 83 units

were removed from the initial dataset due to incompleteness in filling out the questionnaire,

hence, questionnaire data from 945 primary school students (651 (68.9%) boys and 294

(31.1%) girls, all aged between 9 and 11 years old), were included in the analysis. Table 1

shows the pupils’ distribution across years and experience, i.e. course attendance.

Study design and procedure

The computer course and the Neo-Piagetian theory of cognitive development. Accord-

ing to the national syllabus [48], in Slovenia, taking a computer course is not required in pri-

mary schools, but it is available to students in fourth, fifth and sixth grades who want to learn

computer coding and PS thinking voluntarily. For pupils who started attending the computer

course at the beginning of the school year 2016/2017, the computer course was taught for alto-

gether 35 school hours per class in the fourth, fifth and sixth grades.

Within the above context, the implementation of the computer course adopted here was in

line with the national syllabus, which consists of five main chapters [48]: Algorithms, software

data, PS, as well as communication and services. The overall aims of the computer course were

to:

Table 1. Distribution of pupils in the fourth, the fifth and the sixth grades in relation to attending the computer

course for the first, second or third time.

Grade/year First year Second year Third year Total

Fourth grade 322 13 0 335

Fifth grade 150 208 7 365

Sixth grade 66 117 62 245

Total 538 338 69 945

https://doi.org/10.1371/journal.pone.0201919.t001

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 8 / 21

https://doi.org/10.1371/journal.pone.0201919.t001
https://doi.org/10.1371/journal.pone.0201919


• Learn basic computational concepts,

• Develop algorithmic/computational thinking,

• Develop PS skills,

• Realise abstraction and develop modelling skill, and

• Develop creativity, logical thinking and accuracy.

Prior to the implementation of the computer course, the teachers attended several seminars

and courses about new programming tools, as well as didactic and PS strategies. Also, the prin-

ciples of the Neo-Piagetian theory were introduced along with materials and tasks for pupils.

At the seminars, teachers were advised to teach basic programming concepts (series of state-

ments, if-statements, loops and variables), as well as to implement diverse activities, i.e. devel-

oping presentations, games and animations, and PS, in order to develop and upgrade pupils’

comprehension. Due to the non-homogeneity of the groups of pupils in schools, teachers had

a certain degree of freedom in terms of stating individual goals for particular groups of pupils.

While they were obliged to remain within the framework of the syllabus, they were able to con-

sider the goals based on the number of pupils in the class and prior experience with pupils’

capabilities. For instance, teachers could also use different software for visual programming

tools, like TouchDevelop, AppInventor or Scratch [45].

The National Education Institute Slovenia proposed the allocation of school hours and the

specific guidelines for the content of problems which were to be considered at the computer

course. Regarding time allocation on an annual basis, four school hours were proposed for the

introduction to PS and the software Scratch. Twenty school hours were allocated to algorithms

and programming where pupils were taught programming concepts. A further eight school

hours were allocated for the development of the project, where pupils set their own problem,

which was to be solved by using programming concepts. With regard to the specific guidelines

for the content of problems, teachers were provided with access to proposed teaching and

learning materials on a web platform. Among other things, it allowed teachers to find and

overview tasks for each programming concept.

To sum up, in the proposed computer course, the pupils developed algorithms for simple

problems, they connected multiple algorithms in the operating unit, developed programs on

the algorithm basis, learned about loops, conditions and variables, identified and corrected

errors in the program, learned strategies for PS, as well as appreciated the unsuccessful attempt

as part of the solution, and developed perseverance. Since the students used Web applications,

they also learned about safety and personal data protection.

Design of the evaluation session, validity and reliability. The tasks for the current study

were designed according to the Neo-Piagetian theory of cognitive development that is based

on Piaget’s premise that children construct knowledge when interacting with the environment.

In the assimilation process, children incorporate materials from the environment into their

way of thinking, while during the accommodation process their perception is changed by

outer stimuli [41]. The comprehension of the previously mentioned four programming con-

cepts and capabilities of their use was examined with respect to different levels of the Neo-Pia-

getian theory.

Four tasks were designed at both the pre-operational and concrete operational stage by the

team of experts at the National Education Institute Slovenia. The experts have both pedagogi-

cal competencies gained during a decade of teaching experience as well as formal education in

computer science. Tasks were prepared based on the findings of Gluga, Kay, Lister, and Teague

[9], where the Neo-Piagetian approach was also used. Core tasks remained the same, yet the

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 9 / 21

https://doi.org/10.1371/journal.pone.0201919


difficulty of tasks was only adjusted to the two Piagetian stages and the programming language

to Scratch. For each stage, not more than one task was defined in order to ensure an enjoyable

and not overly time-demanding and cognitively demanding data collection process, which is

advised when children or young people are study participants [49].

A pre-test with computer science teachers was conducted to eliminate ambiguous tasks and

ensure concise, valid and reliable tasks. The pre-test showed that figures should be removed

from tasks, otherwise students may understand instructions differently; hence, the figures cor-

responding to each task were removed. Apart from that, a pilot study was constructed by

administering the questionnaire to two classes, so as to ensure a flawless understanding of

instructions, tasks and other relevant questions.

The tasks at the pre-operational stage were designed in a way that a pupil would be able to

solve them correctly in case (s)he understood the particular programming concept (series of

execute commands, if-clauses, loops and variables) and would be able to trace the code and

understand its functioning.

The tasks at the concrete operational tasks were designed in a way that a pupil would be

supposed to solve them in case (s)he was capable of logical operations of conservation, revers-

ibility or transitive inference [50]. Reversible logic operations suppose that a pupil can change

the program in a way that (s)he performs the same output in a different way. Since the partici-

pants in this study were primary school students who have just started with programming, the

tasks were designed in a way that pupils first had to find out what the program does and then

choose from a list the program that provides the same output. Most of the tasks at the concrete

operational stage are based on the logical operation of conservation, while one task is based on

the logical operation of reversibility.

