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Abstract

T cell neoplasias are common in pediatric oncology, and include acute lymphoblastic leukemia (T-

ALL) and lymphoblastic lymphoma (T-LBL). These cancers have worse prognoses than their B 

cell counterparts, and their treatments carry significant morbidity. While many pediatric 

malignancies have characteristic translocations, most T lymphocyte-derived diseases lack 

cytogenetic hallmarks. Lacking these informative lesions, insight into their molecular 

pathogenesis is less complete. Although dysregulation of the NOTCH1 pathway occurs in a 

substantial fraction of cases, many other genetic lesions of T cell malignancy have not yet been 

determined. To address this deficiency, we pioneered a phenotype-driven forward-genetic screen 

in zebrafish (Danio rerio). Using transgenic fish with T lymphocyte-specific expression of 

enhanced green fluorescent protein (EGFP), we performed chemical mutagenesis, screened 

animals for GFP+ tumors, and identified multiple lines with a heritable predisposition to T cell 

malignancy. In each line, patterns of infiltration and morphologic appearance resembled human T-

ALL and T-LBL. T cell receptor analyses confirmed their clonality. Malignancies were 

transplantable and contained leukemia-initiating cells (LIC), like their human correlates. In 

summary, we have identified multiple zebrafish mutants that recapitulate human T cell neoplasia 

and show heritable transmission. These vertebrate models provide new genetic platforms for the 

study of these important human cancers.
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Introduction

Over the past 50 years, acute lymphoblastic leukemia (ALL) treatment has improved 

dramatically. With the advent of current multi-agent chemotherapy, survival of pediatric 

patients with many forms of ALL has improved from single digits to over 80% (1, 2), but 

challenges remain. Though T cell ALL (T-ALL) comprises only 15% and 25% of pediatric 

and adult cases (3, 4), it carries a significantly worse prognosis, with pediatric cure rates of 

only 70% (5) and adult survival less than 40% (6, 7).

Lymphoblastic malignancies represent uncontrolled clonal proliferations of immature 

lymphocytes. In general, at least two mutational events must occur in the same pre-

malignant cell: one arresting differentiation, and a second conferring a survival and/or 

proliferative advantage. In some cancers, both requirements are met by bi-allelic mutation of 

the same gene, termed “tumor suppressors.” In others, transformation is mediated by 

mutations to different genes, impacting multiple pathways. For hematologic neoplasia, 

cooperating genetic lesions of transcription factors, tyrosine kinases, and transcriptional co-

activators often coincide (8).

T cell malignancies are molecularly heterogeneous, driven by a complex combination of 

genetic changes (9). To date, the identification of specific molecular alterations that underlie 

lymphocyte transformation has principally come from the discovery of aberrant 

chromosomal translocations and pathway activations in blast cells of ALL patients (10, 11). 

Although several informative translocations have been described (12), most cases lack 

pathognomonic cytogenetic changes (13, 14). Recent studies have clearly established roles 

for dysregulated transcription factors in T-ALL (9), but the genetic lesions underlying this 

dysregulation are unknown. However, one common perturbation in T-ALL has been found, 

as aberrant NOTCH1 activation is reported to occur in over 50% of human T-ALL patient 

samples and cell lines (15). Further studies in both murine and human T-ALL have 

identified the c-MYC proto-oncogene as a direct target of NOTCH1 (16). While these 

reports provide important insights into one subset of T-ALL, undoubtedly, other lesions 

underpinning T-ALL origin and progression have not yet been determined.

While considerable evidence supports the role of genetic modifiers as risk factors for 

leukemia, few heritable mutations conferring this risk are actually known (17, 18), with 

most associated with bone marrow failure syndromes. Outside of these examples, “pure 

familial leukemias” are quite rare, with few pedigrees transmitting disease as a Mendelian 

trait (19–21). Identification of the loci responsible for these familial cases would likely 

provide insight into oncogenic mechanisms at work in sporadic malignancies of the same 

type. However, with their small sample sizes, identifying genetic risk factors in human 

pedigrees has been challenging. Therefore, animal models of heritable leukemic-

predisposition are both valuable and necessary.
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Zebrafish are useful to study vertebrate development through mutational forward genetic 

approaches. They have also become popular models of human cancer, including 

hematologic neoplasia (22–24). Two important studies have used cell-specific over-

expression of mammalian oncogenes to induce zebrafish T-ALL (25, 26). Both transgenic 

models bear striking resemblance to human disease. Their cancers are clonal, and originate 

in the thymus before spreading to peripheral blood. T-ALL cells from these fish efface the 

kidney-marrow, and can engraft in irradiated hosts. But while innovative models, these 

transgenic lines are restricted in scope to the known cancer pathways used to create them.

To date, zebrafish have not been used to pursue unknown genetic lesions underlying T cell 

malignancy. Here, we describe a phenotypic mutagenesis screen in a D. rerio line where the 

native p56lck promoter directs T cell-specific expression of enhanced green fluorescent 

protein (lck::EGFP). We report three different zebrafish mutants that develop heritable T 

cell malignancy. Each faithfully recapitulates human T-ALL and T-LBL in onset, invasion 

pattern, and morphology, and their neoplastic cells are clonal and transplantable. Moreover, 

cells can also be transplanted serially, suggesting the presence of leukemia-initiating cells 

(LIC). As the genetic factors that collaborate to cause these diseases are revealed, these new 

vertebrate models of TALL promise to provide exciting insights into this important class of 

human cancers.

