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The multiple sequence alignment (MSA) of a protein 
family provides a wealth of information in terms of the 
conservation pattern of amino acid residues not only at 
each alignment site but also between distant sites. In 
order to statistically model the MSA incorporating both 
short-range and long-range correlations as well as inser-
tions, I have derived a lattice gas model of the MSA based 
on the principle of maximum entropy. The partition 
function, obtained by the transfer matrix method with a 
mean-field approximation, accounts for all possible align-
ments with all possible sequences. The model parameters 
for short-range and long-range interactions were deter-
mined by a self-consistent condition and by a Gaussian 
approximation, respectively. Using this model with and 
without long-range interactions, I analyzed the globin 
and V-set domains by increasing the “temperature” and 
by “mutating” a site. The correlations between residue 
conservation and various measures of the system’s sta-
bility indicate that the long-range interactions make the 
conservation pattern more specific to the structure, and 
increasingly stabilize better conserved residues.
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A multiple sequence alignment (MSA) of a family of pro-
teins provides us with valuable information to characterize 
the protein family in terms of patterns of amino acid residues 
at alignment sites [1]. The usefulness of analyzing the resi-
due compositions in the MSA has led to the development of 

a class of sequence profile methods [1–3] such as PSI-
BLAST [4] and profile hidden Markov models (HMM) [5], 
which can be used to detect distantly related proteins, to 
obtain high-quality alignments, and to improve structure 
prediction [6] as well as to characterize functional and struc-
tural roles of the conservation pattern [7]. In the sequence 
profile methods, it is assumed that the residue composition 
of each site is independent of other sites. With this crude 
assumption, the conservation of residues are explained in 
terms of their functional and structural roles. However, to 
further understand the mechanism of these roles in the con-
text of protein sequences, one needs to drop the assumption 
of site independence. In fact, there seems to be no way for a 
residue to “know” that it is in a particular position in the 
sequence to play a particular functional or structural role 
other than by its interactions with other residues in the 
sequence (or with other molecules in the biological system). 
Therefore, to understand what makes particular residues 
important at each site, one needs to study the correlations 
between different sites.

Correlations between distant sites in a MSA can be quan-
tified by identifying correlated substitutions. They have been 
exploited to gain further insights of structures and functions 
of proteins [8–10]. However, the apparent correlations 
observed in a MSA are only a result of intricate interactions 
between residues as in the underlying native structures of 
proteins. Recently, there have been a number of successful 
attempts to extract direct correlations [9,10] which are in 
fact found to be in excellent agreement with the residue-
residue contacts in native structures [11–13] to the extent 
that the three-dimensional structures can be actually (re)con-
structed [14,15].

One drawback of the direct-coupling analysis (as well as 
other direct correlation methods) is that it takes into account 
only those alignment sites that are well aligned (the “core” 
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multiple sequence alignment is formulated. Section 2 pro-
vides the details of numerical methods and data preparation. 
Section 3 gives the results of virtual experiments by increas-
ing the temperature or by introducing alanine point mutants. 
In Section 4, limitations, implications as well as possible 
extensions of the present model are discussed.

1. Theory
1.1. Representing multiple sequence alignment as 

lattice gas system
A MSA may be regarded as a matrix of symbols in which 

each row is a protein sequence possibly with gaps and each 
column is an alignment site. Some columns may contain few 
gaps so the residues in such positions may be relatively 
important for the protein family. Here, I informally define a 
“core” (matching/deletion) site as an alignment site which 
are relatively well aligned. The remaining sites are defined 
to be insert sites. Core sites are ordered from the N-terminal 
to the C-terminal, and denoted as O1,O2,...ON with N being 
the number of core sites. For convenience, the terminal core 
sites O0 and ON+1 are appended to indicate the start and end 
of the alignment, as in the profile HMM [1]. To each core 
site, either one of 20 amino acid residues or a gap (deletion) 
may be assigned,and the latter is treated as the 21-st type of 
residue. An insert site between two core sites Oi and Oi+1 is 
denoted as Ii. All the gap symbols are ignored at an insert 
site. In the following, the (ordered) sets of core and insert 
sites are denoted as O={O0...,ON+1} and I={I0,...,IN}, respec-
tively, and their union as S=O∪I. In addition, let us define 
a set of amino acid residues allowed for an insert site Ii as 
AIi

={A,...,Y} (20 amino acid residue types), and that for a 
core site Oi as AOi

={A,...,Y,–} (20 amino acid residues and 
deletion) for i=1,...,N and AO0

=AON+1
={–} (deletion only) for 

the terminal sites.
For one protein sequence in the MSA, at most one residue 

may correspond to each core site Oi whereas any number of 
residues may correspond to an insert site Ii. In this sense, 
residues behave like fermions on core sites and like bosons 
on insert sites. The set of core and insert sites comprise a 
quasi-one-dimensional lattice structure as shown in Figure 1. 
In this lattice structure, two sites are connected if two con-
secutive residues in a protein sequence (possibly including 
gap symbols) can be assigned. If two sites are directly con-
nected, they are defined to be a bonded or short-range pair. 
The self-connecting loop in each insert site indicates that it 
makes a bonded pair with itself. Thus, an insertion may be 
indefinitely long, manifesting its boson-like character.

Based on this lattice system, an alignment X of a par
ticular protein sequence a=a1a2...aL in the MSA may be 
represented as a sequence of length LX consisting of ordered 
pairs of a lattice site and a residue of a: X=X0X1...XLx

XLx+1
 

(“matchings” to the terminal sites are also included). Here, 
each Xk=(S,a) with S∈S and a∈AS. A whole MSA con
sisting of M sequences is a set of such aligned sequences: 

sites), and ignores insertions. The primary difficulty in the 
treatmentof insertion is that they are of variable lengths, 
which makes the system size variable and hence greatly 
complicates the problem. When one is interested in some 
universal properties of a protein family such as their approx-
imate three-dimensional fold, insertions may be irrelevant. 
However, when one is interested in a particular member of 
the family, the existence of some insertions may be import-
ant. In fact, insertions, which may be regarded as “embel-
lishments” to a conserved structural core, are deemed to be 
an effective strategy for proteins to diversify and specialize 
their functions [16]. Some insertions are also known to play 
critical roles in protein oligomerization [17,18]. Of more 
fundamental concern is that ignoring insertions in a MSA 
means ignoring the polypeptide chain structure, which 
implies theoretical as well as practical consequences. Theo-
retically, it is questionable to ignore such a strong interaction 
as the peptide bond in order to accurately describe the 
sequence and structure of proteins. Practically, in order to 
identify new members of a family by aligning their sequences 
to some MSA-derived model incorporating direct correla-
tions, a consistent treatment of polypeptide sequences is 
necessary. 