Compliance with ethical standards and data collection. In the planning, execution,

and reporting of the research presented in this paper, all related ethical issues were

addressed. In particular, all procedures performed in this study were in accordance with the

ethical standards of The Institutional Review Board (IRB) of the Faculty of Arts at the Uni-

versity of Maribor, Slovenia. Likewise, an informed consent form was obtained from all indi-

vidual participants included in the study: parents, teachers and representatives of primary

schools. Moreover, the ethical standards of the 1964 Helsinki declaration and its later

amendments [51] were respected, since the study did not constitute a medical examination

and presented no risk to its subjects. The research study was planned carefully, so that any

potential psychological or physical harm for participants would be avoided. Furthermore,

the psychological risks were reduced by not requesting participants to answer questions

where the PS of particular tasks were required. Accordingly, participants were always able to

answer such questions by stating that they do not know the answer or could skip tasks. Like-

wise, physical risks were reduced by allowing participants to stop filling out the question-

naire at any time and leave the online survey without completing the questionnaire [20]. In

line with the above, the ethical standards in research released by the Society for Research in

Child Development [52] and British Guidelines for research with children and young people

[49] were also respected.

After attending the computer course, the pupils were given an online survey question-

naire in order to obtain data. They filled out the questionnaire in the class in the presence

of their computer science teacher and were not allowed to access the online questionnaire

outside of school. The access to the survey was exclusively provided to computer science

teachers in all classes in 239 primary schools in Slovenia which carried out the computer

course. Pupils had one academic hour (45 minutes) at their disposal to fill out the

questionnaire.

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 10 / 21

https://doi.org/10.1371/journal.pone.0201919


Instrument

The online survey questionnaire comprised four main sections: (1) Demographic informa-

tion, (2) Tasks at the pre-operational stage, (3) Tasks at the concrete operational stage, and

(4) Questions related to the computer course. In total, 13 questions were used for all the sec-

tions briefly described below.

Section 1: Demographic information included questions about gender, the grade of the pri-

mary school and the number of years taking the computer course. Students could attend either

the fourth, fifth or the sixth grades of primary school and could take the computer course

either for the first, second or for the third time, independent of the grade they were attending.

The only impossible combination was to be in the fourth grade and attend the computer

course for the third time. The aim of identifying the pupils’ history of taking the computer

course was to identify pupils’ prior program experience [53].

Sections 2 and 3: Programming performance was measured by providing tasks at the pre-

operational and the concrete operational stages. At both stages, the tasks covered four main

elements: A series of execute commands, if-clauses, loops and variables. For each of these ele-

ments two tasks were provided: one at the pre-operational and one at the concrete operational

stage.

Altogether there were eight tasks and their order was randomised in order to reduce the

learning effect. Similarly, participants did not know at which of the abovementioned stages

they were. Participants were asked to respond to each close-ended question/task by choosing

one of the five provided answer options, while only one answer was correct.

Section 4: Computer course-related questions were presented to the pupils regarding the

reason for taking the computer course. Students were provided with one semi-closed question,

so that they were able to select the reason from a list or write down their own reason. More-

over, pupils were asked about their aspirations of taking the computer course in the following

year. It was measured with one semi-closed question, so that pupils were allowed to select any

of the listed answer options or were invited to list their own thoughts.

A detailed description of the questionnaire is included in S1 Appendix, while particular

tasks can be seen in S1–S11 Figs. At the end of the questionnaire there is a note explaining

how questions with tasks are connected to the Neo-Piagetian stages.

Data analysis

Descriptive statistics were used to describe pupils’ performance of PS ability at the pre-opera-

tional and concrete operational stages. In order to compare PS ability performance in various

tasks and at both stages, a Chi-Square test for associations was conducted. To further reveal

whether there was a difference between boys and girls, the Mann-Whitney U Test was used,

since the assumptions for the use of this test were met, since there was a non-normal distribu-

tion of data; the dependent variable was measured at the continuous level, the independent

variable consisted of two categorical, independent groups, and the assumption of indepen-

dence of observations was met. Further on, when inspecting whether pupils’ PS ability perfor-

mance at the pre-operational and the concrete operational stages was affected either by the

pupils’ grade or the number of years taking the computer course, the Kruskal-Wallis H test

was used. Before statistical analyses, the normality of data was tested using the Kolmogorov-

Smirnov test for the RQ2-RQ4, where testing the normality was one of the assumptions for

the particular statistical test to be used. The analyses were performed with the IBM SPSS Sta-

tistics 21.0 (https://www.ibm.com/analytics/us/en/technology/spss/). Data is available in

S1 Dataset.

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 11 / 21

https://www.ibm.com/analytics/us/en/technology/spss/
https://doi.org/10.1371/journal.pone.0201919


Results

RQ1: Pupils’ PS performance across stages

To answer RQ1, the descriptive statistics, when summing up correct and incorrect answers of

each task per stage, resulted in pupils’ performance of PS with a median value of 2.00 (SD =

1.30, min = 0, max = 4) for the pre-operational stage and a median value of 1.00 (SD = 1.24,

min = 0, max = 4) for the concrete operational stage.

Table 2 shows the results from the Chi-square test regarding the existence or not of

statistically significant differences in the PS performance of a single type of tasks between

the pre-operational and concrete operational levels. When completing the task of series of

execute commands, a statistically significant association between pupils’ PS ability perfor-

mance at the pre-operational and concrete operational stages exists, i.e., x2 (1,945) = 19.09,

p< .001.

Table 2 further shows that there was a statistically significant association between PS ability

performance at the pre-operational and concrete operational stages when completing tasks of

if-clauses, x2 (1,945) = 94.20, p< .001. Table 2 also shows a statistically significant association

between performance at the pre-operational and concrete operational stages when completing

tasks of loops, x2 (1,945) = 47.23, p< .001. Likewise, the same association was found when

completing tasks for variables, x2 (1,945) = 139.83, p< .001.

RQ2: Gender differences on PS performance at each stage

Before performing a gender analysis, the Kolmogorov-Smirnov (with Lilliefors correction) test

was applied to the data to test for normality. From the latter, it was found that the data were

not distributed normally (p< .001). The results of the gender analysis revealed no statistically

significant effect of gender on performance of PS at the pre-operational stage (p> .05) or the

concrete operational stage (p> .05).

Moreover, an analysis was performed as to whether gender differences were evident in

scores for each task at the pre-operational and concrete-operational stages. The results revealed

statistically significant differences between boys and girls only in scores for the task of loops at

the pre-operational stage (U = 85.55, z = −3.07, p< .01). Boys had an average rank of 488.58,

while girls had an average rank of 438.50.