Materials and Methods

Zebrafish Care and Maintenance

Fish were housed in a colony at 28.5°C on a 14/10 hour (hr) circadian cycle. For all 

procedures, fish were anesthetized with 0.02% tricaine methanesulfonate (MS222). Fish 

were handled per NIH guidelines, under a protocol approved by the University of Utah 

Animal Care and Use Committee (IACUC # 08-08005).

ENU Mutagenesis Screen

Male WIK strain lck::EGFP+/+ zebrafish were mutagenized with N-ethyl-N-nitrosourea 

(ENU) as described (27). Mutagenesis efficiency was assessed by non-complementation of 

the golden (gol) locus. Eggs from pigment-deficient gol/gol females were fertilized with 

sperm of mutagenized males. 0.1% of sperm genomes (n=4 400) had gol-inactivating 

lesions, a rate of 30 mutations per haploid genome. Mutagenized males were then bred to 

non-mutagenized WIK lck::EGFP+/+ females to create F1 generations for phenotypic 

screening by fluorescence microscopy.

Generation of Gynogenetic Diploids by Early Pressure (EP)

In vitro fertilization and pressure treatment were performed as described (28). Sperm was 

UV-treated with 7 × 104 μ Joules using a Stratalinker (Stratagene, Cedar Creek, TX). 

Pressures and hydraulic press equipment were as reported (29).

Microscopy and Imaging

Fish were screened for abnormal GFP patterns at 6 days (d), 1 month (mo), 3 mo, 4.5 mo, 

and 6 mo with an Olympus szx12 fluorescent microscope and camera (Center Valley, PA) 
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and Optronics Pictureframe software (Goleta, CA). Slides were imaged with a Nikon 

Eclipse e600 microscope (Tokyo, Japan), using a Diagnostic Instruments 14.2 color camera 

and Spot Imaging software (Sterling Heights, MI).

Histology and Immunohistochemistry (IHC)

Fish were fixed in 4% paraformaldehyde, paraffin-embedded, sectioned, and stained with 

hematoxylin and eosin (H&E) by standard techniques. For IHC, staining was performed at 

37°C using a BenchMark XT immunostainer (Ventana Medical Systems, Tucson, AZ). 

Anti-GFP monoclonal antibody (mAb) was applied for 1 hr at 1:400 dilution, with 

resolution of GFP+ tissues using an IView DAB detection kit (Ventana). Hematoxylin was 

used as a counter-stain.

Flow Cytometry and Cytology

Fish thymi, marrow, and GFP+ tissues were dissected and placed in Zebrafish Kidney 

Stromal (ZKS) media (30). Cells were dissociated by pipetting, filtered with SmallParts 

35μm filters (Miramar, FL), and again passed through 35μm Filcon filters (Becton 

Dickinson, San Jose, CA) before analysis. Flow cytometry and fluorescence-activated cell 

sorting (FACS) were as described (31), using a BD FACSVantage instrument (Becton 

Dickinson). GFP intensity, forward- and side-scatter were used for gating. Slides were made 

by centrifugation (800 rpm × 5 min) with a Shandon Cytospin 4 (Thermo Fischer Scientific, 

Waltham, MA) and Wright staining 2 min.

RT-PCR

RNA was extracted from twice FAC-sorted GFP+ cells with Trizol (Invitrogen, Carlsbad, 

CA), and TURBO DNase-treated (Ambion, Austin, TX). cDNA was made with Fermentas 

1st strand cDNA kit (Glen Burnie, MD). Primers and PCR conditions are listed in 

Supplemental Material.

TCR Repertoire Analyses

Tumor tissue was dissected from mutant fish, and thymus and gut from a single WT 

lck::EGFP fish were used as a control. GFP+ cells were FACS-purified as described. Total 

RNA was extracted with Trizol, and 5′-RACE performed using a Clontech SMART RACE 

kit (Mountain View, CA). Primers for tcrβ1 constant region exon 3 were used, and are listed 

in Supplemental Material. PCR products were excised from ethidium bromide-stained 

agarose gels, and bands purified using a Qiagen QIAquick Gel Extraction kit (Valencia, 

CA). DNA was cloned using the TOPO TA Cloning kit (Invitrogen) and sequenced by 

conventional methodologies.

Statistical Analysis of tcrβ1 Sequences

Assuming random sampling, clones were distributed as a multinomial random variable, 

where the number of total clones was unknown but ≥12 (observed number of clones from 

the WT control fish). A goodness-of-fit test for the following hypothesis was tested: “Clones 

have a multinomial distribution with ≥12 types of clones of equal probability.” P-values 

were then obtained from 20 000 Monte Carlo simulations.
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Cell Transplantation

Tumors were dissected and cells prepared as above. GFP+ cells were FACS-purified, diluted 

in ZKS media, and concentrations confirmed by hemocytometer counts. Using a 137Cesium 

source, hosts were irradiated with 25 gray (Gy), and intra-peritoneally (IP) injected 2 d later 

with 2.5 × 103 to 1 × 106 of FAC-sorted GFP+ cells in injection volumes of 5–10μl. 

