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ABSTRACT
The important role of equilibrium of environmental factors during the embryo-fetal period is undisputable. Women of reproductive 
age are increasingly exposed to various environmental risk factors such as hypoxia, prenatal viral infections, use of drugs, smok-
ing, complications of birth or stressful life events. These early hazards represent an important risk for structural and/or functional 
maldevelopment of the fetus and neonates. Impairment of oxygen/energy supply during the pre- and perinatal period may affect 
neuronal functions and induce cell death. Thus when death of the newborn is not occurring following intrauterine hypoxia, vari-
ous neurological deficits, including hyperactivity, learning disabilities, mental retardation, epilepsy, cerebral palsy, dystonia etc., may 
develop both in humans and in experimental animals. In our animal studies we used several approaches for modeling hypoxia in rats 
during pregnancy and shortly after delivery, i.e. chronic intrauterine hypoxia induced by the antiepileptic drug phenytoin, neonatal 
anoxia by decreased oxygen saturation in 2-day-old pups. Using these models we were able to test potential protective properties 
of natural (vitamin E, melatonin) and synthetic (stobadine) compounds. Based on our results, stobadine was also able to reduce 
hypoxia-induced hyperactivity and the antioxidant capacity of stobadine exceeded that of vitamin E and melatonin, and contrary to 
vitamin E, stobadine had no adverse effects on developing fetus and offspring. 
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during embryofetal development may lead to the inadequate 
apoptosis/necrosis (do Carmo Pinho Franco et al., 2003, 
Barker, 1998) and caused maldevelopment of the organs 
responsible for regulation blood pressure (kidneys) and 
glucose (pancreas) (Barker, 1998; Bezek et al., 2008). 

Although the understanding of perinatal asphyxia-
related pathophysiology is gradually increasing, limited 
therapeutic options are available to prevent or even 
mitigate the devastating process that unfolds after injury 
(Brucknerová et al., 2008). A potential solution lies in the 
application of therapeutic hypothermia, protective use of 
antioxidants (Ujházy et al., 2006, Hoeger et al., 2006) 

A study of hypoxia causing brain damage in the guinea 
pig was the first confirmation of the importance of fetal 
asphyxia (Windle and Becker, 1942). Since that time a 
number of research models have examined the effect of 
asphyxia in the fetal monkey, fetal lamb and laboratory 
rodents. Asphyxia has been induced by maternal hypox-
emia, reduced utero-placental blood flow, umbilical cord 
occlusion, neonatal anoxia in 2-day old pups, while cerebral 
ischemia has been caused by carotid artery occlusion. 
(Dell’Anna et al., 1991; Lubec at al., 1997; Pulera et al., 1998; 
Spandou et al., 1999)

Numerous exposures to drugs or physical treatment 
(uterine vascular clamping, calcium channel blockers, phe-
nytoin, cocaine, nitric oxide synthase inhibitors, chorionic 

Introduction

Hypoxia during pregnancy, labor or early life stage is a major 
determinant of neurological morbidity and mortality in 
the neonatal period. Many studies have been investigating 
neurological deficits following perinatal hypoxia, includ-
ing seizures, cerebral palsy, mental retardation, attention 
deficit-hyperactivity disorder, anxiety as well as other 
mental diseases. (Volpe, 1995; Golan et al., 2004; Bhat et 
al., 2005). Insufficient delivery of the tissue energy reserves 
(oxygen, nutrients) to the developing brain threatens its 
function during entire life-span up to senescence (Nyakas 
et al., 1996), and it might be one of primary factors in the 
pathogenesis of neurodegenerative diseases.

In the last decade the fetal origin of chronic adult dis-
eases was proposed as the most important factor in genesis 
of diabetes and hypertension in adulthood. The scientists 
showed that malnutrition, and inadequate oxygen supply 
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villus sampling) have been shown to induce limb and 
central nervous system (CNS) defects in developing rats 
when the exposure occurs during fetal stages. Although it 
is a chemically and physically diverse group, exposure to 
each of the chemicals or events studied has been found to 
have vasoactive or cardioactive consequences that result in 
transient uteroplacental hypoperfusion (Fantel and Person, 
2002).