Table 2. Chi-square comparison table of pairs of students for series of execute commands, if-clauses, loops and variables.

Tasks Pre-operational stage Concrete operational stage x2 (1) p
Incorrect Correct

Count % Count %

Series of execute commands Incorrect 309 53.74 145 39.19 19.09 0.00�

Correct 266 46.26 225 60.81

If-clauses Incorrect 390 63.83 103 30.84 94.20 0.00�

Correct 221 36.17 231 69.16

Loops Incorrect 414 67.43 147 44.41 47.23 0.00�

Correct 200 32.57 184 55.59

Variables Incorrect 364 66.42 109 27.46 139.83 0.00�

Correct 184 33.58 288 72.54

� p < 0.01

https://doi.org/10.1371/journal.pone.0201919.t002

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 12 / 21

https://doi.org/10.1371/journal.pone.0201919.t002
https://doi.org/10.1371/journal.pone.0201919


RQ3: Effects of pupils’ grade on PS performance at each stage

Regarding the RQ3, the adopted Kruskal-Wallis H test showed that there was a statistically sig-

nificant difference in PS ability performance at the pre-operational stage, x2 (2) = 17.78, p<
.001, with a mean rank performance of 435.29, 469.62, and 529.59 for the fourth to the sixth

grades, respectively. Pairwise comparisons using the Kruskal-Wallis test (p = .05) revealed that

pupils in the fourth grade demonstrated lower PS ability performance at the pre-operational

stage than pupils in the sixth grade. Similarly, pupils in the fifth grade demonstrated lower

scores than those in the sixth grade. However, there was no difference in PS ability perfor-

mance at the pre-operational stage between fourth graders and those in the fifth grade.

Likewise, the Kruskal-Wallis H test showed a statistically significant difference in PS ability

performance at the concrete operational stage, x2 (2) = 31.54, p< .001, with a mean rank per-

formance of 417.87, 476.70, and 542.87 for the fourth to sixth grades, respectively. Pairwise

comparisons using the Kruskal-Wallis test (p = .05) revealed statistically significant differences

between all groups of pupils. Accordingly, sixth graders demonstrated the highest mean ranks

in PS ability performance at the concrete operational stage, followed by those in the fifth and

fourth grade.

RQ4: Effects of pupils’ consecutive computer course attendance on PS

performance at each stage

Kruskal-Wallis H test results revealed statistically significant differences in PS ability perfor-

mance at the pre-operational stage, x2 (2) = 19.40, p< .001, with a mean rank performance of

444.99, 495.85, and 579.45 for the first to third consecutive years of computer course atten-

dance, respectively. Pairwise comparisons with the Kruskal-Wallis test (p = .05) further

showed that students who attended the computer course for the first time were worse in their

PS ability performance at the pre-operational stage compared to those who attended the course

for the second or third year. However, there was no difference in PS ability performance at the

pre-operational stage between pupils who attended the course for the second and third years.

The analysis was repeated for the concrete operational stage. The Kruskal-Wallis H test

showed statistically significant differences in PS ability performance at the concrete opera-

tional stage, x2 (2) = 26.38, p< .001. The resulted mean rank performance was 435.44, 515.82,

and 556.15 for those who attended the course for the first to third consecutive years of com-

puter course attendance, respectively. Moreover, pairwise comparisons with the Kruskal-Wal-

lis test (p = .05) revealed that first-year pupils demonstrated the lowest PS ability performance

at the concrete operational stage compared to the second- and third-year pupils. However, no

difference was found in PS ability performance at the concrete operational stage between the

second- and third-year pupils.

Pupils’ thoughts on the computer course

Finally, pupils’ reasons for taking the computer course were explored. The majority (72.8%)

took the course due to their own interest in programming, 6.5% decided to attend the course

due to their parents’ advice, 4.1% due to their fellow pupils, and the rest of the pupils attended

the course due to teachers’ advice, because they like the teacher, or for some other reason. No

statistically significant results were found when analysing whether taking the computer course

due to students’ interest or any other reason had an influence on students’ PS ability perfor-

mance at both stages. However, a Chi-Square test revealed a statistically significant association

between boys and girls who decided to attend the computer course due to their own interest in

the computer course or not, x2 (1,945) = 12.12, p< .001, shown in Table 3. As one can see,

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 13 / 21

https://doi.org/10.1371/journal.pone.0201919


more girls and boys decided for the course due to their own interest than for any other reason.

Further on, more boys than girls counted in both types of reasons, also due to the demographic

structure of the sample.

Moreover, pupils’ tendency to take the computer course in the forthcoming year was exam-

ined as well. The majority (48.1%), reported that they would take the computer course once

again, 35.3% would not take it and the rest of the answers were undefined. The relationship

was also examined between the tendency for taking the computer course or not in the forth-

coming year and the reason for taking it for the current year. Altogether, 789 students were

included in this analysis, and the applied Chi-Square test revealed a statistically significant

association, x2 (1,789) = 17.17, p< .001, as shown in Table 4. The latter shows that more of

those who decided to attend the course for their own interest in the current year tended to

attend the course also in the forthcoming year compared to those who took the course for

some other reason.

Discussion

Delving into the findings

The aim of this study was to investigate PS ability performance in primary school pupils in Slo-

venia who attended a computer course where the Neo-Piagetian approach was used. PS ability

performance was measured at the pre-operational and concrete operational stages, where the

effects of gender, the pupils’ grade and year of taking the computer course were observed.

The analysis revealed three main findings:

1. The performance of PS in tasks or series of execute commands, if-clauses, loops and vari-

ables at the pre-operational stage was associated positively with performance at the concrete

operational stage. It indicates that those who demonstrate good PS ability-performance

scores at the lower executive control stage, similarly demonstrate better scores at the higher

Table 3. Chi-square comparison table of pairs of pupils according to gender and reason for taking the computer course.

Reason for taking the computer course x2 (1) p
My own interest Other reason

Count % Count %

Gender Male 496 72.09 155 60.31 12.12 0.00�

Female 192 27.91 102 39.69

Total 688 100 257 100

� p < 0.001

https://doi.org/10.1371/journal.pone.0201919.t003

Table 4. Chi-square comparison table of pairs of students according to tendency and reason for taking the computer course.