Recipients were monitored by serial fluorescence microscopy to follow engraftment and 

disease progression.

Results and Discussion

Identification of Zebrafish Mutants with T Cell Malignancy Predisposition

To identify genetic lesions conferring a heritable risk to T cell malignancy, we performed a 

forward-genetic ENU mutagenesis screen in zebrafish (Figure 1). To detect abnormal T cell 

collections, we used transgenic WIK strain fish with stably-integrated lck::EGFP, which 

labels all T cells (32). Homozygous lck::EGFP males were mutagenized and bred to wild-

type (WT) lck::EGFP females, creating over 500 F1 progeny, each with multiple unknown 

heterozygous mutations (33, 34).

Fish were screened by fluorescence microscopy for enlarged or extra-thymic GFP until 6 

mo. Atypical GFP patterns could represent T cell malignancies, benign lymphoproliferation, 

autoimmune T cell infiltrations, or non-T cell GFP expression. Regardless, F1 animals 

harbor dominant-acting mutations that confer an abnormal phenotype. Ten F1 mutants were 

found and nine studied further; two are reported here: shrek (srk) and hulk (hlk) (Figure 1a), 

named for green animated characters.

To determine if the srk and hlk phenotypes were heritable, these 2 individuals were out-bred 

to WT lck::EGFP fish, creating cohorts for confirmatory testing (Figure 1b). In both, 

multiple F2 progeny also developed abnormal GFP+ cell collections (examples shown in 

Figure 1c), verifying dominant inheritance, albeit with incomplete penetrance. This likely 

reflects a need for other acquired somatic mutations for full phenotypic penetrance, but 

alternate explanations such as stochastic variation in these phenotypes or additional modifier 

loci have not been formally excluded.

In addition, we approximated penetrance in srk and hlk. Because only 50% of fish in each 

F2 family should inherit the mutation, our calculations presumed that half of progeny were 

“carriers.” By this assumption, we estimated penetrance at 10% and 5%, respectively 

(Figure 1b and data not shown). We note that abnormal GFP+ cell expansion is seen in WT 

lck::EGFP fish in <0.1% of animals, and heritability has not been established in these 

instances (our unpublished observations).

To detect recessive mutations, eggs from normal F1 females underwent early pressure (EP), 

an induced parthenogenesis technique producing gynogenetic diploid progeny (35). EP 

offspring are homozygous for maternal haplotypes where meiotic cross-over did not occur. 

Thus, at these loci, recessive phenotypes can manifest in the F2 generation, eliminating the 

need for large F3 screens. We performed EP on over 100 F1 females, creating F2 families of 

>25 fish that were also screened until 6 mo. One additional mutant, oscar the grouch (otg), 
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was detected by EP (Figure 1a), where several siblings from the same F2 family exhibited 

abnormal GFP patterns.

To confirm recessive inheritance in otg, affected EP-derived fish were bred to WT 

lck::EGFP animals. Here, all progeny carry one otg lesion. In over 300 out-bred fish, only 1 

acquired a GFP+ tumor, for a heterozygous penetrance of 0.3% (Figure 1b). In contrast, 

when diseased otg fish were in-bred to create homozygous mutants, over half of progeny 

showed abnormal GFP patterns (example in Figure 1c). This equated to a homozygous 

penetrance of 51%, and verified that otg acts recessively.

hlk, srk, and otg Mutants Each Develop Bona Fide Malignancies

Affected fish of each mutant line were strikingly similar to T-ALL induced by oncogene 

over-expression (25, 26). GFP+ areas were solid, intensely bright masses resembling tumors, 

frequently arising from the thymic region (Figure 1c). Neoplasms typically spread locally to 

gills and adjacent structures, and generally in a cephalo-caudal pattern through the entire 

fish over weeks-to-months until generalized edema and circulatory collapse caused death 

(Supplemental Figure 1).

Though affected srk, hlk, and otg fish often appeared similar, variations did occur. GFP+ 

infiltrations of the eyes, fins, skin, and tail were seen, with occasional discontinuous ‘skip 

lesions’ (Supplemental Figure 2). These patterns could reflect either multiple synchronous T 

cell cancers in an individual fish, or non-contiguous spreading of a single malignancy. In 

particular, the skin tropism seen is reminiscent of non-Hodgkin peripheral T cell cutaneous 

lymphomas, such as mycosis fungoides and Sezary syndrome (36). In agreement with their 

pervasive cancer susceptibility, non-lymphocytic, GFP− tumors were also infrequently 

detected in srk, hlk, and otg (Supplemental Figure 3), perhaps alluding to a general cancer 

predisposition.

To confirm that GFP+ tumors were in fact cancerous, we performed histology and 

immunohistochemistry (IHC) on affected animals (Figure 2). Sections from srk, hlk, and otg 

fish were H&E stained, revealing infiltrating lymphocytes in tissues that coincided exactly 

to GFP+ body areas. Notably, gills, fins, skin, muscle, and fat were all distorted by a 

monomorphic invasive cell population with lymphocytic appearance. These cells were 

GFP+, as shown by IHC with α-GFP mAb (Figures 2a–2c). Fish kidney-marrow (zebrafish 

bone marrow equivalent) was frequently effaced by these same cells, demonstrating spread 

to marrow as seen in leukemia. In addition, intra-abdominal tumors of malignant 

lymphocytes were also seen. Tumor cells exhibited classic “small round blue cell” 

morphology consistent with lymphoblasts (37). Collectively, these phenotypes closely 

emulate human T-LBL and T-ALL.