In this paper, I present a new statistical model of the MSA 
that incorporates both direct correlations and insertions. The 
main objective of this model is to incorporate long-range 
correlations into multiple-sequence alignment, rather than to 
improve contact prediction by incorporating insertions. As 
will be apparent from the formulation, this model is a gener-
alization of the direct-coupling analysis that is based on the 
principle of maximum entropy [11,19]. This model can be 
regarded as a finite, quasi-one-dimensional, multicompo-
nent, and heterogeneous lattice gas model where the “parti-
cles” are amino acid residues. In the following, the “lattice 
gas model” refers to this model. The lattice system consists 
of two kinds of lattice sites, corresponding to the core 
(matching or deletion) or the insert, that are connected in a 
similar, but distinctively different, manner as in the profile 
HMM model. While long-range interactions are treated by 
using a mean-field approximation, short-range interactions 
are treated rigorously so that the partition function is obtained 
analytically by a transfer matrix method. One notable fea-
ture of this model is that its partition function literally 
accounts for all the possible alignments with all the possible 
protein sequences, including infinitely long ones. Based on 
this model, various virtual experiments can be performed by 
changing the “temperature” of the system or by manipulat-
ing the “chemical potentials” associated with the particles 
(residues) at each site. In addition, it is possible to align new 
sequences against a lattice gas model so that it can be used 
for remote homology detection (in much the same way as the 
profile HMMs), but with long-range correlations included 
(unlike the profile HMMs).

The paper is organized as follows. In Section 1, some 
basic quantities are defined and the lattice gas model of the 
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counts and bonded pair counts are the two fundamental sto-
chastic variables in the present theory. For later convenience, 
let us define the non-bonded pair counts as

nnb
SS’ (a,b|X) = nS(a|X)nS’ (b|X)	 (3)

for S,S’∈S. Note that the non-bonded pair counts may be 
defined for residues residing on neighboring lattice sites as 
well as on the same (S=S’) site. The terms “bonded” and 
“non-bonded” here are meant to describe the connectivity 
along the polypeptide sequence rather than that along the 
lattice system (A pair of residues in neighboring lattice sites 
may be either bonded or non-bonded depending on the given 
alignment). From these definitions, several relations follow. 
First, by the fermion-like character of the core site, we have 
for each Oi∈O

∑
a∈AOi

nOi
(a|X) = 1.	 (4)

Between bonded pair counts and single-site count, we have

∑
b∈AOi+1

nb
SOi+1

(a,b|X) + ∑
b∈AIi

nb
SIi

(a,b|X) = nS(a|X) ,	 (5)

∑
a∈AOi

nb
OiS’(a,b|X) + ∑

a∈AIi

nb
IiS’(a,b|X) = nS’(b|X)	 (6)

where S=Oi,Ii and S’=Oi+1,Ii. Lastly, between non-bonded 
pair counts and single-site count, we have

∑
b∈AOj

nnb
SOj

(a,b|X) = nS(a|X) ,	 (7)

∑
a∈AOi

nnb
OiS’(a,b|X) = nS’(b|X)	 (8)

where S,S’∈S.

1.3. Probability distribution of alignments
I would like to statistically characterize the given MSA in 

terms of the above quantities. To do so, suppose that the 
probability P(X) of an alignment X is known for the lattice 
model. Then, the expectation values of these numbers are 
defined as follows:

nS(a) = ∑
X

P(X)nS(a|X) ,	 (9)

nb
SS’ (a,b) = ∑

X
P(X)nb

SS’ (a,b|X) ,	 (10)

nnb
SS’ (a,b) = ∑

X
P(X)nnb

SS’ (a,b|X)	 (11)

which are referred to as single-site (number) densities, 
bonded pair (number) densities, and non-bonded pair (num-
ber) densities, respectively. These number densities natu-
rally satisfy the relations analogous to Eqs. (4)–(8).

To determine the form of P(X), the principle of maximum 
entropy is employed with the constraints that the densities 

{Xt}t=1,...,M. Figure 2 shows some concrete examples of this 
representation of alignment.

1.2. Variables to characterize alignments
Using the above representation, let us define some quanti-

ties that characterize an alignment in a given MSA. For a 
given lattice model and its alignment X with a protein 
sequence, the number of the residue type a∈AS at the lattice 
site S∈S is defined as

nS(a|X) = ∑
LX

k=0

 

δ (S,a), Xk 
.	 (1)

This quantity is referred to as the single-site count. Simi-
larly, the number of a pair of residue types a∈AS and b∈AS’ 
on a bonded pair of lattice sites S and S’ occupied by two 
consecutive alignment sites is defined as

nb
SS’ (a,b|X) = ∑

LX

k=0

 

δ(S,a), Xk 
δ(S’,b), Xk+1 

,	 (2)

which is referred to as the bonded pair count. The single-site 

Figure 1 The lattice structure of the model. The squares marked 
with Oi (i=0,...,N+1) correspond to core (matching/deletion) sites, the 
diamonds marked with Ii (i=0,...,N) correspond to insert sites. The 
edges between sites indicates bonded interactions. See Figure 2 for 
concrete examples.

Figure 2 Example of a multiple sequence alignment (based on 
[1]). Each row corresponds to a protein sequence (S1,...,S7) and each 
column to an alignment site. Below the horizontal line, each alignment 
site is annotated as to whether it corresponds to a core (matching or 
deletion) site (“O”) or an insert site (“I”). Indicated below these “O”/ “I” 
symbols are the position of lattice sites. (c.f. Fig. 1) The size of the 
lattice model based on this MSA is N=8. Insert sites other than I0, I3 and 
I8 are not explicit in this MSA. For example, the alignment of the 
sequence S2 in this figure is represented as XS2=X0...X9=(O0,−)(O1,V)  
(O2,−)(O3,−)(O4,N)(O5,V)(O6,D)(O7,E)(O8,V)(O9,−) where the first and 
last pairs represent the start and end of the alignment, respectively. As 
another example, the alignment of sequence S7 is XS7=X0 ... X11=(O0,−)
(O1,I)(O2,A)(O3,G)(I3,A)(I3,D)(O4,N)(O5,G) (O6,A)(O7,G)(O8,V)(O9,−).
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1.4. Partition function
In this subsection, I assume that the parameters μ, J and K 

are fixed. To treat the long-range interactions, a mean-field 
approximation is applied. Then, the partition function can be 
computed by a transfer matrix method. Let us define the 
mean field KS(a) acting on the residue type a on site S:

KS(a) = ∑
S’,b

 KSS’(a,b) [nS’(b) – ñS’(b)]	 (17)

where ñS’(b) is subtracted for convenience, but this does not 
essentially change the system’s behavior (it simply shifts the 
chemical potential μS(a) which can be compensated for by J; 
see Eq. 18 and Section 1.7). Next, let us define the transfer 
matrices between a bonded pair of sites S=Oi, Ii and S’=Oi+1, 
Ii as

TSS’(a,b) = exp[{JSS’(a,b) + μS’(b) + KS’(b)}/T ] .	 (18)

To alleviate the expressions for the partial partition func-
tions, a bracket notation is introduced. First, define a set of 
standard basis vectors: 〈a| and |a〉 corresponding to each res-
idue type a on each site. These vectors satisfy the following 
orthonormal properties:

〈a|b〉 = δa,b ,	 (19)

∑
a∈AS

|a〉 〈a| = I |AS| (identity matrix)	 (20)

where I |AS| is the |AS|-dimensional identity matrix. For each 
site i, I define the partial partition functions 〈Oi| and 〈Ii| that 
count the statistical weight of all possible alignments start-
ing from the start site O0 and terminating at Oi and Ii, respec-
tively. Similarly, partial partition functions |Oi〉 and |Ii〉 
account for all possible alignments “starting” from the end 
site ON+1 and “terminating” at Oi and Ii. Any (complete) 
alignment starts at the start site O0 and ends at the end site 
ON+1, and these sites are formally treated as “deletion (–).” 
Therefore, the boundary conditions are given as

