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Neuromorphic computer models are used to explain sensory perceptions. Auditory

models generate cochleagrams, which resemble the spike distributions in the auditory

nerve. Neuron ensembles along the auditory pathway transform sensory inputs step

by step and at the end pitch is represented in auditory categorical spaces. In two

previous articles in the series on periodicity pitch perception an extended auditory model

had been successfully used for explaining periodicity pitch proved for various musical

instrument generated tones and sung vowels. In this third part in the series the focus is

on octopus cells as they are central sensitivity elements in auditory cognition processes. A

powerful numerical model had been devised, in which auditory nerve fibers (ANFs) spike

events are the inputs, triggering the impulse responses of the octopus cells. Efficient

algorithms are developed and demonstrated to explain the behavior of octopus cells with

a focus on a simple event-based hardware implementation of a layer of octopus neurons.

The main finding is, that an octopus’ cell model in a local receptive field fine-tunes to

a specific trajectory by a spike-timing-dependent plasticity (STDP) learning rule with

synaptic pre-activation and the dendritic back-propagating signal as post condition.

Successful learning explains away the teacher and there is thus no need for a temporally

precise control of plasticity that distinguishes between learning and retrieval phases.

Pitch learning is cascaded: At first octopus cells respond individually by self-adjustment

to specific trajectories in their local receptive fields, then unions of octopus cells are

collectively learned for pitch discrimination. Pitch estimation by inter-spike intervals is

shown exemplary using two input scenarios: a simple sinus tone and a sung vowel. The

model evaluation indicates an improvement in pitch estimation on a fixed time-scale.

Keywords: Pachinko volatilities, sensibility, stateful temporal logic, dendritic back-propagation computation, inter

spike intervals

1. INTRODUCTION

Octopus cells are tonotopically arranged in the cochlear nucleus and connected to several auditory
nerve fibers via their dendritic trees. Phenomenologically, octopus cells fire in the presence of
broadband acoustic stimuli in response to constellations of spike trains from the associated auditory
nerve fibers in their local receptive fields. The hypothesis of this work is that an octopus’ cell
responds to broadband stimuli by following a specific hyperbolically shaped trajectory that is
observable in the cochleagrams. Due to the fact, that octopus neurons play a key role in several
parts of acoustic cognition of sounds and speech they are candidates for a deeper investigation
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toward fast and energy-efficient computing systems. In previous
articles in the series of periodicity pitch perception (Harczos
and Klefenz, 2018; Klefenz and Harczos, 2020) it is shown,
that octopus neurons in a network topology can process the
acoustic signals efficiently and detect pitches with an astonishing
accuracy. In this work a discrete, event-based approach is
presented that has its main focus on a simplistic model which
can be easily implemented in hardware. The main idea is to
enforce synchronous events by retarding signals resulting from
the cochlea traveling wave delays. The delay trajectories are bent
straight in time due to differences in the local distance between
the corresponding ANF and the soma of the octopus’ cell. This
results in isochronous arrival times at the soma and triggers a
depolarization event of the soma’s membrane. The underlying
simulation algorithm of spatio-temporal template matching is
explained in section 3 in detail. One guiding question is: How
does an octopus’ cell becomes selective for a specific trajectory?
We will give an answer to the question, whether the octopus’
cell is able to improve the pitch detection significantly by using
only locally available information. We show that an octopus’
cell is able to learn the trajectory by a new postulated hardware
friendly spike-timing-dependent plasticity (STDP) learning rule
(Gerasimova et al., 2021). The synaptic connection on the
dendritic tree projecting to ANF inputs are strengthened, when
the criterion of isochronicity at the soma is met. This is achieved
by using a spiking-neuronmodel with a leaky-integrating soma, a
connectome varying in length with an inherent backpropagation
procedure. An action potential is triggered when the cumulative
potentials at the soma are above the depolarization threshold
(Lubejko et al., 2019). The soma detects coincidences depending
on dendritic tree morphology and dendritic ion channel flux
velocities, with pre-synaptic early arrivals being compensated by
forward positions of synaptic connections along the dendritic
tree (Leão, 2019; Radler et al., 2020). Its synchrony transfer
function will be investigated in detail by which the octopus’ cell
comprehends a coherent constellation, in which associated active
inputs form a feature. The octopus’ cell’s soma is a gate with
an ultra-precise switch point (Lu et al., 2018; Lubejko et al.,
2019). The gate switches at an unique moment, when the non-
static balance of excitatory and inhibitory vesicles is broken by
any spillover vesicle. Due to the analogy of this process to a
game called Pachinko, we gave this procedure the name Pachinko
volatility (see Figure 1).