Malignancies of hlk, srk, and otg Have T Cell Origin

Despite topographic and morphologic evidence that GFP+ tumors were T cell malignancies, 

we also examined their gene expression. To limit our analysis to only tumor cells, we 

isolated GFP+ cells by fluorescence-activated cell sorting (FACS) of tumors from individual 

srk, hlk, and otg fish. FACS-purification was performed twice to eliminate rare mis-sorted 
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cells. Total RNA was then interrogated for cell-specific transcripts by reverse transcriptase-

polymerase chain reactions (RT-PCR; Figure 3).

All 3 tumors expressed lck and trac (TCRα), confirming T cell identity. Cells also contained 

cd4, cd8a, and rag2 messages, further substantiating their T lineage origins. It is not known 

whether single tumor cells co-expressed these genes, or if tumors contained different clones 

corresponding to multiple stages of T cell differentiation. Of note, human T-ALL and T-

LBL cells frequently co-express these same transcripts, consistent with a double-positive 

stage of thymocyte differentiation. However, other tumors from each of these mutants have 

shown gene expression profiles indicative of mature T cells (Supplemental Figure 4 and data 

not shown). In all malignant samples, expression of the myeloid-specific transcript 

myeloperoxidase (mpx; human MPO) was not detected, attesting to high tumor cell purities.

Malignant Cells Are Abundant in Marrow and Peripheral Blood

Histology often exhibited lymphocytic infiltrations in marrows of diseased srk, hlk, and otg 

fish (Figure 2). To examine these cells, we performed flow cytometry on marrow and blood 

of affected fish. In tumor-bearing fish, we could readily identify GFP+ lymphoblasts that 

were infrequent in WT lck::EGFP fish (Figure 4a). Malignant blasts were distinct from 

normal circulating T cells based on their larger average size and greater GFP intensity, but 

had similar granularity to T lymphocytes (Figure 4a and data not shown). Abundant GFP+ 

cells were found in the marrow and blood of many diseased fish, and when present, were 

dramatically increased relative to the fraction of T cells normally seen in these two anatomic 

sites (Figure 4a and Supplemental Table 1) (32). Overall, several marrow and blood samples 

from all 3 mutants contained GFP+ cells greater than 3 standard deviations above their 

corresponding WT mean values. This marrow infiltration and dissemination to peripheral 

blood is consistent with that seen in human T cell lymphomas progressing to frank 

leukemias as T-ALL (38).

To study these cells further, we made cytospin preparations from marrow, tumors, FAC-

sorted GFP+ cells, and blood, and performed Wright stains (Figure 4b, Supplemental Figure 

5, and data not shown). Marrow from affected, but not WT, fish often was effaced by 

lymphoblasts. Unsorted tumors had identical cells to those in the marrow, further verified by 

stains of FACS-purified cells from tumors, marrow, and blood. Prior to staining, 

fluorescence microscopy revealed that tissues consisted primarily of GFP+ cells, even 

without FACS enrichment (Figure 4b and data not shown). Even unsorted blood smears 

from diseased fish had copious lymphoblasts, typical of human T-ALL. Blasts had 

hyperchromatic nuclei with prominent nucleoli, high nuclear:cytoplasmic ratios, and 

intensely blue-staining cytoplasms (Figure 4b).

Malignancies Show Clonal TCR Rearrangements

To test whether lymphoblasts were malignant clones, and not polyclonal accumulations as 

might be seen in benign lymphoproliferation, we performed T cell receptor (TCR) repertoire 

studies to investigate their diversity. We isolated total RNA from GFP+ cells of a single WT 

lck::EGFP fish, as well as individual srk, hlk, and otg tumors. To minimize normal T cell 

contamination, non-thymic tumors were utilized. Using 5′ rapid amplification of cDNA ends 
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(5′ RACE), tcrβ1 transcripts from eachsample were cloned, and variable-diversity-joining 

(VDJ) gene segment usage analyzed (Figure 5; sequence alignments shown in Supplemental 

Table 2).

The WT fish yielded 28 independently-isolated sequences, comprising 12 unique clones, 

each captured 1–5 times in a bell-shaped distribution. This diversity was consistent with a 

polyclonal repertoire, surveyed incompletely in random fashion (p=0.51). In contrast, srk 

and otg tumors each had highly-skewed, non-random VDJ usage with a single clone 

representing nearly the entire tcrβ1 cDNA pool (9/11 srk sequences, 14/15 for otg; each 

p<0.001). This bias is consistent with an oligoclonal T cell population, as occurs in 

malignancy. Rarely-isolated VDJ sequences from srk (2 different clones, each obtained 

once) and otg (1 clone, isolated once) may represent either less-prevalent malignant clones, 

or contamination by normal T cells infiltrating these tumors, as our GFP-based FACS 

purifications could not exclude these cells. In either case, the distribution of sequences from 

each tumor was highly constricted relative to WT, with sequence alignments demonstrating 

that rarely-detected TCR rearrangements were not related to the dominant VDJ gene 

segment utilized by the principal population (Supplemental Table 2).