Tendency for taking the computer course x2 (1) p
yes no

Count % Count %

Reason for taking the computer course My own interest 362 79.56 222 66.47 17.17 0.00�

Other reason 93 20.44 112 33.53

Total 455 100 334 100

� p < 0.001

https://doi.org/10.1371/journal.pone.0201919.t004

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 14 / 21

https://doi.org/10.1371/journal.pone.0201919.t003
https://doi.org/10.1371/journal.pone.0201919.t004
https://doi.org/10.1371/journal.pone.0201919


stage. Based on that, the development of pupils’ PS abilities can be understood as progres-

sive, going through sequential executive cognitive control stages.

2. When inspecting for gender differences in PS ability performance at both the pre-opera-

tional and the concrete operational stages, no gender differences were found either at the

pre-operational or concrete operational stages. These findings may show, intriguingly, that

boys do not advance in cognitive thinking abilities faster than girls when problem tasks are

being solved at both the executive control stages. So far, as no effect of gender at the pre-

operational stage is notable, these findings are in line with the findings of previous studies

where no gender differences were found in programming performance [42] or computa-

tional thinking skill levels [54]. However, the findings of the study presented in this paper

revealed that boys demonstrated a higher level of PS ability performance than girls when

solving the task of loops at the pre-operational stage. Accordingly, in this type of task, boys

seem to overtake girls, which is in contrast to the findings of Kalelioğlu [8], where girls

demonstrated higher mean scores in reflective thinking skills towards PS than boys. These

discrepancies in the findings may result from various factors, such as the domain knowl-

edge pupils acquire, cognitive abilities, effects from the social environment, and the atti-

tudes developed towards programming. These findings can also be explained further with

the situation later in life when the number of female pupils interested in the computer sci-

ence activities decreases [44] and male pupils at the tertiary education level develop pro-

gramming skills with more ease than female pupils [43].

3. Pupils in the sixth grade demonstrated better performance than those in the fourth and

fifth grades at both stages, while no significant differences were found between pupils in the

fourth and those in the fifth grades. The findings even showed the significant effect of con-

secutive years of taking the computer course, where the findings intriguingly showed signif-

icant differences in PS ability performance only between the first- and the second-, as well

as the first- and third-year pupils, but not between the second- and third-year pupils.

Accordingly, the findings of our study complement the results of Liu, Zhi, Hicks, and

Barnes [53] where pupils’ PS behaviours were found to be related to their self-reported

prior programming experiences. Moreover, our findings also show, intriguingly, that there

was a significant effect of pupils’ age on PS ability performance. This issue can be under-

stood with the principle of the classical Piagetian theory, which argues that students’ cogni-

tive abilities depend on their biological maturity. However, the Neo-Piagetian theory does

not consider age to be a precondition for students’ progress in abstract thinking. In our

case, this phenomenon could be understood from three different aspects. The first aspect

may be an insufficient number of school hours for the computer course students attended.

Only 35 school hours may not be enough for there to be obvious effects of the teaching pro-

cess, where the differentiation of pupils based on their stage of cognitive development

occurred. The second aspect may be that, due to the newly introduced teaching approach,

following the Neo-Piagetian theory, teachers may have had initial difficulties in differentiat-

ing pupils based on their stages of cognitive development, which may have led to differenti-

ating based on pupils’ age. Since the computer course is an optional subject, computer

course classes are very heterogeneous groups of students with various levels of pre-knowl-

edge and PS abilities. The third aspect may be the possible effects of the social environment,

where upbringing, family and social network may play an important role.

Accordingly, the results of the current study complement the findings of Gluga, Kay, Lister,

and Teague [9] where the Neo-Piagetian approach was proposed as well. While these authors

conducted a study with educators, proposed a freely available tutorial and substantiated that it

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 15 / 21

https://doi.org/10.1371/journal.pone.0201919


can be used efficiently by educators when classifying assessment materials, in the current study

this approach was used when preparing tasks for pupils to measure PS ability performance.

Consequently, the findings presented in this paper enhance the findings of Gluga, Kay, Lister

and Teague [9], since we have pointed out further how the learnable Neo-Piagetian approach

to classifying assessment tasks could be practically used in the classroom when PS ability per-

formance is being assessed.

Likewise, through pupils’ tendency to also select the computer course in the forthcoming

year, it can be recognised that the majority of primary school pupils developed a positive atti-

tude towards programming during the computer course, which is in line with the findings of

Lai and Yang [7], where sixth-grade pupils were included in the study. As of now, pupils

mostly decide for programming due to their own interest. However, those who are advised by

parents or other counterparts are in the minority, which may indicate a group of pupils who

are not familiar with programming to a great extent or have a lower interest in programming.

In this case, the findings of Chiprianov and Gallon [11] may be relevant, where the authors

suggested teaching programming through robots first and, later, through puzzles, which is the

case in learning with Scratch, so that we avoid overly difficult beginnings.

Implications and limitations

The findings of the present research may have a wide range of implications for practice. The

first major practical contribution of the present research is that the findings contribute to edu-

cators of programming and indirectly to pupils as well [20]. According to the findings of the

current study, where the Neo-Piagetian theory of cognitive development was used, it can help

educators, when recognising that a particular group of pupils did not complete the task at the

pre-operational stage correctly, to conclude that students are at a sensorimotor stage of think-

ing. As a result, these pupils cannot follow the code and do not understand the specific concept

correctly. This may be a sign for the teacher to develop activities which would help students

reduce mistakes in understanding the structures of computer science concepts. Likewise,

when pupils do not complete the tasks at the concrete-operational stage, they are likely to be at

the sensorimotor or pre-operational stage. Such pupils are not able to think abstractly and may

refuse an explanation with flowcharts. In this case, a teacher could develop activities in which

pupils could explain the purpose and get a sense of the functioning of the already developed

code, whereby they could recognise its abstractness, which is a precondition for being capable

of writing more complex software where abstractness is necessary. The advantage of a teaching

approach with the Neo-Piagetian theory is that it does not require that the order of stages of

abstract thinking be respected. As a result, students can write software before they can follow

the code or even describe it. When an assessment of students is held, exams based on Neo-Pia-

getian theory can help teachers recognise at which stage students are, so that teachers can

respond appropriately.