〈O0|  = 〈–| = (0,...,0,1),	 (21)

|ON+1〉=  |–〉= (0,...,0,1)t .	 (22)

Based on this setting, the recursion formulae for partial par-
tition functions are given as

〈Oi+1|  =  〈Oi|TOiOi+1
 + 〈Ii|TIiOi+1 

,	 (23)

〈Ii|  =  〈Oi|TOiIi
 + 〈Ii|TIiIi

	 (24)

in the forward (N- to C-terminal) direction, and

|Oi〉  =  TOiOi+1
|Oi+1〉+ TOiIi

| Ii〉 ,	 (25)

|Ii〉  =  TIiOi+1
|Oi+1〉+ TIiIi

| Ii〉	 (26)

in the backward (C- to N-terminal) direction. Here, each 
transfer matrix TSS’ is viewed as a |As|×|As’| matrix with 
〈a|TSS’|b〉 = TSS’(a,b). By expanding Eq. (24), we have

are equal to those observed in the given MSA. The entropy 
is given as

S = – ∑
X

P(X) lnP(X) .	 (12)

Let us denote the densities estimated from the given MSA as 
ñS(a), ñb

SS’(a,b), and ñnb
SS’(a,b) (see Section 2 for the method to 

obtain these quantities). The following Lagrangian, consist-
ing of the entropy (Eq. 12) and the constraints for the densi-
ties, is maximized:

L = –T ∑
X

P(X) lnP(X)

+ α( ∑
X

P(X) – 1)

+ ∑
b.p.

(S,S’)

 

∑
a,b

 

JSS’(a,b) [nb
SS’ (a,b) – ñb

SS’ (a,b)]

+ 1
2  ∑

S,S’

 ∑
a,b

 

KSS’(a,b) [nnb
SS’ (a,b) – ñnb

SS’ (a,b)]

+ ∑
S,a

 μS(a) [nS(a) – ñS(a)]	 (13)

where α, μS(a), JSS’(a,b) and KSS’(a,b) are undetermined mul-
tipliers, and the summation ∑b.

(S,
p.
S’) is over bonded pairs. We 

have also introduced the “temperature” parameter T. Solving 
δL/δP(X)=0 leads to the Boltzmann distribution:

P(X) = 
exp[–E(X)/T]

Ξ  ,	 (14)

where Ξ is the normalization constant or the partition func-
tion defined by

Ξ = ∑
X

exp[–E(X)/T] ,	 (15)

and E(X) is the “energy” of the system given as

E(X) = – ∑
b.p.

(S,S’)

 

∑
a,b

 

JSS’(a,b)nb
SS’ (a,b|X)

– 1
2

 ∑
S,S’

 ∑
a,b

 

KSS’(a,b)nS(a|X)nS’(b|X)

– ∑
S,a

 μS(a)nS(a|X) .	 (16)

From this expression of the energy function, we can interpret 
μS(a) as the chemical potential imposed on the particle 
(amino acid residue) a at site S, and J and K as bonded and 
non-bonded coupling parameters, respectively. The problem 
of obtaining the probability distribution P(X) is thus reduced 
to computing the partition function Ξ. In the following, the 
non-bonded interactions are considered only between core 
sites (i.e., core-insert and insert-insert pairs are discarded) 
for a technical reason (see the subsection “Determining the 
K matrix” below).
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where

ΞOi Oj 
=  ∏ 

j–1

k=i
Uk,k+1 ,	 (40)

ΞOi Ij
 = ΞOi Oj

TOjIj(I – TIjIj
)–1 ,	 (41)

ΞIi Oj
 = (I – TIiIi

)–1TIiOi+1
ΞOi+1Oj 

,	 (42)

ΞIi Ij
 = (I – TIiIi

)–1TIiOi+1
ΞOi+1Ij 

.	 (43)

However, Eq. (39) is not used in practice for the reason 
described below (Section 2.4). This expression should be 
considered as an artifact of the present approximation on the 
one-dimensional lattice system. In fact, under the mean-field 
approximation, one should have nnb

SS’(a,b)=nS(a)nS’(b), but 
this does not hold for Eq. (39).

1.6. Thermodynamic functions
Several “thermodynamic functions” are defined for quan-

tifying the stability of the system under perturbations. First, 
the free energy function

Ω = –T ln Ξ	 (44)

should be regarded as a grand potential because alignments 
of varying lengths are considered in the ensemble. This free 
energy is a measure of the likelihood of alignments expressed 
in terms of the number densities. By rearranging Eq. (14) 
and averaging over all alignments, the free energy can be 
decomposed as

Ω = U – TS – G	 (45)

where U, S and G are the internal energy, entropy and Gibbs 
energy of the system. The internal energy of the system is 
given as

U = Ub + Unb	 (46)

Where Ub and Unb are bonded and non-bonded energies, 
respectively, defined (under the mean-field approximation) 
by

Ub = – ∑
b.p.

(S,S’)
 ∑
a,b

 JSS’(a,b)nb
SS’ (a,b) ,	 (47)

Unb = – 
1
2  ∑

S
∑
a

KS(a)[nS(a) – ñS(a)] .	 (48)

These correspond to the first two terms on the right-hand 
side of Eq. (16). The internal energy represents the mean 
“direct” interactions (bonded and non-bonded) between 
sites. The Gibbs energy is defined as

G = ∑
S,a

 μS(a)nS(a) ,	 (49)

and this quantity represents the work exerted by the chemi-
cal potential to maintain the single-site densities. Finally, the 
entropy is given as

〈Ii|  =  〈Oi|TOiIi
(I + TIiIi

 + T2
IiIi

 + ...)	 (27)

=  〈Oi|TOiIi
(I – TIiIi

)–1	 (28)

where  I=I20 (the 20-dimensional identity matrix). Similarly, 
we have

|Ii〉  =  (I – TIiIi
)–1 TIiOi+1

|Oi+1〉.	 (29)

Thus, 〈Ii| and |Ii〉 indeed include contributions from infinitely 
long insertions. The inverse matrix (I–TIiIi

)–1 exists if the 
spectral radius of TIiIi

 is less than 1.
Using Eqs. (28) and (29), the recursions can be explicitly 

solved as

〈Oi+1|  =  〈O0| ∏ 
i

k=0
 Uk,k+1 ,	 (30)

|Oi〉  =  ∏ 
N

k=i
 Uk,k+1|ON+1〉	 (31)

where

Ui,i+1  =  TOiOi+1
 + TOiIi

(I – TIiIi
)–1 TIiOi+1 

.	 (32)

Finally, the total partition function is obtained as

Ξ  =  〈O0| ∏ 
N

k=0
 Uk,k+1|ON+1〉.	 (33)

1.5. Expected densities
Let us now compute the expected densities. From the defi-

nition of the partition function (Eq. 15), the following equal-
ities hold for single-site and bonded pair densities:

T 
∂ lnΞ
∂μS(a)  = nS(a) ,	 (34)

T 
∂ lnΞ

∂JSS’(a,b)  = nb
SS’ (a,b) .	 (35)

By explicitly calculating the left-hand sides of these equa-
tions using Eq. (33), we have, for S = Oi, Ii and S’ = Oi+1, Ii,

ns(a) = 〈S|a〉 〈a|S〉
Ξ  ,	 (36)

nb
SS’ (a,b) =  〈

S|a〉 〈a|TSS’|b〉 〈b|S’〉
Ξ  .	 (37)

It is readily proved that these expressions satisfy the relations 
between bonded pair and single-site densities (Eqs. 5–6).