GFP+ cells from the hlk tumor also showed limited tcrβ1 diversity, showing two unrelated 

clones (9/15 and 6/15 of sequences). This non-random repertoire was also statistically 

significant (p<0.001), suggesting the hlk tumor was oligoclonal. As the two TCR 

rearrangements from hlk were unrelated (Supplemental Table 2), this could reflect two 

distinct malignant clones originating independently in the same animal.

Genetic Characteristics of srk and hlk

Having shown cancers in srk and hlk to be T cell-derived and oligoclonal, we sought to 

further characterize the genetics of these mutants. Extended pedigrees were created by in-

breeding each line, and out-crossing to other backgrounds. As our prior penetrance estimates 

(Figure 1b) were deduced from small numbers, we created large families to definitively 

track penetrance and incidence. Animals known to carry mutations (i.e., fish with GFP+ 

tumors) were used to create these pedigrees.

We hypothesized that if srk and hlk heterozygotes could develop disease at low penetrance, 

then perhaps acquired mutations of the second allele could facilitate transformation. If so, 

germline srk or hlk homozygotes might show disease at higher penetrance or with shorter 

latency (39). As the srk and hlk mutations are unknown (obviating genotyping), we created 

homozygous mutants by in-breeding affected fish for several generations to enrich the allelic 

frequency of mutant loci. Validating this strategy, by the third consanguineous generation, a 

dramatic increase in penetrance was seen in both srk and hlk cohorts (43.0 and 40.3%, 

Figure 6). While fish could not be confirmed to be uniformly homozygous at the srk and hlk 

loci, this finding clearly indicates that adding homozygotes to the cohort amplifies overall 

penetrance. The parsimonious explanation for this result is that homozygotes have higher 

disease rates than heterozygotes, though the possible contribution of modifier loci has not 

been excluded. Of interest, in-bred srk and hlk fish had normal embryonic and adult viability 

(data not shown), establishing that homozygous mutants are non-lethal.
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To verify our prior heterozygous penetrance figures, we used mono-allelic srk and hlk fish 

(affected fish with one WT parent, making them obligate heterozygotes) and bred them with 

WT genetic backgrounds. Because 50% of gametes from mutant heterozygotes will lack the 

mutation, only half of these progeny were estimated to be heterozygous mutants (Figure 6: # 

screened vs. # of carriers). In these families, srk and hlk heterozygotes had penetrance 

similar to original estimates (14.1 and 5.9%, Figure 6; compare to 10 and 5% in Figure 1b). 

While modest, these rates are far higher than the rare T cell neoplasias observed in WT 

lck::EGFP fish (<0.1%, our unpublished data). In fact, this is much higher than rates 

reported in transgenic zebrafish models of AML induced by MOZ-TIF2 (40) or B-ALL 

caused by TEL-AML1 (41). More importantly, this degree of penetrance is similar to disease 

rates seen in rare human pedigrees of leukemia and lymphoma (19, 21, 42), suggesting that 

srk and hlk may accurately model human familial predisposition to these diseases.

These heterozygous phenotypes verify the dominant cancer predisposition of srk and hlk. Of 

note, we also created hlk fish with transgenic rag2::bcl2-EGFP, using the native rag2 

promoter to drive lymphocyte-specific over-expression of bcl2 (43). Unlike NOTCH1-

induced D. rerio T-ALL, we saw no accentuated penetrance or shortened latency in hlk + 

rag2::bcl2 fish (data not shown). While NOTCH1 activation showed a cooperative 

relationship with bcl2 in this transgenic context (26), a similar synergy was not seen 

between hlk and bcl2. One possible explanation for this result is that the hlk mutation may 

perturb normal apoptosis, subverting any added effect of bcl2 over-expression. However, 

thus far, apoptosis assays with hlk fish have failed to demonstrate any difference between 

hlk and WT animals (data not shown).

In contrast, fish with germline bi-allelic srk and hlk mutations had significantly higher 

penetrance. Explaining this finding, if srk and hlk are inactivating lesions, somatic mutation 

of the second allele may normally be required for transformation in heterozygotes. 

Alternatively, if the srk or hlk lesions are activating, increased homozygous penetrance may 

derive from gene dosage effects. Also of note, while the increased homozygous penetrance 

is striking, it is equally evident that neither srk nor hlk homozygotes show full penetrance. 

Over half of homozygotes did not acquire disease by 1 yr, implying other mutations are 

needed for full malignant penetrance.

Genetic Characteristics of otg

Otg, identified by virtue of EP (Figure 1), was presumptively recessive, as its F1 founder 

was phenotypically normal. As noted above, when otg EP fish were out-bred, almost no T 

cell neoplasia occurred (1/309 fish, 0.3%; Figure 6). One possible interpretation of this 

result is that somatic mutation of the 2nd otg allele is infrequent relative to srk and hlk. 

Alternatively, a greater number of cooperating mutations may be able to potentiate srk or hlk 

oncogenesis. In either case, the near-absence of disease in heterozygotes confirms that otg 

behaves as a recessive trait.