2. BIOLOGICALLY MOTIVATED
BACKGROUND

To underpin our approach, we refer to some basic findings that
explain its plausibility and feasibility at the neurophysiological
level. The connectome of neuronal ensembles is orchestrated
by neurite guidance, axonal and dendritic branching,
synaptogenesis, and synaptic plasticity (Mrsic-Flogel and
Bonhoeffer, 2012; Rajani et al., 2020; Rubio, 2020). The
assembly of specific neuronal circuits depends on the expression
of complementary molecular programs in presynaptic and
postsynaptic neurons (Keable et al., 2020). Proteins are

synthesized locally in different subcellular compartments such as
dendritic shafts and spines, triggered bymolecular signals such as
neurotrophins, brain-derived neurotrophic factor, metabotropic
glutamate receptor agonists, or by electrical stimulation (Ribeiro
et al., 2019; Wu et al., 2019). Neuronal activity regulates the
selection of unique initiation sites and up- or down-regulates the
protein translation machinery in nascent synapses (Munz et al.,
2014; Eberhardt et al., 2019). Auditory stimulation regulates
synaptic development by triggering local signaling events.
Unique activity patterns and signaling pathways fine-tune
synapses (Winnubst et al., 2015; Sakai, 2020; Scholl et al., 2021).

2.1. Time-Based Auditory Modeling
High-fidelity audio recording and playback technologies use a
minimum standard sampling rate of 44.1 kHz. How auditory
neuron ensembles cope with this sampling rate was not clear until
recently, when a computational neuroscience model illustrated
periodic pitch perception on a microsecond scale (Klefenz
and Harczos, 2020). In the model, equilibrium tipping points
are evoked by an excess of excitatory vesicles relative to the
currently available reservoir of inhibitory vesicles at the soma
of inferior colliculus (IC) neurons and recorded with extreme
temporal precision. Oscillations of octopus neurons are perceived
by IC neurons as differentiable pitch sensations. Sounds are
transformed into spike-based event representations by a bio-
plausible, neuro-physiologically parameterized auditory model
(Harczos, 2015; James et al., 2017; Cramer et al., 2020; Gutkin,
2020; Baby et al., 2021; Gutierrez-Galan et al., 2021; Saddler
et al., 2021). First, the auditory model computes spike train
patterns for auditory nerve fibers (ANFs). The auditory nerve
divides into several sub-nuclei of the cochlear nucleus. In the
dorsal cochlear nucleus, octopus cells receive ANF spike trains
in their tonotopically arranged local receptive fields (Kane, 1973;
Spencer et al., 2018). Themodel calculates the periodicity of pitch
from the rhythmic oscillations of the octopus cells. The inter-
spike intervals (ISI) of octopus cells are measured by batteries
of interval-tuned neurons (ITNs) by encoding the interval
durations as first spike latencies (FSLs) (Aubie et al., 2009,
2012). Aubie’s model is formulated in NEURON with excitatory
NMDAR/AMPAR GABAergic inhibition1 (Kopp-Scheinpflug
et al., 2018) and has been adapted and optimized to work reliably
in the microsecond range (Klefenz and Harczos, 2020). For better
understanding, some parts of the two articles in the Periodicity
Pitch Perception series (Harczos and Klefenz, 2018; Klefenz
and Harczos, 2020) are recapitulated and some of the figures
are reprinted.

2.2. Synaptic Plasticity
Synaptic plasticity depends on its dendritic location, the
detailed timing protocol of pre- and postsynaptic events,
and the temporal states of postsynaptic hyper/depolarizations
(Bach and Kandler, 2020). STDP signaling cascades enlarge
dendritic spines through polysome association (Wierda et al.,

1N-methyl-D-aspartate (NMDA) receptors, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPAR) and gamma-Aminobutyric acid
(GABA).
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FIGURE 1 | (A) Schematical illustration of the Pachinko game. A ball is shot via a metal track to the top of the board and it finds its way through several patterns of

small obstacle pins back to the release hole by gravitational force. This aligns well with the pathfinding mechanism of our octopus’ model letting aside the proposed

new learning mechanism. Colors green and orange indicate two possible ways a ball could choose. For comparison, in (B) the vesicle transport in a dendritic tree

toward the octopus’ cell’s soma is depicted.

2020). Initially, the synapse is preactivated by the release of
neurotransmitters into the synaptic cleft when triggered by
an ANF spike and neurotransmitters open (NMDA) channels
for Ca2+ influx. Subsequently, STDP requires postactivation,
which occurs through the generation of a somatic sodium (Na+)
spike that propagates back into the dendrites (Winters and
Golding, 2018). The briefly previously presensitized synapse
is potentiated by the passing backpropagating spike, as these
concurrent pre/post stimuli trigger the influx of calcium into
the spike head of the synapse (Franzen et al., 2020; Kladisios
et al., 2020). If it is an inhibitory synapse, it will be suppressed.
If a group of synapses is activated by presynaptic events but
does not elicit a somatic spike, its weighting is lowered because
the postcondition for potentiation is absent. The membrane
voltage at the synapse can be modeled as an algebraic equation
based on the summation of an excitatory postsynaptic potential
(EPSP) and a backward propagating action potential (bAP)
(Jahr and Stevens, 1993; Griffith et al., 2016). The stimuli are
membrane depolarization due to an EPSP and a bAP about 2
ms apart. When the EPSP arrives 2 ms before the bAP, the
maximum possible membrane depolarization is elicited (Hu
and Bean, 2018). In general, a single general plasticity rule is
sufficient to reproduce different results of plasticity experiments
at different dendritic sites, allowing unification of classical
STDP- and Ca2+-based rules. The plasticity rule can be easily
combined with detailed neuron models to study both STDP
and plasticity mediated by dendritic Ca2+ and Na+ spikes,
NMDA spikes, and synaptic cluster activation (Palmer et al.,
2014; Foncelle et al., 2018; Augusto and Gambino, 2019). When
a pre-post spike pair is insufficient to trigger potentiation,
spike triplets are. The solution approach combines dendritic

