
Overexpression of heparanase attenuated TGF-b-stimulated
signaling in tumor cells
Tahira Batool1, Jianping Fang1,*, Uri Barash2, Aristidis Moustakas1, Israel Vlodavsky2 and
Jin-Ping Li1

1 Department of Medical Biochemistry and Microbiology and SciLifeLab, University of Uppsala, Sweden

2 Faculty of Medicine, Cancer and Vascular Biology Research Center Rappaport, Technion, Haifa, Israel

Keywords

cancer cell; heparan sulfate; heparanase;

signaling; TGF-beta

Correspondence

J.-P. Li, Department of Medical

Biochemistry and Microbiology, University

of Uppsala, Uppsala, Sweden

Tel: +46184714241

E-mail: jin-ping.li@imbim.uu.se

*Present address

GlycoNovo Technologies Co., Ltd.,

Shanghai, China

(Received 5 September 2016, revised 5

December 2016, accepted 23 December

2016)

doi:10.1002/2211-5463.12190

Heparan sulfate (HS) mediates the activity of various growth factors

including TGF-b. Heparanase is an endo-glucuronidase that specifically

cleaves and modifies HS structure. In this study, we examined the effect of

heparanase expression on TGF-b1-dependent signaling activities. We found

that overexpression of heparanase in human tumor cells (i.e., Fadu pharyn-

geal carcinoma, MCF7 breast carcinoma) attenuated TGF-b1-stimulated

Smad phosphorylation and led to a slower cell proliferation. TGF-b1-sti-
mulated Akt and Erk phosphorylation was also affected in the heparanase

overexpression cells. This effect involved the enzymatic activity of hep-

aranase, as overexpression of mutant inactive heparanase did not affect

TGF-b1 signaling activity. Analysis of HS isolated from Fadu cells

revealed an increase in sulfation of the HS that had a rapid turnover in

cells overexpressing heparanase. It appears that the structural alterations of

HS affect the ability of TGF-b1 to signal via its receptors and elicit a

growth response. Given that heparanase expression promotes tumor

growth in most cancers, this finding highlights a crosstalk between hep-

aranase, HS, and TGF-b1 function in tumorigenesis.

The complex and heterogeneous heparan sulfate pro-

teoglycans (HSPG) are ubiquitous macromolecules

expressed on the cell membrane and in the extracellu-

lar matrix, having essential roles in development and

homeostasis [1–3]. One of the important functions of

HSPG is to mediate growth factor-stimulated cell sig-

naling, through interaction of the heparan sulfate (HS)

side chains with growth factors and their receptors [4].

The biological activity of several growth factors (e.g.,

FGF, PDGF, VEGF) involves dual cell surface recep-

tor systems consisting of a tyrosine kinase-type recep-

tor along with a HSPG coreceptor [5]. The interaction

of HS with growth factors is dependent on its molecu-

lar structure that is generated through a strictly regu-

lated biosynthesis process and postsynthesis

modifications. Accumulated evidence shows that HS

has enormous structural diversity, expressed in a tis-

sue/cell-specific manner, enabling the interaction of HS

with a wide spectrum of protein ligands [6].

Heparanase is an endo-glucuronidase that modifies

HS structure through cleavage of the long HS polysac-

charide chains to shorter fragments. This unique mam-

malian enzyme is expressed at essentially

nondetectable amounts in normal tissues, but is ele-

vated in a number of pathological conditions such as

cancer and inflammation [7,8], indicating that the

enzyme has important functions in pathophysiology.

Our earlier studies revealed that overexpression of hep-

aranase in mice not only led to production of frag-

mented HS chains but also altered HS structure [9,10].
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Increased sulfation of HS in cells overexpressing hep-

aranase promotes FGF2 binding to its receptor and

formation of a ternary complex [9].

Involvement of HS in TGF-b-induced signaling has

been reported [11–15]; however, information regarding

the HS molecular structure in TGF-b-stimulated cellu-

lar activity is lacking. Heparanase was found to regu-

late TGF-b expression and activity in renal fibrosis,

proposing a role of heparanase in the axis of HS struc-

ture and TGF-b activity [16]. In the present study, we

found reduced phosphorylation of Smad, Akt, and

Erk in response to TGF-b1 stimulation of cells overex-

pressing heparanase. This effect is apparently not a

direct function of the overexpressed heparanase pro-

tein, but is mediated by modification of the HS struc-

ture expressed in the cells. The data provide evidence

displaying that increased sulfation degree in HS is not

favored by TGF-b1, highlighting, for the first time, a

crosstalk between heparanase, HS, and TGF-b1 signal-

ing in cancer cells.

Materials and methods

Reagents and cell lines

Antibodies against P-Smad2 (cat#3101) and total Smad 2/3

(cat#3102), p-Akt (cat#9271S) and Akt (cat# 9272), P-Erk

(cat#9101) and total Erk (cat# 9107) were purchased from Cell

Signaling Technology� (Danvers, MA, USA); b-actin anti-

body (Sc-69879) was from Santa-Cruz Biotechnology (Dallas,

TX, USA); Recombinant human TGF-b1(cat#100-21) was

from PeproTech (Rocky Hill, NJ, USA). Anti heparanase

antibody (1453) has been described [17]. The cell lines used are

Fadu (human pharyngeal carcinoma), MCF7 (human breast

carcinoma), and CHO (Chinese hamster ovary), described pre-

viously [18–20]. The cells were either stably (Fadu and MCF7)

or transiently (CHO-K1) overexpressing human heparanase.