Secondly, the findings may help designers of the curriculum for the computer course on a

national level obtain feedback on the efficiency of current pedagogical approaches, and may be

of further help since, due to these findings, it will be easier to track consequences in students’

gained knowledge due to any alterations in the curriculum which could occur in the following

years. For instance, if a computer course would be implemented in the third grade of primary

school, it would be interesting to see whether these students achieved better coding perfor-

mance in the fourth-grade when compared to their predecessors.

Thirdly, the current findings contribute to popular debates about the importance of pro-

gramming and computational thinking, where students learn how to deal with large problems

by breaking them down into smaller, more manageable parts. Programming is viewed as the

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 16 / 21

https://doi.org/10.1371/journal.pone.0201919


literacy of today and a help to practice “21st century skills such as PS, team work and analytical

thinking” recognised and vastly supported by the European Commission [55] as well. The rea-

son is the current situation on the labour market, as “more than 90% of professional occupa-

tions nowadays require digital competences, including programming” [55].

The present study has three main limitations. The first limitation is that the results of

the study could have been affected by pupils’ prior experiences with programming. As the

computer science course is an optional subject, pupils may have had various levels of pre-

knowledge of programming. Also, pupils may have had various prior experience with pro-

gramming outside of school, due to their special interest in self-initiative programming

learning.

The second limitation stems from the self-reporting used in the study. Since an online ques-

tionnaire, filled out in the classroom, was used, it is not known to what extent participants

answered the questions honestly and to what extent the measured PS ability is accurate.

Hence, we suggest that authors of future studies combine quantitative research methods with

qualitative ones, so that qualitative data would elaborate and explain the findings of the col-

lected quantitative data.

The third limitation is the high number of teachers included in teaching the computer

courses in different primary schools. While there is a common syllabus in use on a national

level which provides recommendations for the implementation of a course, there are still pos-

sibilities that there are differences in teaching across teachers, which may influence the results.

Consequently, it is not known to what extent the teaching performance influenced students’

programming performance. The results could be different if all students were taught under the

same conditions, e.g. by e-learning.

Conclusion and future work

The main purpose of this research study was to make a scientific contribution to understand-

ing whether there exist effects of gender, grade and consecutive year of attending the computer

course on students’ PS ability performance at two Neo-Piaget’s executive control stages. The

findings revealed, firstly, that students’ performance of PS ability at the pre-operational stage

was statistically significantly associated with performance at the concrete operational stage

when students were completing tasks of series or execute commands, if-clauses, loops and vari-

ables. If lower performance at the pre-operational stage was demonstrated, the performance

was lower at the concrete operational stage as well. Secondly, no statistically significant effect

of gender on PS ability performance at both stages was found, except for in the case of loops,

where male students demonstrated higher scores than female students. Thirdly, a statistically

significant effect was found for the pupils’ grade and the number of consecutive years taking a

computer course on their PS ability performance. Particularly, pupils in the sixth grade dem-

onstrated better performance than those in the fourth and fifth grades at both stages, while

pupils also attending the computer course for the third time demonstrated higher scores com-

pared to those attending the course for the first or the second time.

In the future, it would be intriguing if every school year the study would be repeated, so

that the programming performance of pupils could be compared across all three grades and,

concurrently, those who attend the computer course for the first, second and third times. As a

result, increments in programming performance could be measured across years and for every

class in primary schools in Slovenia. Moreover, future research would benefit from measuring

the performance of PS before and after taking the computer course among primary school

pupils, so that comparisons could be made and the direct effects of the implementation of the

computer course could be measured.

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 17 / 21

https://doi.org/10.1371/journal.pone.0201919


Based on the presented findings, there is a recognised necessity for novel approaches to

teaching programming where the heterogeneity of students in classrooms is considered, espe-

cially in terms of their PS abilities. The Neo-Piagetian theory allows teachers to consider stu-

dents in an appropriate way, while domain knowledge and the time available for learning

programming still appears to be important. Only when teachers are capable of classifying stu-

dents based on their PS abilities, domain knowledge and practicing, can PS skills be sufficiently

provided, which may be beneficial for society in the long term, so that the goals of 21st century

education will be reached and needs of the labour market satisfied.

Supporting information

S1 Appendix. Questionnaire.

(DOCX)

S1 Dataset. Dataset of collected data.

(SAV)

S1 Fig. The task with the pencil.

(TIF)

S2 Fig. The figure of program A.

(TIF)

S3 Fig. The figure of programs B, C and D.

(TIF)

S4 Fig. The task with steps.

(TIF)

S5 Fig. The figure of program A.

(TIF)

S6 Fig. The figure of programs B, C and D.

(TIF)

S7 Fig. The task with moving the figure.

(TIF)

S8 Fig. The figure of program A.

(TIF)

S9 Fig. The figure of programs B, C and D.

(TIF)

S10 Fig. The task with playing “meow” sound.

(TIF)

S11 Fig. The task with variables “points” and “lives”.

(TIF)

Acknowledgments

We acknowledge the Slovenian primary school students for their participation in the study, as

well as their teachers and representatives of primary schools for help in conducting this

research.

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201919.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201919.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201919.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201919.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201919.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201919.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201919.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201919.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201919.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201919.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201919.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201919.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201919.s013
https://doi.org/10.1371/journal.pone.0201919


Author Contributions

Conceptualization: Radovan Krajnc, Matjaž Debevc.

Data curation: Radovan Krajnc.

Formal analysis: Ines Kožuh.

Investigation: Radovan Krajnc.

Methodology: Ines Kožuh.

Supervision: Leontios J. Hadjileontiadis, Matjaž Debevc.

Writing – original draft: Ines Kožuh.

Writing – review & editing: Ines Kožuh, Radovan Krajnc, Leontios J. Hadjileontiadis, Matjaž

Debevc.