back-propagation with triplet spike timing dependent plasticity
signaling. Potentiation is, therefore, possible when isolated spike
triplets are present (pre-post-post or post-pre-post). A pre-
post-post protocol triggers much more post-LTP than a post-
pre-post protocol. Synaptic potentiation is triggered by spike
triplets consisting of one presynaptic and two postsynaptic spikes
(Pfister and Gerstner, 2006). Synaptic plasticity is discussed
with special emphasis on the role of NMDAR and AMPAR
signaling cascades (Rajani et al., 2020). The relative position
of postsynaptic AMPAR domains with respect to presynaptic
release sites and the molecular basis of such co-organization have
been investigated in several studies (Goncalves et al., 2020). Bell
et al. (2019) model spiny heads along dendrites by boundary
conditions at the plasma membrane (PM) and spiny apparatus
(SpApp) in a spatial multicompartment reaction-diffusion model
of calcium dynamics in three dimensions with different flux
sources, including N-methyl-D-aspartate receptors (NMDARs),
voltage-sensitive calcium channels (VSCCs), and various ion
pumps at the plasma membrane (PM) (Ingólfsson et al., 2017;
Cheng and Smith, 2019; Ohadi et al., 2019). AMPA-type
glutamate receptors (AMPARs) mediate fast excitatory synaptic
transmission (Choquet, 2018). AMPARs are concentrated within
the postsynaptic density (PSD) in small nanoclusters of
approximately 80 nm in size, containing an average of 20
receptors (Masugi-Tokita et al., 2007; Fukata et al., 2013;
MacGillavry et al., 2013; Nair et al., 2013). Because of AMPAR’s
low glutamate affinity glutamate must be released precisely
in front of AMPAR nanoclusters and, therefore, the relative
positioning of pre-synaptic AMPAR‘s release sites with respect
to AMPAR nanoclusters is the critical factor for synaptic
transmission (Choquet and Hosy, 2020). Active glutamate
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release sites are co-localized with the presynaptic active zone
protein RIM and aligned with AMPAR nanoclusters (Beique
et al., 2006). To model the effects of delocalization of AMPAR
nanoclusters from presynaptic glutamate release sites, Haas
et al. (2018) performed Monte Carlo-based simulations using
the MCell/CellBlender simulation environment (http://mcell.
org) with MCell version 3.3, CellBlender version 1.1, and Blender
version 2.77a (http://blender.org). Kinney et al. (2013) and
Bartol et al. (2015b) obtained synaptic shape and peri-synaptic
environment from 3D electron microscopy images (Kinney et al.,
2013; Bartol et al., 2015a,b). Jonas et al. (1993) determined
the chemical kinetic properties of AMPAR using an established
model (Jonas et al., 1993), and Nair et al. fitted the kinetic
parameters to both the recorded mEPSCs and the AMPAR
organization map obtained from d-STORM data (Nair et al.,
2013). In their simulations, Savtchenko et al. set the number of
glutamate molecules released to 1,500, 2,000, 3,000, or 4,500 to
be within the range of the estimated amount per presynaptic
vesicle (Savtchenko et al., 2013). The simulations calculated
the number of open AMPARs when vesicles containing the
different amounts of glutamate were released upstream of a
single AMPAR cluster or up to 200 nm away from the cluster
center, varied with a step size of 50 nm. Nair et al. (2013)
adjusted the AMPAR rate constants in their model using
simplex optimization with minimal least squares to best fit
the shape of the AMPAR current. Jonas et al. (1993) set the
initial parameter values with the release of glutamate directly
across the cluster, using nGlu = 3,000, nAMPAR = 25 in the
cluster. The AMPAR activation time courses of 100 simulation
trials were averaged at each release site. Computer modeling
predicts that a lateral shift of approximately 100 nm between
AMPAR nanoclusters and glutamate release sites results in a
significant reduction in AMPAR-mediated currents (best fit
parameter values in Kim et al. (2018). In the method part the
functional octopus’ model will be unrolled. Clues and pointers
for hardware realizations of the octopus’ cell are stated in the
discussion section.