Hypoxia in pregnancy

Hypoxia can produce temporary brain dysfunction or per-
manent brain injury, depending on the duration, intensity 
of oxygen deprivation and age of the fetus. The hypoxia/
ischemia cascade leads to neuronal cell death through 
overstimulation of the excitatory amino acid receptors 
(Monaghan et al., 1989; Olney, 1989), cellular calcium 
influx, and formation of free radicals and nitric oxide. 

The results of several studies implicate that the neuro-
toxicity resulting from overstimulation of the excitatory 
amino acid receptor is extremely active in the immature 
rat brain compared to the adult rat brain (McDonald et al., 
1988). Prenatal hypoxia frequently occurs during maternal 
convulsions in preeclampsia or eclampsia conditions. Severe 
asphyxia can occur in infants around the time of birth for 
several reasons, including compression of the umbilical cord, 
abruption of the placenta, abnormal uterine contractions, 
or failure of the neonate to successfully begin breathing. 
Another risk for embryo-fetus/child neurodevelopment is 
disruption of the milieu and integrity between mother and 
fetus by stress, drugs and especially the conditions leading 
toward excessive free radical generation. 

Acute perinatal asphyxia is a major cause of death and 
neurological injury in newborn infants. The incidence 
has been estimated as 1–6 per 1000 live births and has 
not decreased despite advances in perinatal and obstetric 
care. Many asphyxiated babies die during the newborn 
period, and 20–30% of the survivors present with long 
term neurological sequelae, including spasticity, epilepsy, 
and mental retardation. Neurodevelopmental abnormality 
in childhood, presenting as seizure activity and/or motor 
impairment similar to that which may be observed in 
children with cerebral palsy, may result in the severe cases 
(Tuor et al., 1996). Milder forms of asphyxiating insults can 
be associated with learning disabilities and attention deficit 
disorders, such as the minimal brain disorder syndrome 
(Volpe, 1987; Hill, 1991; Carter et al., 1993). 

Experimental approaches

Gravity of hypoxia during pregnancy and in the early postna-
tal period brings us to the problem how we can improve the 
strategy of prevention and treatment of hypoxic-ischemic 
complications. Researchers developed several methodologi-
cal approaches using animal models as a useful tool for elu-
cidation of this problem. The most sensitive period for brain 
development is time around and shortly after delivery. From 

this point of view rats are suitable model. It well known that 
the relationship between birth and brain maturation varies 
substantially between species (Dobbing and Sands, 1979). 
The CNS of rats and mice, the most often used species 
for mechanistic studies in hypoxia/ischemia, is relatively 
immature at birth and therefore could mimic critical stages 
of third trimester in humans. Ligation of commom carotic 
artery (bilateral or unilateral) in 5–7 days old rat pups, with/
without systemic oxygen decrease, is very often model for 
studying hypoxia/ischemia complications (Pulera et al., 
1998; Spandou et al., 1999). Bilateral carotid occlusion in 
the 5-day-old rat, without accompanying hypoxia, causes 
preferential white matter injury (Uehara et al., 1999) with 
only scattered neuronal injury within the cortex. This 
model holds a great deal of promise for the study of mild to 
moderate handicap that is associated with ventriculomegaly 
but minimal other detectable neuropathology.

Another approach is using much younger rat pups (1–2 
days old) and provokes anoxia in nitrogen atmosphere 
of tight sealed glass chamber. Adapting the Dell’Anna et 
al. (1991) model to the extremely immature rat has also 
revealed some important developmental differences in 
injury susceptibility (Sheldon et al., 1996). These extremely 
immature (postnatal day 1–2) animals require a longer and 
more severe degree of hypoxia to produce injury compared 
with postnatal day 7 rats, and there is a greater degree of 
damage to the ipsilateral subcortical developing white mat-
ter than in older rats (Sheldon et al., 1996).