It is also possible to derive an analytical expression for the 
expected non-bonded pair densities from

T 2
 

∂2lnΞ
∂μS(a)∂μS’(b)  = nnb

SS’ (a,b) – nS(a)nS’(b) .	 (38)

That is,

nnb
SS’ (a,b) =  〈

S|a〉 〈a|ΞSS’|b〉 〈b|S’〉
Ξ 	 (39)
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approximate P(X)=1/M for all the M sequences. In practice, 
I used pseudo-counts as well as sequence weights as in 
Morcos et al. [11] to improve the robustness of the estimates. 
Let there be M aligned sequences, {Xt}t=1, ...,M, in a given 
MSA and suppose the structure of the lattice system has been 
set. The observed densities are defined as follows:

ñS(a) = C [ γqs
 + ∑

M

t=1
 
nS(a|Xt)

mt
 ] ,	 (54)

ñb
SS’ (a,b) = C [ γ

2qsqs’
 + ∑

M

t=1
 
nb

SS’ (a,b|Xt)
mt

 ] ,	 (55)

ñnb
SS’ (a,b) = C [ γ

qsqs’
 + ∑

M

t=1
 
nnb

SS’ (a,b|Xt)
mt

 ] 	 (56)

where S∈S, qS= |AS|, γ is the pseudo-count, mt is the number 
of sequences in the MSA that are highly homologous (>80% 
sequence identity) to the sequence t, and C=1/(γ+∑ t1/mt) 
with γ=0.1∑ t1/mt. Note that these estimated densities satisfy 
the relations analogous to Eqs. (4)–(8).

2.3. Determining the J matrices
As mentioned above, the temperature is set to unity (T=1) 

in the process of parameter determination. To determine J, 
Eq. (37) is rearranged to

JSS’(a,b) = log [ nb
SS’ (a,b)Ξ

 〈S|a〉 〈b|S’〉
 ] 	 (57)

where it is assumed μS’(b)=0 and KS’(b)=0 for all S’∈S and 
b∈AS’ (see Section 1.7). Setting KS’(b)=0 is possible because 
the expected number densities are set to the observed values 
(see Eq. 17). By replacing nb

SS’ (a,b) with the observed value 
ñb

SS’ (a,b), one can iteratively update the values of J and com-
pute the partition function until this equation actually holds. 
In practice, a relaxation parameter α is introduced to improve 
the stability of convergence. Thus, from the ν-th step of 
iteration, the next updated value is obtained by the following 
scheme.

J’SS’(a,b) =  log [ ñb
SS’ (a,b)Ξ(ν)

 〈S (ν)|a〉 〈b|S’ (ν)〉
 ] ,	 (58)

JS
(ν
S’
+1)(a,b) = (1 – α) J (ν)

SS’(a,b) + αJ’SS’(a,b) .	 (59)

I found the values α=0.1~0.3 were effective. The initial 
values of the J matrices are set to 0. Note that the concavity 
of the free energy function with respect to the parameters (J) 
(with fixed mean fields) guarantees that the optimized values 
of J are unique and do not depend on the initial values (see 
Goldenfeld [21], for example).

Determining JIiIi
 necessitates a special treatment due to 

the requirement that the spectral radius of the transfer matrix 
TIiIi

 must be less than 1 (see Eq. 28). In order to force I–TIiIi
 

to be invertible, a parameter λi>0 is introduced such that 
‖TIiIi

/λi ‖<1. Then Eq. (37) for S=S’=Ii becomes

S = (Ω – U + G)/T	 (50)

which is equivalent to the entropy in Eq. (12) and thus is a 
measure of randomness of the alignments. 

The temperature T is set to 1 and the chemical potentials 
are set to 0 for all S∈S, a∈AS when the parameters J (and  K) 
are determined. This state is referred to as the reference state 
in the following. 

1.7. Gauge fixing
The relations among the densities (Eqs. 4–8) indicate that 

not all the parameters, μ, J, and K, are independent. When 
determining or changing the model parameters, we may 
therefore fix some of them to arbitrary values without losing 
generality. From the normalization condition (Eq. 4) of core 
sites, it is always possible to set

μOi
(–) = 0	 (51)

for all the sites Oi∈O (“–” stands for the deletion). From this 
and the relations Eqs. (5) and (6), it is always possible to set

JOiOi+1
(–,–) = 0 .	 (52)

Although there are other degrees of freedom that can be also 
fixed, they are not relevant to the present study so I will not 
fix them.

Furthermore, at the reference state, I set all μS(a) to zero. 
This is possible because any values of μS’(b) may be absorbed 
into JSS’(a,b) when determining the parameters (c.f., Eq. 18). 
Following the convention of Morcos et al. [11], I also set

KOiOj
(–,b) = KOiOj

(a,–) = 0 ,	 (53)

for all a∈AOi
 and b∈AOj

.

2. Materials and Methods
2.1. Data preparation and determining lattice structure

I have downloaded the MSA’s and profile HMM’s for the 
globin (PF00042) and (immunoglobulin) V-set (PF07686) 
domains from the Pfam database (version 28) [20]. For the 
globin domain, the full alignment of 17,947 amino acid 
sequences were used. For the V-set domain, the full align-
ment of of 23,976 sequences was used. In addition, I have 
downloaded 17 families from the top 20 largest Pfam fami-
lies with the model length of less than 300 sites. For these 17 
families, the representative set of alignments (with 75% 
sequence identity cutoff) were used due to the large size of 
the alignments.

In the present study, the lattice structure of a MSA was 
derived from the corresponding Pfam model. That is, each 
core site corresponds to a profile HMM match state, and 
each insert site to a profile HMM insert state.

2.2. Observed densities
The simplest way to estimate the single-site, bonded and 

non-bonded pair densities from a MSA of M sequences is to 
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In order to cope with this problem, I employ the following 
Gaussian (harmonic) approximation. By assuming the single-
site densities are Gaussian random variables yielding the 
observed covariance, the non-bonded coupling is given as

K = –C –1 ,	 (64)

which is identical to that derived by Morcos et al. [11] except 
for the diagonal blocks (i.e., KOiOi

). Unlike their case (where 
the diagonal blocks are defined to be zero), I use the expres-
sion for K as in Eq. (64) including the diagonal blocks. The 
system was again found to be unstable when the diagonal 
blocks (and those for bonded pairs) of K were set to zero. 
This approximation makes the K matrix negative semi-
definite so that the observed single-site densities are the 
most stable ones and there are no other optima as far as non-
bonded pairs are concerned.