2.3. Distributed Signal Transduction in
Dendritic Trees
The function of the octopus’ cell is to permanently observe
spatiotemporal trajectories in its local receptive field and to
selectively respond to a trajectory with a specific hyperbolic
shape. Constellations of distributed, cascaded synaptic input
activations predetermined by the hyperbolic shape of a trajectory
can lead to coincidence detection at the soma by triggering
a spike for that event. The coincidence detection function of
the octopus’ cell is based on the morphology of its dendritic
tree, the distributions of synaptic inputs along the dendritic
trees, the event-based cascades of synaptic input activations
and the local signal propagation velocities in the dendritic
branches (Remme et al., 2018). ANFs innervate octopus’ cells
through synaptic connections along their dendritic trees. At
the synaptic sites, activation triggers dendritic spikes that
propagate to the soma. In this way, even the most distant
synapses influence the electrical potential at the soma. In the

simplest case, a single distant synaptic input is attenuated and
low-pass filtered before it reaches the soma. A single EPSP
remains below threshold, and most of the collective synaptic
potentials are too weak on their own to trigger a somatic
action potential, but some constellations have converging EPSPs
that sum at the soma and trigger an AP (Kladisios et al.,
2020). The dendritic calculation evaluates the threshold crossing
condition as a function of the actual sum of EPSPs arriving
simultaneously at the soma. The potential flow calculation can
be performed for each local dendrite segment by assigning a
cable conductance value. These conductance values determine
the local signal propagation velocities. The conductances allow
the computation of coincidences of temporally consecutive
synaptic inputs within a branch, between different branches, or
throughout the dendritic tree (Li et al., 2019). With precisely
activated inputs cascaded in time, the potential currents in the
dendritic branches converge according to Kirchhoff’s current
law and swell until they overflow at the soma. An Na+ or
an NMDA (N-methyl-D-aspartate) or a Ca2+ ion channel
could be one of the transmissive cable lines (Spruston et al.,
1995a).

2.4. Modeling Post-signaling in STDP by
Back-Propagation Potentials in the
Dendritic Tree
ANF spike trains trigger dendritic spikes at synaptic sites
distributed along the dendrite tree. The collaboration of synaptic
inputs from multiple dispersed sites is required for somatic
spiking (Urbanczik and Senn, 2014). Some spatio-temporal
coherent constellations of dendritic spikes arrive synchronously
at the soma and reliably generate temporally precise APs and thus
event-based timestamps. Complementarily, APs fired at the axon
hillock bounce back in the opposite direction, back-propagate
along the dendrites and cause postsynaptic depolarizations at
the synapses they pass (Hoffman et al., 1997; Magee and
Johnston, 1997; Hebb, 2005; Dan and Poo, 2006; Feldman,
2012). The back-propagating action potential (bAP), therefore,
satisfies the post-signaling condition of STDP (Levy and Steward,
1983). The learning signals of bAPs resemble backpropagation
through time (BPTT) with surrogate gradients and target-
prop algorithms (Werbos, 1990; Sacramento et al., 2018; Neftci
et al., 2019; Lillicrap et al., 2020). Learning in dendritic regions
distant from the soma is problematic because bAP does not
reach the most distal dendrites or reaches them only in an
attenuated manner. Therefore, a bAP is unlikely to provide
the necessary depolarization to contribute to the induction
of LTP at the most distal synapses (Krueppel et al., 2011).
Plasticity can also be triggered by depolarizations originating
from sources other than bAPs in the postsynaptic neuron, e.g.,
dendritic Ca2+ spikes (Golding et al., 2002; Kampa et al., 2006;
Letzkus et al., 2006), N-methyl-D-aspartate (NMDA) spikes
(Gordon et al., 2006; Brandalise et al., 2016), or excitatory
postsynaptic potentials (EPSPs) alone for LTP induction at the
most distal synapses (Golding et al., 2002; Lin et al., 2008;
Sjöström et al., 2008; Weber et al., 2016; Kim et al., 2018).
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Although many biophysical details of excitatory synaptic long-
term plasticity remain to be fully elucidated, it is generally
accepted that postsynaptic Ca2+ pulses play a fundamental role. A
possible plasticity mechanism, called backpropagation-activated
Ca2+ (BAC) firing, involves coincidence of strong proximal and
distal inputs that may lead to dendritic spikes and bursts of
axosomatic APs (Larkum et al., 1999; Hamilton et al., 2010).
Synapses that cooperate on their quest to associate different
inputs potentiate, whereas synapses that do not cooperate and/or
do not succeed to establish an associational signal depress. BAC
firing potentiates those synapses that cause it, thereby increasing
the probability that this selected subset of synapses leads to
BAC firing at the next time they are active (Larkum, 2013).
Calcium-dependent dendritic spikes with attenuating amplitude
(dCaAPs) and dendritic Na+ spikes allow NMDAR dependent
LTP in distal synapses (Gidon et al., 2020). Ca2+ pulses of
short duration and high amplitude induce LTP (Evans and
Blackwell, 2015). Low levels of Ca2+ lead to no changes in
synaptic strength, medium levels cause LTD, and high levels
lead to LTP (Lisman, 1989; Artola et al., 1990; Artola and
Singer, 1993; Shouval et al., 2002; Graupner and Brunel, 2012).
Potentiation can occur when an NMDA spike (also called a
dendritic plateau potential) is generated. These plateau potentials
provide a long and sufficiently high depolarization that leads to
potentiation without generating postsynaptic action potentials.
Plateau potentials can control plasticity at other synapses.
Because they are more readily evoked in the terminal regions of
basal dendrites, they undergo considerable attenuation and cause
only subthreshold events at the soma. This long subthreshold
plateau reduces the depolarization required to reach the spike
threshold and, therefore, allows other weak inputs to reach the
threshold. Active conductance in dendrites can normalize the
efficacy of distal synapses and democratize dendrites by making
distal and proximal synapses equally efficient in influencing
somatic firing. Strong dendritic tapering attenuates electrotonic
attenuation to such an extent that the dendritic tree becomes
approximately isopotential (Otopalik et al., 2019). Therefore,
dendritic structures may avoid attenuation. Inhibitory synapses
on the dendritic tree prevent backward propagation of APs, while
forward propagation remains intact (Wilmes et al., 2016; Iascone
et al., 2020). Once a dendritic spike is generated, local inhibition
can terminate it either transiently or permanently, depending
on their relative timing. The classical “pre-/post-spike-timing-
dependent-plasticity” (STDP) rule states that plasticity depends
on pre-synaptic activity before and a sensed postsynaptic
potential afterwards (Yang and Dani, 2014). STDP requires the
generation of somatic Na+ spikes and their backpropagation
into the dendrites. Pair-based STDP cannot account for activity-
dependent learning with weak inputs, which are not powerful
enough to evoke bAPs. Finally, an increasing number of
experimental studies have revealed plasticity mechanisms that
do not rely on bAP but instead on local postsynaptic dendritic
spikes or sub-threshold events for dendritic spikes (Ebner et al.,
2019). Plasticity of distal feedback-associated synapses is a hot
topic in studies exploring the idea of deep learning in the brain
(Guerguiev et al., 2017; Richards et al., 2019).