Above mentioned approaches represent acute models 
hypoxia/ischemia. However, hypoxia/ischemia is often 
caused also with chronic hypoxia-reoxygenation during 
maturation of organs. For this sake the model of chronic 
intrauterine hypoxia induced pharmacologically (phenytoin 
– PHT) was introduced by our lab. The proposed terato-
genicity mechanism of antiseizure medication phenytoin 
is due to embryonic hypoxia/ischemia and production of 
free radicals (Danielsson et al., 1997; Wells and Winn, 1996; 
Figure 1). 

Neonatal anoxia in 2-day-old rat pups
This model represents non-invasive approach of hypoxia/
ischemia study in young rat pups, what is the biggest advan-
tage compared to carotid occlusions. It was introduced by 
Dell’Anna et al. (1991) and provides wide range of settings, 
i.e. temperature, age, O2 concentration, with minimal 
mother-pup unit interference. Anoxia is induced in a glass 
chamber with tempered bottom and cover connected to the 
nitrogen supply. Pups are placed into the chamber and the 
air inside is removed by a stream of nitrogen gas and the 
pups are exposed to normobaric anoxia. After anoxic insult 
all pups are replaced to their mothers and not surviving 
pups are removed. 

PHT induced chronic intrauterine hypoxia
Several mechanisms underlying PHT teratogenicity have 
been proposed, including disturbances in folate metabolism 
(Monie et al., 1961), vitamin K metabolism (Howe et al., 
1995), and bioactivation of PHT to a reactive toxic interme-
diate (epoxide) by cytochrome P450 (Cyp450) (Martz et al., 
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1977), or co-oxidation of PHT to free radical intermediates 
centered in the hydantoin nucleus (Wells and Vo, 1989).

One theory suggests that PHT teratogenicity is mainly 
initiated by adverse pharmacological action on the 
embryonic heart during a sensitive stage of development, 
resulting in embryonic hypoxia/ischemia (Azarbayjani 
and Danielsson, 1998). Maternal hemodynamic alterations 
may contribute to embryonic hypoxia, but these alterations 
are not of a magnitude by which they alone could explain 
the observed hypoxia-related malformations (Danielson 
et al., 1992). Embryonic hypoxia has been associated with 
specific pathological changes such as vascular disruption, 
hemorrhage, and finally tissue necrosis of embryonic tissues 
(Danielson et al., 1992). The tissue necrosis, manifested as 
malformations in the fetus at term, may be a direct conse-
quence of hypoxia and/or generation of ROS at reoxygen-
ation (Figure 1).

In our experiments PHT was given to pregnant rats dis-
solved in deionized distilled water and pH was adjusted to 
11.5 with NaOH. Buffer water with pH 11.5 was used as a 
control vehicle. The dams could be treated by oral gavage 
with PHT (150 mg/kg) daily in sensitive stages of organ 
development or during whole pregnancy (Ujházy et al., 
2000). 

Hypoxia induced structural and functional 
disturbances: possible pharmacological 
intervention with antioxidants

Animal models represent one and only tool for assessing 
disturbances during development. The observations in 
humans (blood draw, biochemical analysis, behavioral 
scans) could by make only after insult and therefore the data 
represents changes not mechanisms. In this matter animals 
are used for elucidation of mechanisms leading to origins 
of eclampsia, placental transfer disturbances, maternal-fetal 
complex communications etc. For extrapolation to humans, 
threshold effect and intra-/interspecies differences in the 
timing of developmental events must also be taken into 
account (Hogan and Hoel, 1989).