2.5. Self-consistent solutions with fixed parameters
To obtain a self-consistent solution for the recursion equa-

tion (Eqs. 23–26) with a given set of parameters μ, J and K, 
we first set the mean-field KS(a)=0 for all S and a. Then 
compute the partition function and the expected densities 

nb
IiIi

(a,b) = 
〈Ii|a〉 〈a|TIiIi

|b〉 〈b|Ii〉
Ξλi

 .	 (60)

Let us define the “loop length” li as

li = ∑
a,b∈AIi

nb
IiIi

(a,b)	 (61)

and denote its observed counterpart by li. By imposing li=li 
we have

λi = 
〈Ii|TIiIi

|Ii〉
Ξ li

	 (62)

which is a self-consistent equation for λi. Thus, first λi is set 
to a sufficiently large value (the Frobenius norm [22] of the 
matrix JIiIi

 is used in practice) and compute the partition 
function and expected densities. Then, λi is updated by Eq. 
(62), and by using the updated value of λi, we again compute 
the partition function and expected densities. This process is 
repeated until the value of λi converges. After the conver-
gence of λi for all i, JIiIi

 is updated as in Eq. (37) without 
including λi. In this way, the contribution of λi is incorpo-
rated into the updated value of JIiIi

, and λi will eventually 
converge to 1, and hence may be omitted in later calcula-
tions. 

The overall procedure for determining the J matrix is 
shown in Figure 3. In this procedure, the given data are the 
observed densities and initial values for J and λi. After the 
partition function and expected densities are computed, λi is 
iteratively updated. After λi has converged, J is updated. 
Convergence is checked based on the difference of the 
expected bonded pair densities from their observed values: 
when the root mean square difference between the two den-
sities is less than 10–12, the iteration is stopped.

2.4. Determining the K matrix
In this study, only those between core sites are taken into 

account for non-bonded interactions. Including non-bonded 
interactions with insert sites was found to be numerically 
unstable because the spectral radius of TIiIi

 may easily 
exceed 1. Noting the gauge fixing (Eq. 53), we first determine 
KOiOj

(a,b) viewed as a 20N×20N matrix (consisting of N×N 
blocks of 20×20 submatrices) by discarding the rows and 
columns including deletion. Then, by fixing the values of K, 
we determine the J matrices.

Let the observed covariance matrix of single-site counts 
be C:

COiOj
(a,b) = ñnb

OiOj
(a,b) – ñOi

(a)ñOj
(b) .	 (63)

In a similar manner as in Morcos et al. [11], one could apply 
the Plefka expansion [11,23,24] to the grand potential (Eq. 
44) with K=0 as the reference state. However, I found that K 
thus obtained made the system unstable under very weak 
perturbations. This behavior is perhaps due to the incom
patibility of the mean-field approximation with the one-
dimensional system (see the remark at the end of Section 1.5). 

Figure 3 Flow chart for determining the J matrix parameters.
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DOi
= ∑

a
nOi

(a) ln 

nOi
(a)

ñOi
(a)  ,	 (69)

and the total divergence is defined by

D = ∑
N

i=1
DOi 

.	 (70)

3. Results
I now study the behavior of the lattice gas model of 

multiple sequence alignment by varying temperature or by 
“mutating” a site. I mostly focus on the effect of non-bonded 
interactions in the following. For this purpose, I compare the 
system including both the bonded and non-bonded interac-
tions (referred to as the “J+K” system in the following) with 

nS(a) and update KS(a) by Eq. (17). This process is repeated 
until convergence. In practice, however, I do not use this 
self-consistent solution (see below).

2.6. Self-consistent solutions with fixed sequence length
Note that our partition function is that of a grand canoni-

cal ensemble so the total number of particles (residues) can 
vary. In practice, however, it is preferable to fix the sequence 
length for comparing different conditions to be meaningful. 
This can beachieved by adjusting the chemical potentials. 
First, let us define the sequence length as the number of par-
ticles in the system:

L = ∑
S∈S

 ∑
20

a=1
nS(a) .	 (65)

Note that the deletion (a=21 when S=Oi) is not included 
here. Let L denote the target sequence length (a constant) 
which is computed using Eq. (65) with the observed densi-
ties. For example, the globin domain (see below) consisting 
of 110 core sites and 111 insert sites has the target sequence 
length of ≈109.2 (this is less than 110 due to the presence 
of deletions at core sites). At every step of self-consistent 
calculation, update the chemical potential of each residue 
(except for deletion) by

μS(a) = μS(a) +∊(L – L)	 (66)

where ∊ is a small positive constant (∊≈0.001). The iteration 
is terminated when the largest difference of μS(a) becomes 
less than 10–12. The flow chart of this procedure is shown in 
Figure 4.

2.7. Self-consistent solutions with fixed single-site densities
In virtual alanine scanning experiments, the single-site 

densities of particular sites is specified. Given densities ñS(a) 
for all a∈AS for a particular site S can be specified by adjust-
ing the chemical potentials at every iteration of the self-
consistent calculations:

μS(a) = μS(a) +∊’[ñS(a) – nS(a)]	 (67)

where ∊’ is a positive constant (∊’≈10). For the case of core 
sites, it is always possible to set μS(–)=0 by subtracting this 
value from those of other residue types of the same site. 
When the sequence length is to be fixed as well, both Eqs. 
(66) and (67) are applied (Fig. 4).

2.8. Measures of site conservation and difference
A measure of site conservation is the site entropy [25] 

defined by

HOi 
= – ∑

a
ñOi

(a) lnñOi
(a)	 (68)

for the reference state. The more well-conserved a site, the 
lower the value of the site entropy. The difference between 
the reference state and a perturbed state is measured by the 
Kullback-Leibler divergence [25]:

Figure 4 Flow chart for obtaining the self-consistent solution with 
fixed sequence length (and fixed single-site densities). This process 
assumes that the parameters J (see Fig. 3) and K (Eq. 64) have been 
already determined. Initial expected densities and chemical potentials 
are set to the observed  ones and 0, respectively. The constraint for the 
target sequence length is always imposed in the results given in this 
work. In addition, the constraint for the target densities is imposed on 
mutated sites in the case of alanine scanning. The convergence of target 
sequence length and target densities is reached if the chemical poten-
tials does not change more than 10–12. The convergence of expected 
densities is reached if the free energy does not change by more than 
10–12 after an update.
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allows a larger number of residues to reside at insert sites. In 
order to fix the sequence length, the chemical potential must 
be negative, and hence the negative Gibbs energy. 

The behaviors of the J+K and J-only systems appear sim-
ilar regarding the free energy, internal energy, entropy and 
Gibbs energy. To see the effect of non-bonded interactions 
more closely, the internal energy was decomposed into 
bonded interactions and non-bonded interactions for the J+K 
system (Fig. 5E). It appears that the increase in non-bonded 
energy is more than an order of magnitude smaller (Fig. 5E, 
blue line) compared to that of bonded energy (Fig. 5E, 
magenta line). Furthermore, the divergence (difference of 
residue distributions from the reference state) shows a rela-
tively large difference between the J+K and J-only systems 
(Fig. 5F). Thus, the non-bonded interactions are very stable 
under increased temperatures, and they greatly stabilize the 
residue composition.