3. METHODS

The octopus’ cell is represented by a soma with dendritic
branches and modeled using state-dependent temporal logic
operators. The soma functions like a sample-and-hold flow
meter with a blocking mode that opens the valve when the
correct coincidence condition is met. The ANF axons are
considered conductive long leads and the auditory nerve bundle
is considered a ribbon cable with spliced ends. Conducting axons
initiate synaptic anchoring of neuroligins, which adhere to the
dendritic spines on the axons like clothespins, as the first step to
initiate synaptogenesis. The number of potential synapses can be
estimated from the approximate site of contact of an ANF with
a dendrite that are close enough to each other and formulated
by an action cross-section parameter. The synchrony transfer
function of the octopus’ cell as a function dependent of the
ANF volleys will be computed in the time domain. The octopus’
cell’s model is represented by stateful temporal logic operators
executing dendritic signal fluxes that obey Kirchhoff’s bifurcation
laws, whose sum potentials bounce off the soma and induce
synaptic potentiation through pre-post(-post) spike cascades.
This model replaces the one described in Harczos and Klefenz
(2018). The core behind stateful temporal logic is the encoding
of information in the timing of events and their voltage level
amplitudes. The operators that form the set of stateful temporal
logic are Min(FirstArrival), Max (LastArrival), Constant Delay
(D), Inhibit (I), Reset (R), and Coincidence (C) (Smith, 2018).
For state-based temporal logic, the operator Memory (ON/OFF)
is added (Madhavan and Stiles, 2020; Madhavan et al., 2021). A
system S goes through a sequence of states in time (Tzimpragos
et al., 2020) controlled by the named operators. Since we consider
the octopus’ cell model as discrete in time, we model the cell as a
system S and show that five elementary operators are sufficient
to establish its functional behavior. Inhibit is unused since the
model can be formulated without it without tradeoffs. Reset is
also absent, since a fixed extinction time is assumed after signal
onset at a synapse. The extinction time for returning to the OFF

state is set to 2 ms after synaptic excitation. This corresponds
to the maximum return time of 2 ms. The constant delay is
derived from the Poisson firing statistics of octopus cells and
was determined in Aubie’s modified model as 18 µs standard
deviation (SDEV) (Klefenz and Harczos, 2020). The dendritic
path lengths are expressed as n delays (D) with a uniform delay
constantD of 18µs. We can make the following assumptions for
the operators and constants:

• Min condition is given by the first arrival (FA) of an ANF spike
at a synapse.

• Max condition is given by the last arrival (LA) of an ANF spike
at a synapse (Figure 2).

• t(FA − LA) is the causal time window in which collective
interactions can occur.

• t = (FA − LA) and the uniform jump size of 18 microseconds
determine the number of discretized time steps.

• t = (FA − LA) is approximately 4 milliseconds for a local
receptive field in the low frequencies, resulting in a simulation
run of 222 time steps for the forward run.
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Coincidence (C) is satisfied when tokens travel through
the dendritic conductors and cross a predefinable activation
threshold in a fixed time window.

At token start, a blue start flag is raised. The race end flag
is hoisted at the moment when the threshold has been crossed
indicated by setting the red flag at that moment in Figure 2.