As we mentioned above, hypoxia represents serious risk 
factor in human development. Two experimental models of 
hypoxia (acute and chronic) were used for assessment not 
only structural disturbances (teratology studies) but also 
functional disorders (behavioral studies). Neonatal anoxia 
showed that 1- and 2-day old rat pups were extremely resis-
tant to anoxic insult (Dubovický et al, 2000). Despite the 
mild disturbances after anoxia we were able to detect hyper-
activity in male offspring (Ujházy et al., 2006). Interestingly, 
the synthetic pyridoindole antioxidant stobadine (STO) was 
able to reduce this hyperactivity, suggesting crucial role of 
reactive oxygen species in mechanism of anoxia induced 
behavioral disturbances (Ujházy et al., 2006). The protec-
tive effect of hypothermia following an asphyxiating insult 
was first demonstrated by the pioneering work of Miller 
(1971). Following this, several studies have confirmed the 
effectiveness of both intra- as well as post-asphyxic hypo-
thermia. Similar to these findings or experiment confirmed 
importance of temperature in neonatal hypoxia, especially 
acute form. Moreower, the age factor is playing the impor-
tant factor as well (Figure 2). 

We studied also the effect of chronic intrauterine 
hypoxia produced by PHT on pre- and postnatal develop-
ment of the rat offspring. When administered prenatally, 
PHT (inductor of hypoxia in prenatal development) was 
shown to exert an overwhelming effect on embryo-fetal 
and neuromotor development (Ujházy et al., 2000; Mach 
et al., 2001). It was reported that prenatal PHT treatment 
of rats is increasing catecholamine release in response to 
a mild stressor in adulthood (Makatsori et al., 2005). The 
pretreatment of pregnant rats with STO 2 h prior PHT 
administration partially decreased the embryotoxic effect 
of PHT, as manifested by increase of fetal and placental 
weight compared to the PHT group, and exerted a positive 
influence on some reproductive variables (live fetuses, 
resorptions, pre- and postimplantation loss) (Ujházy et al., 
2004). The supplementation with a high dose of the natural 
antioxidant vitamin E (VitE) did not ameliorate the develop-
mental toxicity of PHT and failed to protect the rat fetuses. 
Moreover, VitE induced growth retardation, apparent also 
in adulthood. Our results indicate insufficient protection 
of antioxidants (VitE, melatonin) in the PHT model (Mach 
et al., 2005; 2006). Prenatally administered PHT in the 
dose of 150 mg/kg is probably too toxic for the mother and 
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Figure 1. Teratogenic mechanisms of PHT. 
I. Hypoxia–reoxygenation as the cause of PHT teratogenicity, 
which is induced by embryonic bradycardia and arrhythmias and 
free radical damage during reoxygenation. Hemodynamic altera-
tions may contribute to embryonic hypoxia (Danielsson et al., 1997). 
II. Bioactivation of PHT by cytochrome P450 (Cyp450), prostag-
landin H-syntase (PHS) and lipoperoxidase (LPO) to reactive toxic 
intermediates (Wells and Winn, 1996). 
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developing fetus so that antioxidants are unable to eliminate 
oxidative stress. Surprisingly, we found that high doses of 
VitE in pregnancy, which should be safe, appear to involve 
a risk to the developing rat fetus due to the occurrence of 
slight skeletal anomalies and persistent growth retardation 
apparent up to adulthood (Mach et al., 2006).

Conclusions

The aim of our experiments is to widen our knowledge on 
the possible protective effects of antioxidants in a hypoxia/
ischemia models. Based on our results, the antioxidant 
capacity of STO exceeded that of VitE, and contrary to VitE, 
STO had no adverse effects on offspring. Even though STO 
did not fully alleviate the PHT teratogenicity, it was able to 
reduce PHT-induced hyperactivity and had beneficial effects 
on some reproductive variables. These results are indicative 
of a prospective use of STO as a potential protectant and a 
supportive therapeutic agent in pregnancies with high risk 
of pre-eclampsia, perinatal asphyxia or pre-term delivery, in 
which oxidative injury may play a crucial role.

The experimental results also demonstrating that etho-
logical approaches in pharmacology and toxicology are an 
integral part of relative safety drug assessment (Dubovický 
et al., 2008). Further experiments with animal models are 
needed, so more accurate and precise insights into the 
mechanisms of hypoxia induced brain injury and sequels 
could be successfully treated or et least managed on the 
bearable level.
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