References
1. Klosters D. Matching Skills and Labour Market Needs: Building Social Partnerships for Better Skills and

Better Jobs. Glob Econ Forum. 2014; 28. http://www3.weforum.org/docs/GAC/2014/WEF_GAC_

Employment_MatchingSkillsLabourMarket_Report_2014.pdf

2. Baba J, Abdullah N. Reflective Learning and the Growth of Intellect and Identity. In: Alias NA, Luaran

JE, editors. Student-Driven Learning Strategies for the 21st Century Classroom. Hershey: IGI Global;

2017. pp. 26–43. https://doi.org/10.4018/978-1-5225-1689-7.ch003

3. European Commission. Communication from the Commission to the European Parliament, The Coun-

cil, The European Economic and Social Committee and The Committee of the Regions. A New Skills

Agenda for Europe [Internet]. Brussels; 2016. https://ec.europa.eu/transparency/regdoc/rep/1/2016/

EN/1-2016-381-EN-F1-1.PDF

4. Balanskat A, Engelhardt K. Computing our future: Computer programming and coding—Priorities,

school curricula and initiatives across Europe. Brussels: European Schoolnet; 2015.

5. Cutts Q, Robertson J, Donaldson P, O’Donnell L. An evaluation of a professional learning network for

computer science teachers. Comput Sci Educ. 2017; 27: 30–53. https://doi.org/10.1080/08993408.

2017.1315958

6. Yang J, Huang R, Kinshuk. The Learning Preferences of Digital Learners in K-12 Schools in China. Eur-

asia J Math Sci Technol Educ. 2016; 12: 1047–1064. https://doi.org/10.12973/eurasia.2016.1254a

7. Lai AF, Yang SM. The learning effect of visualized programming learning on 6th graders’ problem solv-

ing and logical reasoning abilities. 2011 International Conference on Electrical and Control Engineering,

ICECE 2011—Proceedings. 2011. pp. 6940–6944.

8. Kalelioʇlu F. A new way of teaching programming skills to K-12 students: Code.org. Comput Human

Behav. 2015; 52: 200–210. https://doi.org/10.1016/j.chb.2015.05.047

9. Gluga R, Kay J, Lister R, Teague D. On the reliability of classifying programming tasks using a neo-pia-

getian theory of cognitive development. ICER ‘12 Proc ninth Annu Int Conf Int Comput Educ Res. 2012;

31–38.

10. Feng A, Gardner M, Feng W chun. Parallel programming with pictures is a Snap! J Parallel Distrib Com-

put. 2017; 105: 150–162. https://doi.org/10.1016/j.jpdc.2017.01.018

11. Chiprianov V, Gallon L. Introducing Computational Thinking to K-5 in a French Context. Proceedings of

the 2016 ACM Conference on Innovation and Technology in Computer Science Education. New York,

NY, USA: ACM; 2016. pp. 112–117. 10.1145/2899415.2899439

12. Lye SY, Koh JHL. Review on teaching and learning of computational thinking through programming:

What is next for K-12? Computers in Human Behavior. 2014. pp. 51–61. https://doi.org/10.1016/j.chb.

2014.09.012

13. Chao P-Y. Exploring Students’ Computational Practice, Design and Performance of Problem-solving

Through a Visual Programming Environment. Comput. Oxford, UK, UK: Elsevier Science Ltd.; 2016;

95: 202–215. https://doi.org/10.1016/j.compedu.2016.01.010

14. Chung IL, Chou CM, Chang CY, Li DK, Hsu CP. Adaptive problem-solving oriented programming learn-

ing system. 2016 International Conference on Applied System Innovation (ICASI). 2016. pp. 1–3.

15. Motschnig-Pitrik R, Holzinger A. Student-Centered Teaching meets new media: Concept and case

study. Educ Technol Soc. 2002; 5: 160–172.

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 19 / 21

http://www3.weforum.org/docs/GAC/2014/WEF_GAC_Employment_MatchingSkillsLabourMarket_Report_2014.pdf
http://www3.weforum.org/docs/GAC/2014/WEF_GAC_Employment_MatchingSkillsLabourMarket_Report_2014.pdf
https://doi.org/10.4018/978-1-5225-1689-7.ch003
https://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/1-2016-381-EN-F1-1.PDF
https://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/1-2016-381-EN-F1-1.PDF
https://doi.org/10.1080/08993408.2017.1315958
https://doi.org/10.1080/08993408.2017.1315958
https://doi.org/10.12973/eurasia.2016.1254a
https://doi.org/10.1016/j.chb.2015.05.047
https://doi.org/10.1016/j.jpdc.2017.01.018
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1371/journal.pone.0201919


16. Khairuddin NN, Hashim K. Application of Bloom’s Taxonomy in Software Engineering Assessments.

Proceedings of the 8th Conference on Applied Computer Scince. Wisconsin: World Scientific and Engi-

neering Academy and Society; 2008. pp. 66–69. http://www.wseas.us/e-library/conferences/2008/

venice/acs/acs09.pdf

17. Thompson E, Luxton-Reilly A, Whalley JL, Hu M, Robbins P. Bloom’s taxonomy for CS assessment.

Conf Res Pract Inf Technol Ser. 2008; 78: 155–161.

18. Marcinka J, Mirzianov O, Mitasiunas A. Learning Process Maturity Model. In: Mitasiunas A, Rout T,

O’Connor R V, Dorling A, editors. Software Process Improvement and Capability Determination Com-

munications in Computer and Information Science. Cham: Springer International Publishing; 2014. pp.

261–267.

19. Sheard J, Carbone A, Lister R, Simon B, Thompson E, Whalley JL. Going SOLO to Assess Novice Pro-

grammers. Proceedings of the 13th Annual Conference on Innovation and Technology in Computer Sci-

ence Education. New York: ACM; 2008. pp. 209–213. 10.1145/1384271.1384328

20. Reference removed for blind review. No Title.

21. Wang XM, Hwang GJ, Liang ZY, Wang HY. Enhancing Students’ Computer Programming Perfor-

mances, Critical Thinking Awareness and Attitudes towards Programming: An Online Peer-Assessment

Attempt. Educ Technol Soc. 2017; 20: 58–68.