Memory is assigned to the synapses formed between ANFs
and octopus dendrites. A synapse is in its active sensitized state,
if evoked by a signal flow from its associated ANF. This active
sensitized state of a synapse is described as ON, else OFF. The
intermediate synaptic weight and its final convergence to high (1)
or low (0) is learned by an STDP rule.

3.1. Dendritic Calculation
A recent renaissance of dendritic computation has emerged
through proposals of new model variants (Ostapoff et al., 1994;
Voelker and Eliasmith, 2018; Payeur et al., 2019; Wybo et al.,
2019; Gidon et al., 2020; Lepicard and Ann Piskorowski, 2020;
Moldwin and Segev, 2020; Poirazi and Papoutsi, 2020; Takahashi
et al., 2020; Banerjee et al., 2021; Callan et al., 2021; Martin
et al., 2021; Moldwin et al., 2021; Stöckel and Eliasmith, 2021;
Yang et al., 2021b). The octopus’ cell acts as a synchronizer
(McGinley et al., 2012). Functional simplicity is the overarching
goal in constructing the dendritic tree with state-dependent
temporal logic operators to sublimate many subtle details of
neural morphology and rate kinetic dynamics. The tree is
constructed simply by concatenating unit-base elements into
unbalanced variable-length branches. The innervation patterns
of the ANFs are given by the input activity matrix A(Sij(t)).
From the activated synapses, Dirac-like subthreshold voltage
signals propagate down the dendrites to the soma, can collectively
generate APs, and can produce their own unsupervised teaching
signal by backpropagation into the dendrites. Kirchhoff’s rules
apply at the dendritic junctions, and attenuation and scattering
of the signals are not considered. The current flows converge
at the junctions and swell after the junctions. The soma is
depolarized when the charge currents from the dendritic tree
arrive synchronously and enough charge is accumulated to
overcome the depolarization threshold. Backpropagating action
potentials velocities are in the range of 226 µm/ms, which is 0.2–
0.3 µm/µs (Senzai and Buzsáki, 2017) and 508 µm/ms for apical
dendrites of layer five pyramidal neurons (basal dendrites, 341
µm/ms) (Nevian et al., 2007) and is similar to or lower than
the estimated velocity in apical dendrites of other hippocampal
principal neurons (Spruston et al., 1995b; Kim et al., 2012).

3.2. Variation Principle of Synchronization
The condition that a delay trajectory in the receptive field of an
octopus’ cell leads to the same arrival time tarrival at the soma for
a vesicle in a dendrite branch i is given by:

tarrival = ti + 1ti (1)

Where ti is the arrival time at the synapse connected to that
branch and 1ti the time the spike travels along the branch to
the soma. Earlier arrival times are compensated by longer travel
times in the partially shared dendrite pathways (Figure 2). The

variation principle is to adjust all path lengths and velocities so
that the formula is satisfied for each synapse, or at least for a
subset of synapses.

3.3. Backpropagation
The collectively triggered action potential travels along the axon
and, simultaneously, a potential propagates backward from the
soma into the dendrites until the most distant synapses are
reached (Figure 2) (Brunner and Szabadics, 2016). The same
paths defined by the delay elements (Ds) tree are taken on
the backpropagation path. Attenuation and dispersion of the
backpropagation signal flow are neglected in this work.

3.4. Synaptic Learning Rule
Learning at a synapse is given by a causal associative pre-
post spike-timing dependent plasticity rule (STDP). A synapse
is activated by presynaptic glutamatergic vesicles from the
presynaptic ANF and enters an active sensitized state for a
while (preconditioning). A triggered action potential at the
soma generates a backward propagating signal into the dendrites
(postconditioning signal) (Figure 2). The (pre, post) condition is
satisfied when the synapse is in its active sensitized state and the
backpropagating signal occurs before desensitization (Figure 2).

The weight update rule simplifies to:

∂wj = ενActive τbackprop (2)

ε = 0.01 learning rate
νactive = 0/1 synapse in passive/active state (off,on)
τbackprop = 0/1 backpropagation wave not passing/passing

Synapses consist of both AMPA and NMDA channels. The
number of AMPARs is set to zero at the beginning. The
maximum AMPAR conductance is chosen to be equal to the
maximum NMDAR conductance. The weights of active synapses
are updated when a somatic bAP is triggered. The weights of the
synapses converge to a state of maximum conductance 1 or rest at
the minimum state 0. The learning rate is adjustable and chosen
such that one hundred backpropagation signals drive the synaptic
weight wj to its maximum 1.

3.5. Functional Implementation in a
Numerical Model
To validate the proposed learning rule, we created a numerical
model in the Python programming language (Python 3). The
focus is on realizing a discrete-time model in an event-driven
environment. The activation inputs of the octopus cells are given
by the matrix A(Sij(t)).