A closer examination of each site (at T=1.2) shows that 
the magnitude of the divergence of the J-only system is 
about three times as large as that of the J+K system (Fig. 6). 
The broad peaks of the divergence roughly correspond to 
regions of α-helices. Furthermore, with non-bonded interac-
tions, finer peaks match the periodicity of the helices (3 to 4 
residues) whereas such periodicity is not observed with the 
J-only system. Thus, non-bonded interactions seem not only 
to stabilize the residue composition, but to make the compo-
sition more specific to the structure of the domain. 

3.2.2. V-set domain
The V-set domains are found in many proteins the repre-

sentative members of which are immunoglobulin variable 
domains. The lattice gas model of this domain consists of 
114 core sites (excluding the termini) and 115 insert sites. 
Structurally, they belong to the all-β class having a 
β-sandwich structure.

The same procedures were applied to the V-set domain as 
the globin domain. In this case, however, self-consistent 
solutions could be obtained only for temperatures T≤1.25. 
This may be due to a long insertion allowed at the insert site 
I9 (average length of 23.5 residues). Other than this limita-
tion, the results were found to be qualitatively similar to the 
case of globins (Fig. 7A–D). However, the free energy 
decrease is more pronounced for the J+K system, compared 
to the case of the globin. Again, while the increase in tem-
perature hardly changes the non-bonded energy (Fig. 7E), 
the difference of the total divergence between the J+K and 
J-only systems is significant.

A close examination of individual sites at T=1.2 also indi-
cates that inclusion of non-bonded interactions greatly sup-
presses the divergence, and broad peaks roughly correspond 
to secondary structure elements (in this case, β-strands). 
With the non-bonded interactions, finer peaks appear to 
match to the periodicity of β-strands (2 residues). Therefore, 
the conclusion drawn for the globin domain applies also to 
the V-set domain. That is, the non-bonded interactions act to 

that including only the bonded interactions (the “J-only” 
system). The calculations for the J-only system were per-
formed by simply discarding the mean-field, which is justi-
fied due to the present definition of the mean-field (Eq. 17).

All the calculations in the following are based on the 
“fixed-length” solution, and the sequence length (Eq. 65) 
was constrained to that of the reference state. 

3.1. Parameter determination
The parameters are determined as described in the previ-

ous section. For all the MSA’s tested below and in both the 
J+K and J-only systems, the expected bonded pair densities 
matched precisely with the observed densities (RMSD<10–12). 
Iterative updates of J (Eq. 59) usually converged within 200 
steps. This observation confirms the validity of the present 
procedure. 

3.2. Temperature scanning
Note that the present model does not exhibit phase transi-

tion due to the Gaussian approximation of the non-bonded 
pair interactions. That is, the K matrix is negative semi-
definite so that there exists one and only one minimum for 
the non-bonded interactions (i.e., at the observed single-site 
densities). Nevertheless, solving the self-consistent equation 
with varying temperatures helps to understand the behaviors 
of interactions. At high temperatures, all the interactions are 
effectively weakened. This can be regarded as an idealization 
of uniform random mutations along the protein sequences of 
the given family. By observing the residue compositions 
perturbed by increased temperature, we can see which sites 
are more robust under the perturbations.

3.2.1. Globin domain
The globin domains are found in a wide variety of organ-

isms ranging from bacteria to higher eukaryotes. Two of the 
most famous family members are myoglobins and hemo
globins both of which bind the heme prosthetic group. Struc-
turally, globins belong to the class of all-α proteins, The 
lattice gas model of the globin domain consisted of 110 core 
sites (excluding the termini) and 111 insert sites.

The self-consistent equation was solved for temperature 
ranging from T=1.0 to T=1.7. Above the latter temperature, 
the solution could not be obtained stably because the spectral 
radius of some TIiIi

 exceeded 1.
As the temperature increases, the free energy (grand 

potential, Eq. 44) increases up to around T=1.15 and then it 
starts to decrease (Fig. 5A). Decomposing the free energy 
(Eq. 45) shows that both the internal energy (Fig. 5B) and 
entropy (Fig. 5C) increase with temperature. On the other 
hand, the Gibbs energy (Eq. 49) monotonically decreases 
with increasing temperature (Fig. 5D), indicating that the 
sequence length tends to be longer for higher temperature. 
This can be understood from the definition of the transfer 
matrix TIiIi

. Since ‖TIiIi
‖ <1 is required, JIiIi

(a,b)<0 holds for 
all a,b∈AIi

 (Ii∈I) so the increased temperature potentially 
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stabilize the residue composition as well as to make compo-
sition more specific to the structure of the domain.

3.3. Alanine scanning
As opposed to global perturbations such as increased 

temperature, local perturbations helps us to examine the 
contribution of individual sites. Local perturbations can be 
imposed by biasing the residue composition at a site of inter-
est. In this subsection, the composition of a particular core 
site was biased in such a way that single-site density was set 
to 0.95 for alanine and to 0.0025 for all other residue types 
(including the “deletion” residue type). This residue compo-
sition can be achieved by adjusting the chemical potential 
μOi

(a). When the site Oi is constrained in this way, the corre-
sponding equilibrium state is referred to as the “Ai mutant” 
in the following.

Figure 5 Temperature scanning of the globin domain. (A) Free energy difference ∆Ω from the reference state (T=1). (B) Internal energy 
difference ΔU. (C) Entropy difference ΔS. (D) Gibbs energy difference ΔG. (E) Decomposition of internal energy difference into bonded and non-
bonded energy differences. The value of non-bonded energy difference (blue line) is multiplied by 10. (F) Total  divergence of the core site compo-
sitions from the reference state (c.f., Eq. 70).

Figure 6 Divergence of core sites of the globin domain at T=1.2 
(c.f., Eq. 69). Gray bars indicate sites annotated as helices (α-helix, “H” 
or 310-helix, “G”) according to the Pfam model annotation (PF00042). 
The values for the J+K system are multiplied by 3.
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3.3.1. Globin domain
Comparing the free energy difference between the J+K 

and J-only systems, it is immediately noticed that the ranges 
of ΔΩ are very different between the two; the former being 
an order of magnitude larger than the latter. While a large 
number of alanine mutants for both the J+K and J-only sys-
tems (82 and 101, respectively, out of 110) exhibit ΔΩ<0 
(i.e., favorable mutants), the former (J+K) shows a larger 
number of unfavorable (ΔΩ>0) alanine mutants. Apart from 
the absolute values, the two systems appear to be correlated 
except for the region from the site 40 to 50 where secondary 
structures are sparse (c.f., Fig. 6). In addition, they seem to 
be negatively correlated with site entropy (Fig. 10A): Highly 
conserved sites tend to have high ΔΩ values (correlation 
coefficients, CC, were –0.60 and –0.57 for the J+K and 
J-only systems, respectively). Thus, despite the great differ-

Figure 7 Temperature scanning of the V-set domain. (A) Free energy difference ΔΩ from the reference state (T=1). (B) Internal energy differ-
ence ΔU. (C) Entropy difference ΔS. (D) Gibbs energy difference ΔG. (E) Decomposition of internal energy difference into bonded and non-bonded 
energy differences. The value of non-bonded energy difference (blue line) is multiplied by 10. (F) Total divergence of the core site compositions 
from the reference state (c.f., Eq. 70).