22. Barr V, Guzdial M. Advice on Teaching CS, and the Learnability of Programming Languages. Commun

ACM. New York, NY, USA: ACM; 2015; 58: 8–9. https://doi.org/10.1145/2716345

23. Sáez-López J-M, Román-González M, Vázquez-Cano E. Visual programming languages integrated

across the curriculum in elementary school: A two year case study using “Scratch” in five schools. Com-

put Educ. 2016; 97: 129–141. https://doi.org/10.1016/j.compedu.2016.03.003

24. Seanosky J, Guillot I, Boulanger D, Guillot R, Guillot C, Kumar V, et al. Real-Time Visual Feedback: A

Study in Coding Analytics. Proceedings—IEEE 17th International Conference on Advanced Learning

Technologies, ICALT 2017. 2017. pp. 264–266. 10.1109/ICALT.2017.38

25. Lister R. Concrete and Other neo-Piagetian Forms of Reasoning in the Novice Programmer. Proceed-

ings of the Thirteenth Australasian Computing Education Conference—Volume 114. Darlinghurst, Aus-

tralia, Australia: Australian Computer Society, Inc.; 2011. pp. 9–18. http://dl.acm.org/citation.cfm?id=

2459936.2459938

26. Pérez-Sanagustı́n M, Nussbaum M, Hilliger I, Alario-Hoyos C, Heller RS, Twining P, et al. Research on

ICT in K-12 schools—A review of experimental and survey-based studies in computers & education

2011 to 2015. Computers and Education. 2017 104: A1–A15. https://doi.org/10.1016/j.compedu.2016.

09.006

27. Gallagher SA, Sher BT, Stepien WJ, Workman D. Implementing Problem-Based Learning in Science

Classrooms. Sch Sci Math. 1995; 95: 136–146. https://doi.org/10.1111/j.1949-8594.1995.tb15748.x

28. Hmelo-Silver CE. Problem-based learning: What and how do students learn? Educational Psychology

Review. 2004. pp. 235–266. https://doi.org/10.1023/B:EDPR.0000034022.16470.f3

29. Wang M, Derry S, Ge X. Guest Editorial: Fostering Deep Learning in Problem-Solving Contexts with the

Support of Technology. Educational Technology & Society. 2017 20: 162–165.

30. Kay J, Barg M, Fekete A, Greening T, Hollands O, Kingston JH, et al. Problem-Based Learning for

Foundation Computer Science Courses. Comput Sci Educ. 2000; 10: 109–128. https://doi.org/10.1076/

0899-3408(200008)10:2;1-C;FT109

31. Fee SB, Holland-Minkley AM. Teaching computer science through problems, not solutions. Comput Sci

Educ. 2010; 20: 129–144. https://doi.org/10.1080/08993408.2010.486271

32. Hazzan O, Lapidot T, Ragonis N. Guide to Teaching Computer Science: An Activity-Based Approach.

2nd ed. London: Springer; 2011. https://doi.org/10.1007/978-0-85729-443-2

33. Kiesewetter J, Ebersbach R, Görlitz A, Holzer M, Fischer MR, Schmidmaier R. Cognitive Problem Solv-

ing Patterns of Medical Students Correlate with Success in Diagnostic Case Solutions. PLoS One.

2013; 8. https://doi.org/10.1371/journal.pone.0071486 PMID: 23951175

34. Pears A, Seidman S, Malmi L, Mannila L, Adams E, Bennedsen J, et al. A survey of literature on the

teaching of introductory programming. SIGCSE Bull. 2007; 39: 204–223. https://doi.org/10.1080/

08993400500150747

35. Deek FP. The Software Process : A Parallel Approach through Problem Solving and Program Develop-

ment. Comput Sci Educ. 1999; 9: 43–70. Available: http://taylorandfrancis.metapress.com/

(5lnmxs45ty3jwe45bzg1vsnu)/app/home/contribution.asp?referrer=parent&backto=issue,5,5;jour-

nal,26,29;linkingpublicationresults,1:103098,1

36. Gomes A, Mendes AJ. An Environment to Improve Programming Education. In: Rachev B, Smrikarov

A, Dimov D, editors. Proceedings of the 2007 International Conference on Computer Systems and

Technologies. New York, NY, USA: ACM; 2007. p. 88:1–88:6. 10.1145/1330598.1330691

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 20 / 21

http://www.wseas.us/e-library/conferences/2008/venice/acs/acs09.pdf
http://www.wseas.us/e-library/conferences/2008/venice/acs/acs09.pdf
https://doi.org/10.1145/2716345
https://doi.org/10.1016/j.compedu.2016.03.003
http://dl.acm.org/citation.cfm?id=2459936.2459938
http://dl.acm.org/citation.cfm?id=2459936.2459938
https://doi.org/10.1016/j.compedu.2016.09.006
https://doi.org/10.1016/j.compedu.2016.09.006
https://doi.org/10.1111/j.1949-8594.1995.tb15748.x
https://doi.org/10.1023/B:EDPR.0000034022.16470.f3
https://doi.org/10.1076/0899-3408(200008)10:2;1-C;FT109
https://doi.org/10.1076/0899-3408(200008)10:2;1-C;FT109
https://doi.org/10.1080/08993408.2010.486271
https://doi.org/10.1007/978-0-85729-443-2
https://doi.org/10.1371/journal.pone.0071486
http://www.ncbi.nlm.nih.gov/pubmed/23951175
https://doi.org/10.1080/08993400500150747
https://doi.org/10.1080/08993400500150747
http://taylorandfrancis.metapress.com/
https://doi.org/10.1371/journal.pone.0201919


37. Linn MC, Clancy MJ. The case for case studies of programming problems. Commun ACM. 1992; 35:

121–132. https://doi.org/10.1145/131295.131301

38. Harel I, Papert S. Constructionism. Constructionism. 1991. p. xi, 518. http://ovidsp.ovid.com/ovidweb.

cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=psyc3&AN=1991-99006-000

39. Norman DA, Spohrer JC. Learner-centered education. Commun ACM. 1996; 39: 24–27. https://doi.org/

10.1145/227210.227215

40. Holzinger A. Usability engineering methods for software developers. Commun ACM. 2005; 48: 71–74.

https://doi.org/10.1145/1039539.1039541

41. Holzinger A, Pichler A, Maurer H. Multi Media e-Learning Software TRIANGLE Case-Study: Experi-

mental Results and lessons learned Lecture Notes. Comput Sci. 2006; 4556: 559–568. Available: http://

www.justl.org/justl_0_0/multi_media_elearning_software/justl_0_0_0061_0092_holzinger.html%