Stuart et al. (2016) give a detailed description of the
morphology and functionality of dendrites in their compendium.
According to this, the dendritic tree consists of directed graph
elements (Mel et al., 2016) that are combined to form a more
complex network. The soma is the root and the graph divides
to reach all synaptic sites. Each node knows its child and
predecessor nodes to realize conductive forward and backward
propagation paths from synapses to the soma. The dendrites
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FIGURE 2 | (A) Blue flags indicate race starts, beginning with FA and ending with LA. The red flag is triggered by an action potential event. The variation principle is

given by the formula given in Equation 1. (B) The red flag heralds the start of a backpropagation signal that propagates to the most distal dendrites. Yellow arrows

represent dendritic signal propagation velocities. Yellow flags indicate synapses in active sensitized state.

FIGURE 3 | Dendritic delays are calculated according to the formula published

by Greenwood (1990). The specific delay is shown on the x-axis and the

connected auditory nerve fiber on the y-axis. The templates for the delay

curves are superimposed as in the actual model.

form a directed acyclic graph that is directed to either the soma
or synaptic connections depending on the propagation state
(forward/backward) (Figure 2). The dendritic tree is simplified to
individual linearized dendrites in the form of tapped delay lines
with a static delay of 18µs per simulation time step. The dendritic
delays are chosen to follow a logarithmic curvature given by the
Greenwood formula (Greenwood, 1990). The delay values are
assigned to each octopus’ dendrites in a way that the octopus
delays overlap over the receptive field (Figure 3).

The tokens of a trajectory travel to the soma, which
accumulates all inputs over a short time window and generates
an action potential when a certain threshold is crossed. When
this event occurs, a wave is backpropagated, and each time the
weight values of all activated synapses are increased by the value
of the learning rate. The repeated backpropagation waves bring
the synaptic weights to their saturation value of 1.0, putting

the system in a steady state. The soma leakage is modeled by
decreasing the membrane potential of the soma by a fixed decay
value at each time step. The decay must be chosen very carefully
because too large a value will cause the soma to see more than
one trajectory and produce spikes at the output with a multiple
of the central time interval, and too small a value would prevent
the soma from firing at all.

To provide biologically plausible input for out numerical
model an auditory front-end is used called SAM. SAM stands
for Stimulation based on auditory modeling and it creates
cochleagrams from a given prerecorded sound file as shown in
Figure 4 for the vowel “a” sung by a woman on the note G2.

Our program package is designed for maximum flexibility to
quickly create and study different topologies for pitch perception.

4. PROOF OF PRINCIPLE

The model and our hypothesis is tested with two audio samples
taken from the Fraunhofer dataset also used in Klefenz and
Harczos (2020) for terms of comparability. The first one is a
recording of a female singer, who sings the vowel “a” with a pitch
of C4 (261Hz) and the second a pure sine tone with the same
pitch. The time interval for the center frequency of the samples
is about 3.83 ms. Figure 5 shows the cochleagram for the first
sample and the spectrum. The energy is not concentrated solely
at the pitch frequency (Figure 5) but also at its harmonics. This
makes it difficult for the neuron to detect the interval of the base
tone from the superimposed spike intervals accumulated in the
spike pattern of auditory nerve fibers.

For each octopus’ neuron the histogram of interspike intervals
is constructed as shown in Figure 6 for the sung vowel a with a
pitch of C4 and in Figure for a pure sine tone with the same pitch
(Figure 7). Summing vertically over the partial histogram entries
of all octopus cells, the global histogram maximum is reached
at 3.83 ms and the distribution concentrates around the central
time interval.
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FIGURE 4 | Cochleagrams with quasi-stationary repeating patterns for a short section of the vowel “a” sung by a male singer on the note G2. Top: waveform of the

audio signal. Middle: Probability (ascending from blue to green to yellow) of neurotransmitter release into the synaptic cleft (SC) as a function of time and location

within the cochlea. Bottom: Action potentials of spiral ganglion (SGN) neurons. Note that the ordinate shows the characteristic frequency of the basilar membrane

model at the corresponding cochlear location [reprinted from Harczos and Klefenz (2018)].

FIGURE 5 | Illustration of the input data for the sung vowel “a” with a pitch C4 from the Fraunhofer dataset. (A) The FFT spectrum calculated with the FFT algorithm

included in the Python package SciPy. (B) The spike trains on the auditory nerve fibers originating from the SAM model. Those are used as direct input to the octopus’

neuron model.

4.1. Learning Inter-Spike Interval
Histograms
In the auditory model, 101 ANFs are arranged tonotopically

along the frequency axis from the lowest to the highest frequency
(Harczos, 2015). The spectral interval from C3 to G5 is examined
using the presented model (Harczos and Klefenz, 2018). There
are eleven octopus cells in this interval, each connected to nine

separate ANFs. This wiring scheme represents a local receptive
field for each octopus’ cell. Adjacent receptive fields partially

overlap and share multiple ANFs as inputs (Klefenz and Harczos,
2020).