Figure 8 Divergence of core sites of the V-set domain at T=1.2 
(c.f., Eq. 69). Gray bars indicate sites annotated as extended strand, “E” 
according to the Pfam model annotation (PF07686). The values for the 
J+K system are multiplied by 3.
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(non-bonded) interactions greatly restricts the residue com-
position throughout the globin domain. In fact, unlike the 
case for temperature scanning (Fig. 5), the perturbation by a 
point mutation induces a large increase in non-bonded 
energy that is comparable with that of bonded energy in the 
J+K system (Fig. 9E).

The Gibbs energy difference, ΔG, reveals a sharp contrast 
between the two systems (Figs. 9D and 10C). The Gibbs 
energy differences of the J+K system are clustered below 
ΔG<50, but has a long tail towards higher values (skewness 
was 1.1). On the other hand, those for the J-only system are 
more or less symmetrically distributed around ΔG=5 (skew-
ness was –1.4). The correlation between ΔG and site entropy 
is evident for the J+K system (CC=–0.71), but is nearly 
absent for the J-only system (CC=–0.18) (Fig. 10C).

The total divergence shows a trend similar to the Gibbs 
energy difference in that its values are clustered at lower val-

ence in magnitudes, the J+K system and J-only system 
appear to be similar in terms of free energy difference. 
Behind this apparent similarity, however, exist different 
mechanisms, as we shall see in the following.

While internal energy difference, ΔU, also shows a similar 
correlation as ΔΩ (Fig. 9B), entropy difference exhibits dif-
ferent, somewhat opposite, trends (Fig. 9C). In fact, the rela-
tions between the internal energy and entropy are completely 
different between the J+K and J-only systems (Fig. 10B). 
While ΔU and ΔS are linearly and positively correlated 
(CC=0.99) for the J-only system, their relation is more com-
plicated for the J+K system: a positive correlation for 
ΔU<20 (CC=0.65) and a negative correlation for ΔU>30 
(CC=–0.69). The region ΔU<20 corresponds to that spanned 
by the J-only system, and therefore is considered to be the 
region where local (bonded) interactions are dominant in 
ΔU. This in turn indicates that a large increase in nonlocal 

Figure 9 “Alanine scanning” of the globin domain. The horizontal axis indicates the site at which the single-site density of a core site was set 
to 0.95 for alanine, and to 0.0025 for other residue types; the vertical axes indicate associated values (A)–(F), with the J+K system on the left axis, 
and J-only system on the right. (A) Free energy difference of “alanine point mutants” from the reference state. (B) Internal energy difference. (C) 
Entropy difference. (D) Gibbs energy difference. (E) Decomposed internal energy difference. (F) Total divergence of core sites (Eq. 70).
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conserved Phe significantly disturbs the system, the present 
result suggests that the A91 mutant of the functionally con-
served His is also maintained by a significant amount of 
interactions with other sites. This may indicate the impor-
tance of structural scaffold to maintain protein function.

3.3.2. V-set domain
The case for the V-set domain is mostly similar to that for 

the globin domain (Figs. 11 and 12). However, there are 
some marked differences to be noted. First, the free energy 
differences ΔΩ due to alanine mutations take both positive 
and negative values for the J+K system, but only negative 
values for the J-only system except for several residues near 
the C-terminus. The positive values for the former corresponds 
to relatively well-conserved sites, as can be seen in Figure 
12A. In fact, the correlation between ΔΩ and site entropy is 
significantly higher for the J+K system (CC=–0.72) than for 
the J-only system (CC=–0.52). Second, while the correla-
tion between internal energy and entropy differences is linear 
and positive for the J-only system (CC=0.96) as was the 
case with the globin, that for the J+K system of the V-set 
domain shows only a negative trend for the entire range of 
ΔU (CC=–0.92). Third, the contrast of the Gibbs energy dif-

ues and has a long tail towards higher values for the J+K 
system, and that such is not the case for the J-only system 
(Fig. 9F). Although in both systems the total divergence is 
well correlated with site entropy, the correlation is higher for 
the J+K system (CC=–0.78) than for the J-only system 
(CC=–0.71) (Fig. 10D). In the J-only system, each mutation 
perturbs the residue compositions only locally around the 
mutated site, whereas in the J+K system, a mutation at one 
site perturbs many sites across the entire domain. As a result, 
the contrast between the effects of mutations at highly con-
served sites and less conserved sites is higher for the J+K 
system than for the J-only system. 

In the globin domain, the two most highly conserved res-
idues are phenylalanine (Phe) at site 38 (HOi

=0.67) and his-
tidine (His) at site 91 (HOi

=0.64). The alanine mutants at 
these sites show large differences in ΔΩ (Fig. 10A), ΔU (the 
two points with the largest ΔU in Fig. 10B) and ΔG (Fig. 
10C). According to a detailed study by Ota et al. [26], these 
two residue are conserved for different reasons: Phe at site 
38 (“CD1” in [26]) is conserved for structural stability 
whereas His at site 91 (“F8”) is conserved for the heme-
binding function at the cost of structural stability. While it is 
reasonable to observe that the A38 mutant of the structurally 

Figure 10 Correlations between various quantities for the globin domain. (A) Site entropy, HOi
, vs. free energy change, ΔΩ (left vertical axis 

for the J+K system, right vertical axis for the J -only system). (B) Internal energy difference, ΔU, vs. entropy difference, ΔS. (C) Site entropy, HOi
, 

vs. Gibbs energy change, ΔG (left vertical axis for the J+K system, right vertical axis for the J -only system). (D) Site entropy, HOi
, vs. total diver-

gence, D (left vertical axis for the J+K system, right vertical axis for the J-only system).
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and J-only systems.

3.3.3. Other protein families
To confirm the observations made above, alanine scan-

ning was performed for 17 Pfam families that are the largest 
in the number of family members and are of model length of 
less than 300 sites. The free energy difference, ΔΩ(Ai), tends 
to have more positive values for the J+K system than for the 
J-only system (Fig. 13A, cf. Figs. 9A and 11C). The skew-
ness (i.e., the standardized third moment) of ΔG(Ai) consis-
tently have positive values for the J+K system whereas it 
can be either positive or negative for the J-only system (Fig. 
13B). The negative correlation between site entropy and 
ΔG(Ai) was also clear for the J+K system whereas such was 
not the case for the J-only system (Fig. 13C). Thus, the trend 
that the non-bonded interaction enhances correlation with 
sequence conservation seem to hold generally. 

ference is far more pronounced (Fig. 11D, the skewness was 
1.8 for J+K and –0.37 for J-only) and its correlation with 
site entropy is very high for the J+K system (CC=–0.80) 
whereas it is negligible for the J-only system (CC=–0.08) 
(Fig. 12C). Similarly, as for total divergence, the J+K system 
shows sharper contrast (Fig. 11F) and higher correlation with 
site entropy (CC=–0.80, Fig. 12D) than the J-only system 
(CC=–0.67).