While otg heterozygotes were normal, progeny of in-bred otg EP fish showed high disease 

rates, even greater than srk or hlk (51.0%; Figure 6). However, despite this high penetrance, 

still only about half of otg homozygotes developed disease. As with srk and hlk, this 
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incomplete penetrance suggests that other somatically acquired mutations are necessary for 

transformation.

srk, hlk, and otg have Differing Incidence Patterns

We also determined typical latencies for srk, hlk, and otg (Figure 6). In all 3 mutants, tumors 

first developed coincident with sexual maturity (3–4 mo) and peaked at 5–8 mo (young 

adult). Srk homozygotes had shorter latencies than heterozygotes (4.8 vs. 6.4 mo), whereas 

hlk mono- and bi-allelic mutants showed similar incidence (7.6 vs. 8.7 mo). In otg, 

heterozygous disease was rare, preventing comparison.

Because srk and hlk homozygotes show differing incidence, we infer that they have distinct 

genetic lesions, though the possibility of different mutations in the same gene still exists. In 

addition, the abbreviated latency of srk homozygotes implies that mutation to the 2nd srk 

allele may be key to tumorigenesis. Still, even homozygous srk mutants are incompletely 

penetrant, proving that other somatic events are needed. Conversely, the similar incidence of 

hlk single and double mutants suggests the 2nd hlk lesion impacts penetrance, but not 

latency. Thus, other mutations besides hlk are transformative. Together, these disparities in 

inheritance, penetrance, and incidence may suggest different cadres of cooperating 

mutations for all 3 models.

Malignancies Can Engraft and Be Serially Passaged in Allogeneic Hosts

Many cancers––including zebrafish T-ALL––can engraft in allogeneic immuno-

compromised hosts, and this attribute may distinguish lymphoproliferative conditions from 

neoplasia (25, 26). Transplantation can also determine the minimal cell number able to 

transmit disease, a property of leukemia-initiating cells (LIC) (44). To test these features, we 

examined our models’ ability to be propagated in irradiated hosts.

Zebrafish strains have limited polymorphism, but D. rerio are not routinely available as 

isogenic lines. Accordingly, immunosuppression is used to facilitate engraftment (45). Using 

this approach, WT recipients were given sub-lethal doses of 25 gray (Gy) γ-irradiation (IR) 

prior to transplant. FAC-sorted, GFP+ tumor cells were then injected into hosts, with 

monitoring of engraftment by fluorescence microscopy.

Using multiple tumors from each line and a range of donor cell doses for each tumor, GFP+ 

malignant cells from srk, hlk, and otg each demonstrated engraftment (Supplemental Figure 

6). In most hosts, neoplastic cells were first seen at the site of injection, and grew to 

completely infiltrate the intra-abdominal and thoracic cavities, ultimately causing host 

demise. Many fish showed extensive dissemination prior to death, mimicking their donors. 

These features did not occur in controls injected with GFP+ thymocytes from WT WIK 

lck::EGFP donors (data not shown).

We also tested whether malignancies could be serially passaged in vivo, and if iterative 

transplantation selected for more aggressive tumors––either in ability to engraft or to kill 

hosts. From a single srk tumor, FACS-purified GFP+ cells were propagated through three 

transplant cycles (using 1 × 105 cells in each transplant), while monitoring host engraftment 

and survival. Recipients began to engraft by day 6, with the percent engrafted at 6 d 
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increasing in each round (38.5% in cohort #1, 50.0% in cohort #2, and 58.3% in cohort # 3; 

data not shown).

We also tracked survival, including all fish engrafted by 21 d (Figure 7). In all three 

transplant rounds, engrafted hosts first began to die at 11–13 d. However, net survival 

decreased with each transplant iteration, with mean survival 18.2 d for primary hosts, 16 d in 

secondary recipients, and 13.5 d in tertiary hosts. Comparing Kaplan-Meier curves by the 

Logrank test-for-trend showed significant differences (p=0.0423). These results demonstrate 

that cancers can serially engraft into newly-irradiated fish, and that progressive 

transplantation selects for leukemias with increasingly malignant phenotypes. These changes 

may occur by the accrual of new mutations and/or alterations in gene expression that 

enhance tumor lethality. Alternatively, sequential transplants may select for tumors with 

progressively higher fractions of LIC, thereby effecting accelerated engraftment and tumor 

expansion.

To assess the presence and frequency of LIC, we performed transplants with cells from 3 

different srk tumors (Supplemental Figure 7). Using 10-fold dilutions of GFP+ cells in 

groups of five recipients each, hosts were followed for engraftment. By the linear regression 

model of incidence analysis, LIC values were then determined (46). The three srk tumors in 

these experiments yielded LIC frequencies of 1:1 752, 1:8 159, and 1:10 373 cells, 

comparable to numbers reported with zebrafish T-ALL caused by murine c-MYC (47). 

Also, using cells from in vivo-passaged hlk tumors, we have seen high engraftment with as 

few as 2 500 GFP+ cells (data not shown).

These experiments establish that tumor cells from srk, hlk, and otg can be transplanted, a 

common property of neoplasias. Also, serial passaging shows that progressively more 

malignant phenotypes can be acquired. Further, tumors from these models contain LIC, and 

these cells can be quantified. Plausibly, comparisons between the same malignancy pre- and 

post-transplant (or following many transplant iterations) will reveal differences responsible 

for their more aggressive behavior.