An octopus’ cell fires when a delay template segmentmatches a
global trajectory and the corresponding synaptic connections are
strengthened (Shamma and Dutta, 2019). Multiple octopus cells
fire a series of spikes together when exposed to a common global
trajectory and local receptive conditions are met. For quasi-
stationary acoustic signals, nearly the same ANF trajectories
occur repeatedly, and ANF firing patterns are nearly identical, as
are the firing patterns of octopus cells. Two successive trajectories
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FIGURE 6 | Results from the model simulation of the sung vowel “a” sample in pitch C4. (A) Inter spike intervals (ISI) of the octopus neuron layer. In image (B) the time

evolution of the synaptic weights are shown and in (C) the statistics of the ISIs of the octopus layer is depicted.

FIGURE 7 | Results from the model simulation of a pure sine tone with the pitch C4. (A) Inter spike intervals of the octopus layer. In image (B) the time evolution of the

synaptic weights are shown and in (C) the statistics of the ISIs of the octopus layer is depicted.
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FIGURE 8 | Schematic representation of the perceptual network. The original pitch is encoded by successive trajectories in the ANF. The event signals are collected in

an octopus neuron layer, in which the neurons have overlapping synaptic connections to the fiber. After the octopus layer, the interspike interval of the neuron output is

centered around the central frequency, while the interspike interval of the input has several maxima. The following layer of inferior colliculus (IC) neurons is triggered by

specific spike intervals. Pitch neurons perceive pitches from the collective spikes of the IC neurons.

FIGURE 9 | Cascaded, layered learning: initially, dendritic signaling fluxes are learned individually and octopus cells begin to spike; gradually, combinatorial

associations of ITNs are learned. FSL units are hardwired [Adapted reprint from Klefenz and Harczos (2020)].
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trigger firings of octopus cells at two different times in succession,
forming inter-spike intervals (ISI). The entire process sequence is
shown in a schematic diagram as an example in Figure 8.

Their time intervals are converted into a latency code for
the first time by the transmission circuits between the octopus’
cell and the ITN (Figure 9). The ITN fires first at the shortest
time interval and last at the longest interval. Each intervening
time interval is indicated by the corresponding FSL time. The
collective task is to create, store, and interpret ISI histograms
(Harpaz et al., 2021). The pitch neurons are connected to the
corresponding bins. Each pitch neuron collects and counts the
entries in its associated histogram bin. Inter-spike intervals are
linearly proportional to FSL times. A start condition flag starts
a clock counter at the FSL time of the corresponding minimum
inter-spike interval (Verzi et al., 2018). Each pitch neuron fires
when the entries in its FSL bins are above a fixed threshold
number. The involved innervating synapses from ITNs to pitch
neurons are increased by wij during the learning phase for this
event. Collective learning of pitch by observing and interpreting
associations of ICs by pitch neurons has been extensively studied
in Klefenz and Harczos (2020).

5. DISCUSSION

The programmed model is able to determine the central time
interval, exemplified by a sung vowel of “a” on the tone C4.
The histogram of the interspike intervals for each octopus’
neuron certainly hits the central interval of 3.83 ms, but the
intervals scatter quite strongly. This can be optimized by more
careful choice of delay templates for the dendritic branches.
The resulting intervals are detected by tuned timer neurons that
respond to a specific time interval and generate a spike when
an interval with a certain uncertainty is hit. A group of firing
interval-tuned neurons indicates a detected pitch and leads to
detection by the pitch neurons. This is not part of this work and
will be presented in future work. However, the results indicate,
that the octopus neurons are able to improve the pitch detection
for subsequent layers by concentrating the spike rate at the
central interval.

The stateful temporal logic algebra system is realizable as a
neuromorphic circuit built with the seven building blocks FA,
LA, D, C, M, I, R and is implementable for various hardware
target architectures. It is especially suited for implementation
in CMOS (Nair et al., 2020; Han et al., 2021), FPGA (Yang
et al., 2021a), and quantum-based hardware (Varadarajan, 2014;

Gonzalez-Raya et al., 2019; Hamilton et al., 2019; Shi et al., 2019;
Lamata, 2020; Marković et al., 2020) as nanobridge atomic switch
FPGAs (Demis et al., 2015; Sharma et al., 2021) superconducting
accelerators (Tzimpragos et al., 2020; Vakili et al., 2020; Feldhoff
and Toepfer, 2021), superconducting nanowires (Toomey et al.,
2019), nanowire networks (Diaz-Alvarez et al., 2020; Kendall
et al., 2020; Kuncic et al., 2020; Li et al., 2020; Milano et al., 2020;
Dunham et al., 2021; Kendall, 2021) and memristors (Sanz et al.,
2018; Woźniak et al., 2020).

6. CONCLUSIONS

The octopus’ cell model can be described with state-dependent
temporal logic operators and simulated numerically. An octopus’
cell model in a local receptive field adapts to a given trajectory
by STDP learning with synaptic pre-activation and the dendritic
return signal as post-condition. There is no need to distinguish
between learning and retrieval phases. Pitch learning occurs
in a cascade fashion: first, octopus cells respond individually
by self-adapting to specific trajectories in their local receptive
fields, then associations of octopus cells are collectively trained
to discriminate pitch.
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