5Cnpapers2://publication/uuid/89D65972-CBCC-479D-9F19-36D2ACF5DEF1

42. Bruckman A, Jensen C, DeBonte A. Gender and Programming Achievement in a CSCL Environment.

Proceedings of the Conference on Computer Support for Collaborative Learning: Foundations for a

CSCL Community. International Society of the Learning Sciences; 2002. pp. 119–127. http://dl.acm.

org/citation.cfm?id=1658616.1658634

43. Kiss G. A Comparison of Programming Skills by Genders of Hungarian Grammar School Students.

2010 7th International Conference on Ubiquitous Intelligence & Computing and 7th International Confer-

ence on Autonomic and Trusted Computing. 2010. pp. 24–30. 10.1109/UIC-ATC.2010.83

44. Plass JL, Goldman R, Flanagan M, Diamond JP, Dong C, Looui S, et al. RAPUNSEL: Improving self-

efficacy and self-esteem with an educational computer game. The 87th Annual Meeting of the American

Educational Research Association. 2007. http://steinhardtapps.es.its.nyu.edu/create/courses/2176/

reading/AERA_07_Rapunsel_Plass_etal.pdf

45. MIT Media Lab. Lifelong Kindergarten Group [Internet]. 2016. https://scratch.mit.edu

46. Maloney J, Resnick M, Rusk N, Silverman B, Eastmond E. The Scratch Programming Language and

Environment. ACM Trans Comput Educ. New York, NY, USA: ACM; 2010; 10: 16:1–16:15. https://doi.

org/10.1145/1868358.1868363

47. Holzinger A, Ebner M. Interaction and Usability of Simulations & Animations: A Case Study of the Flash

Technology. Human-Computer Interact INTERACT. 2003; 780: 777–780. Available: http://lamp.tu-

graz.ac.at/~i203/ebner/publication/03_zuerich.pdf

48. Ministry for Education S and S. Učni načrt. Program osnovna šola. Računalništvo: neobvezni izbirni pre-

dmet. [Curriculum. Basic school program. Computer science course: optional subject.] [Internet]. 2013.

http://www.mizs.gov.si/fileadmin/mizs.gov.si/pageuploads/podrocje/os/devetletka/program_razsirjeni/

Racunalnistvo_izbirni_neobvezni.pdf

49. Shaw C, Brady L-M, Davey C. Guidelines for Research with Children and Young People. London:

National Children’s Bureau Research Centre; 2011.

50. Corney M, Teague D, Ahadi A, Lister R. Some Empirical Results for Neo-Piagetian Reasoning in Novice

Programmers and the Relationship to Code Explanation Questions. 14th Australas Comput Educ Conf.

2012;123: 77–86.

51. World Medical Association. WMA Declaration of Helsinki—Ethical Principles for Medical Research

Involving Human Subjects [Internet]. 2016.

52. Society for Research in Child Development. Ethical Standards in Research [Internet]. 2007. http://www.

srcd.org/about-us/ethical-standards-research

53. Liu Z, Zhi R, Hicks A, Barnes T. Understanding problem solving behavior of 6–8 graders in a debugging

game. Comput Sci Educ. 2017; 27: 1–29. https://doi.org/10.1080/08993408.2017.1308651

54. Durak HY, Saritepeci M. Analysis of the relation between computational thinking skills and various vari-

ables with the structural equation model. Comput Educ. 2018; 116: 191–202. https://doi.org/10.1016/j.

compedu.2017.09.004

55. European Commission. Coding—the 21st century skill [Internet]. 2017. https://ec.europa.eu/digital-

single-market/en/coding-21st-century-skill

Assessment of problem solving ability

PLOS ONE | https://doi.org/10.1371/journal.pone.0201919 September 12, 2018 21 / 21

https://doi.org/10.1145/131295.131301
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=psyc3&AN=1991-99006-000
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=psyc3&AN=1991-99006-000
https://doi.org/10.1145/227210.227215
https://doi.org/10.1145/227210.227215
https://doi.org/10.1145/1039539.1039541
http://www.justl.org/justl_0_0/multi_media_elearning_software/justl_0_0_0061_0092_holzinger.html%5Cnpapers2://publication/uuid/89D65972-CBCC-479D-9F19-36D2ACF5DEF1
http://www.justl.org/justl_0_0/multi_media_elearning_software/justl_0_0_0061_0092_holzinger.html%5Cnpapers2://publication/uuid/89D65972-CBCC-479D-9F19-36D2ACF5DEF1
http://www.justl.org/justl_0_0/multi_media_elearning_software/justl_0_0_0061_0092_holzinger.html%5Cnpapers2://publication/uuid/89D65972-CBCC-479D-9F19-36D2ACF5DEF1
http://dl.acm.org/citation.cfm?id=1658616.1658634
http://dl.acm.org/citation.cfm?id=1658616.1658634
http://steinhardtapps.es.its.nyu.edu/create/courses/2176/reading/AERA_07_Rapunsel_Plass_etal.pdf
http://steinhardtapps.es.its.nyu.edu/create/courses/2176/reading/AERA_07_Rapunsel_Plass_etal.pdf
https://scratch.mit.edu
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
http://lamp.tu-graz.ac.at/~i203/ebner/publication/03_zuerich.pdf
http://lamp.tu-graz.ac.at/~i203/ebner/publication/03_zuerich.pdf
http://www.mizs.gov.si/fileadmin/mizs.gov.si/pageuploads/podrocje/os/devetletka/program_razsirjeni/Racunalnistvo_izbirni_neobvezni.pdf
http://www.mizs.gov.si/fileadmin/mizs.gov.si/pageuploads/podrocje/os/devetletka/program_razsirjeni/Racunalnistvo_izbirni_neobvezni.pdf
http://www.srcd.org/about-us/ethical-standards-research
http://www.srcd.org/about-us/ethical-standards-research
https://doi.org/10.1080/08993408.2017.1308651
https://doi.org/10.1016/j.compedu.2017.09.004
https://doi.org/10.1016/j.compedu.2017.09.004
https://ec.europa.eu/digital-single-market/en/coding-21st-century-skill
https://ec.europa.eu/digital-single-market/en/coding-21st-century-skill
https://doi.org/10.1371/journal.pone.0201919