Conclusion

We have used an ENU mutagenesis screen to induce and identify three D. rerio models of 

heritable T cell cancer predisposition. These mutants emulate many clinical and molecular 

features of human T-ALL and T-LBL. Key characteristics and experimental advantages of 

these new disease models are summarized below.

Mutants have reproducible and heritable malignancy predisposition. Srk and hlk are 

dominantly inherited, but heterozygous penetrance is modest. Thus, these lines may 

represent models of familial leukemias and lymphomas, which have been repeatedly 

reported but are not molecularly defined (16–20). As homozygous traits, srk, hlk, and otg all 

have high penetrance (40–51%; Figure 6), facilitating production of large numbers of 

affected animals for study. Although antibodies against most D. rerio proteins are currently 

scarce, malignant T cells can be FACS-purified easily because they are GFP+, simplifying 

their procurement.
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These T cell cancers are similar to human T-ALL and T-LBL. Mutants develop thymic 

tumors, akin to mediastinal masses seen in both experimental mammalian lymphoma models 

and human patients. Tumors often disseminate, with tropism for marrow and blood, again 

modeling human T cell malignancies. Expression patterns confirm that neoplastic cells are T 

lineage, and TCR analyses verify their clonality. Malignant cells are allogeneically 

transplantable with high rates of engraftment. Transplanted cells authentically re-establish 

the original disease, expediting the generation of large numbers of malignant cells. Via 

transplantation, LIC studies are also possible. Finally, in vivo selection can expand clones 

with high LIC fractions or other desirable attributes that are currently difficult to study with 

mammalian models.

These studies emphasize the feasibility of forward genetic screens with adult vertebrates to 

discover non-embryonic phenotypes relevant to human health, such as cancer predisposition. 

Traditionally, zebrafish and other “genetic” models have been used in mutational screens 

querying developmental phenotypes, using early embryos. By screening mutant populations 

into early adulthood (6 mo), we show that late-manifesting conditions are also viable 

experimental targets. As zebrafish rarely develop spontaneous malignancy in their first 6 

mo, we exploited the mutagenicity of ENU and a T cell-specific fluorochrome to detect 

phenotypes that would otherwise be impractical to pursue experimentally. We note that our 

approach is not limited to T lymphocyte cancers. Exchanging lck::EGFP for other cell-

specific markers, similar screens could investigate any number of pathologic endpoints.

Using these mutants, superimposed modifier screens may be performed to identify 

collaborating genes affecting these phenotypes. Mutants with low penetrance and long 

latency (srk and hlk heterozygotes) are well-suited for enhancer screens seeking more 

prevalent and/or earlier disease onset. Highly-penetrant mutants with early incidence (srk 

homozygotes) are optimal for suppressor approaches.

These cancer-prone mutants should prove useful for dissecting the genetic changes that 

underlie T cell malignancy occurrence and progression. T cells can be purified from mutant 

fish prior to tumor development (presumably before acquiring other mutations obligate to 

transformation). Neoplastic cells can also be purified from thymic cancers, from 

disseminated clones at other sites, or from highly-aggressive neoplasms after serial 

transplantation. This should allow for comparisons between cells from each stage of disease 

progression. We believe these genetic cancer predisposition models will provide a platform 

to permit the step-by-step analysis of each crucial biologic point in T-ALL and T-LBL. 

Ultimately, understanding the molecular events that cause neoplastic transformation––and 

those underlying key stages of disease progression like dissemination and engraftment––

should improve our ability to treat these diseases at each and every point in their complex 

evolution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Heritable T cell cancer phenotypes from an ENU mutagenesis screen
(a) Male homozygous lck::EGFP zebrafish were ENU-treated and bred to WT female 

lck::EGFP fish. F1 offspring with heterozygous germline mutations were screened 

microscopically until 6 mo. Mutants with abnormal GFP patterns were designated putatively 

dominant; two reported here are shrek (srk) and hulk (hlk). Also, eggs from normal female 

F1 fish were subjected to early pressure parthenogenesis, creating F2 families. One family 

with several abnormal siblings was deemed putatively recessive, dubbed oscar the grouch 

(otg). (b) Srk and hlk were confirmed by out-breeding F1 founders to WT fish, with 

observation of disease in offspring. Otg was verified by outbreeding (only 0.3% of 

heterozygotes acquired disease), and in-breeding (51% of homozygotes were abnormal). (c) 

WT lck::EGFP and diseased srk, hlk, and otg fish.
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Figure 2. Histologic and immunohistochemical analysis of GFP+ tumors
Diseased srk (a), hlk (b), and otg (c) fish, H&E-stained sections of same fish, and sections 

labeled brown by α-GFP IHC. Most basophilic cells by H&E are reactive with α-GFP mAb. 