Thus, compared to the case with the globin, the differ-
ences between the J+K and J-only systems are more pro-
nounced. This may be due to the difference in the structures 
of these domains. The globin domain has an all-α fold in 
which local interactions in α-helices are prominent, whereas 
the V-set domain has an all-β fold in which nonlocal interac-
tions between β-strands are prominent. This difference may 
be reflected in the non-bonded interactions of the lattice gas 
model, hence the pronounced difference between the J+K 

Figure 11 “Alanine  scanning” of the V-set domain. The horizontal axis indicates the site at which the single-site density of a core site was set 
to 0.95 for alanine, and to 0.0025 for other residue types; the vertical axes indicate associated values (A)–(F), with the J+K system on the left axis, 
and J -only system on the right. (A) Free energy difference of “alanine point mutants” from the reference state. (B) Internal energy difference. (C) 
Entropy difference. (D) Gibbs energy difference. (E) Decomposed internal energy difference. (F) Total divergence of core sites (Eq. 70).
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determining the relative contributions of various interac-
tions. It is possible to treat a MSA without classifying its 
columns into cores and inserts if one ignores the possibility 
of adding new sequences in the future. In fact, this approach 
is adopted by the GREMLIN method by Balakrishnan et al. 
[30] that is based on the Markov random fields (the present 
lattice gas model also belongs to this class of statistical 
models). In practice, however, they discarded columns with 
excessive gaps. Such a preprocessing seems to be required 
because alignments within an insertion are often meaning-
less. This does not necessarily mean, however, that the exis-
tence of the insertion is meaningless. In any case, discarding 
columns of a MSA will lose the information about the linear 
chain structure of protein sequences as well as the possibility 
of adding new sequences without changing the core struc-
ture of the MSA. The present lattice gas model resolves the 
shortcomings of these previous models as both bonded and 
non-bonded interactions as well as insertions naturally emerge 
from a single framework. This feature of the model makes it 
possible to align new sequences against the model by using 
the dynamic programming technique (combined with itera-
tions for self-consistency). The main tricks here are the clas-
sification of core and insert sites and the use of residue 

4. Discussion
One of the fundamental assumptions of the present lattice 

gas model is that alignment sites can be classified into core 
sites and insert sites. Although this classification may be 
ambiguous to some extent, once the classification is made, 
the lattice structure is uniquely determined. While the lattice 
structure reflects the chemical structure of polypeptide 
chains, interactions between the lattice sites are not limited 
to those that are local along the chain. The principle of max-
imum entropy allows the model to treat bonded (local) and 
non-bonded (nonlocal) interactions in a coherent manner. In 
comparison, the profile HMM [1] shares a similar lattice 
structure as the lattice gas model, but it cannot treat nonlocal 
interactions due to its assumption of the Markov process 
along the lattice structure. On the other hand, the direct-
coupling analysis (as applied to contact prediction) [11], 
which casts a MSA as a Potts model [27], simply ignores 
insert sites so that it cannot faithfully represent polypeptide 
chains. Threading methods [28] or conditional random field 
models [29] can combine the polypeptide structure with 
nonlocal interactions, but such integration is often ad hoc 
because there are no well-defined rules or principles for 

Figure 12 Correlations between various quantities for the V-set domain. (A) Site entropy, HOi
, vs. free energy change, ΔΩ (left vertical axis for 

the J+K system, right vertical axis for the J -only system). (B) Internal energy difference, ΔU, vs. entropy difference, ΔS. (C) Site entropy, HOi
, vs. 

Gibbs energy change, ΔG (left vertical axis for the J+K system, right vertical axis for the J -only system). (D) Site entropy, HOi
, vs. total divergence, 

D (left vertical axis for the J+K system, right vertical axis for the J -only system).
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ical potentials in the present case) which are not intrinsic to 
the system, the relations Eqs. (7) and (8) alone do not address 
the consistency between local and nonlocal interactions.

In this study, I have adopted the Gaussian approximation 
for the non-bonded coupling parameters (Eq. 64) as well as 
the mean-field approximation (Eq. 17) for computing the 
partition function. This approach has its advantages and 
disadvantages. The advantages are that the parameters are 
readily obtained and that the partition function can be com-
puted analytically and efficiently. These enable us to study 
the system under various perturbations relatively easily. A 
major disadvantage is that it is not possible to determine 
the K matrix self-consistently. The Gaussian approximation 
implicitly assumes that each site is independent of other 
sites, which is not fully consistent with the lattice structure 
of the system. The reason for this inconsistency is likely to 
be that the assumption for the mean-field approximation 
(i.e., non-bonded interactions are relatively weak; see refer-
ences [11,23]) does not actually hold in the present case. 
Due to this approximation, the system does not exhibit a 
phase transition that might otherwise be induced by increased 
temperatures or by mutations at potentially important sites. 

counts, nS(a|X) and nb
SS’(a,b|X), as fundamental variables 

rather than the raw alignment sequences (X). These are espe-
cially important for treating insert sites where any number of 
residues are allowed to exist. The lattice gas model can com-
pute the probability of an entire alignment, and what has 
been conventionally regarded as the probability of residue 
occurrence at sites should be regarded as the expected num-
ber of residues at the sites.

From a theoretical point of view, the present formulation 
of the lattice gas model offers an interesting perspective 
regarding the interplay between local and nonlocal interac-
tions. As can be seen from the relations Eqs. (5)–(8), or more 
precisely, from the analogous relations that hold for the 
number densities, local and nonlocal interactions are not 
independent of each other, but are related via single-site 
densities. In this sense, local and nonlocal interactions must 
be consistent with each other [31], and the consistency is 
inherently embedded in a (well-curated) MSA. In the con-
ventional formulation of the direct-coupling analysis, only 
the relations corresponding to Eqs. (7) and (8) are present 
because the chain structure is absent. Since the parameters 
conjugate to the single-site densities are external fields (chem-

Figure 13 Alanine scanning of 17 Pfam families. (A) Free energy difference (cf. Figs. 9A and 11A). (B) Skewness (standardized) of ΔG (cf. 
Figs. 9D and 11D). (C) Correlation coefficient between site entropy and Gibbs energy ΔG (cf. Figs. 10C and 12C).
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conventional sequence analysis methods such as the profile 
HMM. In fact, the very existence of long-range correlations 
indicates that MSA’s cannot be modeled as a purely one-
dimensional system where long-range correlations simply 
cannot exist [21]. Considering this fact, it is surprising that 
conventional multiple sequence alignment methods, inher-
ently based on the one-dimensional system, can produce 
MSA’s with long-range correlations. This may be a manifes-
tation of the consistency principle indicated above [31].

There are a few possible extensions and applications of 
the present lattice gas model. In the present form, the model 
is autonomous in the sense that it does not require an input 
or target sequence for computing various statistical quanti-
ties (once the observed statistical quantities are obtained). 
Nevertheless, it is readily possible to align the model with a 
particular amino acid sequence to compute a partition func-
tion and therefore other quantities conditioned on that input 
sequence. In this way, the lattice gas model may be used for 
detecting remote homologs. The present results (e.g., Figs. 6 
and 8) suggest that inclusion of non-bonded interactions 
would increase the specificity of the alignment. Further-
more, the model can be aligned with a “sequence” of a given 
length with unspecified amino acid residues to compute the 
partition function that is conditioned on all the amino acid 
sequences of that length. In this way, one can enumerate 
those sequences that are compatible with the model. In other 
words, the model may be used for designing optimal sequences 
for a given protein family. Such applications may be pursued 
in the future to open new possibilities in protein sequence 
analysis.
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