H&E stains show neoplastic infiltration of (d) gills, (e) kidney-marrow, (f) fin and adipose, 

(g) muscle, and (h) forming intra-abdominal tumors. Tumor tissue (i) has small round blue 

cell morphology typical of T-LBL and T-ALL. [Images graphically enhanced to improve 

color balance and brightness.]
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Figure 3. GFP+ tumor cells have T cell gene expression patterns
Total RNA from FACS-purified GFP+ cells of srk, hlk, and otg tumors was analyzed by RT-

PCR. D. rerio nomenclature is listed at left (lck=LCK, rag2=RAG2, trac=TCRA, cd4=CD4, 

cd8a=CD8A, mpx=MPO, ef1a=EEF1A1). RNA from WT thymus and ef1a PCR are positive 

controls. H2O-only, reactions without RT, and mpx are negative controls.
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Figure 4. Neoplastic cells in marrow and blood have lymphoblast morphology
(a) Flow cytometry of marrow from a WT lck::EGFP fish (upper left plot) shows most 

GFP+ cells in lymphoid (pink oval) or progenitor (purple) windows, with all T lineage cells 

comprising 6.0% of total cells. Diseased srk (upper right plot) and hlk (lower left plot) fish 

show dramatically increased GFP+ percentages (84.7% and 74.1%), with diminished 

erythroid (blue) and myeloid (green) fractions. Otg fish shows early GFP+ cellular 

infiltration (8.7% of total), with normal erythroid and myeloid values. X-axes: forward 

scatter (FSC), Y-axes: side scatter (SSC), with GFP+ cells overlaid in green. Histograms at 

lower left show GFP+ cell fraction for WT marrows (mean 7.5 +/− 0.9%; n=7), and multiple 

affected srk, hlk, and otg fish. Defining abnormal as >3 SD above the WT mean, 6/6 srk, 4/7 

hlk, and 2/6 otg marrows showed pathologic infiltrations (bars marked with diamonds). In 

these samples, mean GFP+ fractions were 69.4% (srk), 50.3% (hlk), and 38.2% (otg). 
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Histograms at right depict flow cytometry results for peripheral blood in identical format. 

WT fish have only rare GFP+ cells (0.35 +/− 0.6%, n=15). Blood from affected fish had high 

GFP+ fractions in 4/6 srk, 4/12 hlk, and 2/8 otg samples, with mean values of 18.8%, 10.8%, 

and 40.5%, respectively. (b) Wright stains of malignant lymphoblasts from different tissues. 

Upper panels: WT (left) and srk (right) marrow. Srk sample is overrun by T-ALL neoplastic 

cells, and fluorescent micrograph (inset) confirms that most srk marrow cells are GFP+. 

Middle panels: unsorted cells from hlk tumor (left) have lymphoblastic morphology; FACS-

purified cells from srk tumor (right) are identical. High power image of GFP+-sorted hlk 

tumor cells (lower left panel) shows morphologic features of lymphoblasts. Blood from a 

diseased srk fish (lower right panel) shows erythrocytes (top row) and frequent malignant 

lymphoblasts (2nd row). Lymphocytes (3rd row) and erythrocytes (4th row) from a WT fish 

are shown for comparison (D. rerio has nucleated RBCs). [Images graphically enhanced to 

improve brightness.]
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Figure 5. Tumors are clonal with shared TCRβ1 VDJ rearrangements
Total RNA from GFP+ cells of a WT thymus or tumors of single srk, hlk, and otg fish was 

used for 5′ RACE with tcrβ1-specific primers. RACE products were sequenced for VDJ 

analysis. From 28 WT thymus clones, 12 unique sequences were obtained, each isolated 1–5 

times. From srk and otg, 9/11 (81.8%), and 14/15 (93.3%) clones were identical, suggesting 

oligoclonality. From hlk, 2 unrelated VDJ recombinations were detected 9/15 and 6/15 

times, again showing oligoclonality. Distributions were analyzed by a goodness-of-fit test, 

and p-values calculated in 20 000 Monte Carlo simulations. Y-axis indicates percentage of 

clones obtained from each individual fish.

Frazer et al. Page 22

Leukemia. Author manuscript; available in PMC 2010 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Disease incidence curves for srk, hlk, and otg mutants
Pools of fish were screened by fluorescence microscopy for T cell malignancy. Srk 

homozygotes (green) and heterozygotes (orange) have disease penetrance of 43.0% and 

14.1%, respectively. Srk homozygotes have shorter latency, with mean incidence of 4.8 vs. 

6.4 mo for heterozygotes (SD, standard deviation). Hlk homozygotes (blue) have 40.3% 

disease penetrance by 18 mo (35.9% by 12 mo), compared to heterozygous penetrance of 

5.9% (purple). Homozygous and heterozygous hlk fish have similar latency (mean 

incidences of 8.7 and 7.6 mo, respectively). Otg homozygotes (pink) show 51.0% 

penetrance by 12 mo, with mean incidence of 8.2 mo. Heterozygotes rarely acquire disease 

(0.3%), and are not depicted as a Kaplan-Meier curve.
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Figure 7. Serially-transplanted cancers are increasingly malignant
GFP+ cells from a srk tumor were sequentially transplanted into 3 iterations of pre-irradiated 

WT hosts. 1 × 105 cells were used in each transplant. Only engrafted fish are plotted (1st 

host cohort n=11; 2nd group n=10; 3rd n=7). One engrafted fish from each cohort (not 

included above) was used as a donor in the subsequent transplant round. Recipients had 

shortened survival in each round, with statistical significance of p=0.0423.
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