CHO-K1 cells stably overexpressing double mutant enzymati-

cally inactive heparanase were described earlier [20,21]. Cells

were grown in Dulbecco’s modified Eagle’s medium supple-

mented with 10% FBS and antibiotics. Cells were passed in

culture no more than 2 months after being thawed from

authentic stocks.

TGF-b1 stimulation and western blot analysis

Cells were seeded into six-well plates at a density of 3–
6 9 105 cells per well in 2 mL of DMEM supplemented

with 10% FBS. After 24 h, the medium was replaced by

starvation medium (DMEM without FBS) for 24 h. Then

the cells were changed to fresh starvation medium contain-

ing TGF-b1. Following stimulation for 30–60 min, medium

was removed and cells were washed twice with PBS before

lysis in 100 lL of RIPA buffer (50 mM Tris pH 7.5, 150 mM

NaCl, 1%Triton X-100, 1% Na-deoxycholate, 1 mM EDTA

and 0.1% SDS, Protease inhibitor, 1 mM NaF, 1 mM

Na3VO4). The lysate was kept on ice for 30 min followed by

ultrasonication for 3 min and centrifugation for 10 min at

16 000 g. The supernatants were collected and protein con-

centration was determined (bicinchoninic acid assay). Sam-

ples of 20 lg of total protein were separated by

electrophoresis on SDS/PAGE (10%) and electroblotted

onto a Nitrocellulose membrane. The membrane was probed

with antibodies and the signals were developed using Super

Signal West Duration Substrate (Thermo Scientific, Wal-

tham, MA, USA) and Bio-Rad CCD camera. The results

were analyzed by IMAGE LAB
TM Software (Bio-Rad, Hercules,

CA, USA). The intensity of each band was normalized with

that of b-actin or total Smad, total Akt or total Erk. The

average of relative intensity is a mean of two to three blots

from independent cell experiments. The intensity of Mock

samples without TGF-b1 stimulation is defined as 1.

To reduce the high endogenous signaling of Erk in Fadu

cells, a TGF-b1 inhibitor (GW6604) was included in the

starvation medium (final concentration of 3 lM).

Metabolic labeling, purification, and analysis of

heparan sulfate

Fadu cells (Mock and Hpa) were cultured to 95% conflu-

ence and Na35SO4 (specific activity 1500 Ci�mmol�1, Perkin

Elmer, Waltham, MA, USA) was added to the culture

(100 lCi�mL�1) for 24 h before harvesting. HSPG was

purified from both medium and cell fractions essentially as

described [22]. Briefly, the cells were lysed in buffer con-

taining 4M Urea, 1% Triton X-100, 50 mM Tris-HCI, pH

7.4, 0.25 M NaCl and centrifuged. The cell lysates and med-

ium were applied to DEAE-Sephacel columns (GE Health-

care Biosciences, Uppsala, Sweden) pre-equilibrated with

50 mM Tris-HCl, 0.25 M NaCl, pH 7.4. The columns were

washed with 50 mM NaAc, 0.25 M NaCl, pH 4.5 and pro-

teoglycans were eluted with 50 mM NaAc containing 2 M

NaCl, pH 4.5. The eluted material was desalted on a PD-

10 column (GE Healthcare Biosciences), followed by

lyophilization to dryness. The samples were treated with

Chondroitinase ABC (0.1 U per sample, Seikagaku, Tokyo,

Japan) to degrade chondroitin sulfate (CS). The purified

HSPG was incubated in 0.5 M NaOH on ice, to obtain free

HS chains. The samples (10 000 cpm) were analyzed on a

Superose 12 column (GE Healthcare Biosciences) to exam-

ine chain length or on a DEAE-Sepharcel column (1-mL)

to assess charge density. The effluent fractions from the

chromatographic separation were mixed with scintillation

cocktail and counted in a scintillation counter.

Cell proliferation assay

Fadu cells were cultured in the flasks (T-75) to 90% conflu-

ency and then changed to starvation medium for 24 h in
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serum-free medium. Then, the cells were collected and

seeded in 96-well plates (10 000 cell per well) in the starva-

tion medium in the presence of TGF-b1 at the concentra-

tions indicated for 24 h. Cell proliferation was determined

applying the MTS assay (Promega) by measuring absor-

bance at 490 nm using TECAN Plate reader. The experi-

ments were repeated two times and the results are

expressed as the mean � SE of two independent experi-

ments (total of 10 wells).

Results

TGF-b1 induced phosphorylation of Smad, Akt,

and ERK is attenuated in cancer cells

overexpressing heparanase

Previous studies elucidated the involvement of hep-

aranase in signal transduction and response to growth-

promoting factors [19,23–26]. To find out the effect of

heparanase expression on TGF-b-induced signaling, we

examined phosphorylation of Smad in Fadu cells that

stably overexpress human heparanase (Fig. 1A, lower

panel) in comparison to mock-transfected Fadu cells.

Smad2 phosphorylation was examined by western blot

analysis using an antibody that recognizes the C-term-

inal diphosphorylated serine motif of Smad2 (Fig. 1A,

upper panel). The results show that stimulation with

TGF-b1 led to phosphorylation of Smad2 in Fadu cells

essentially in a dose-dependent manner up to a concen-

tration of 5 ng�mL�1 TGF-b1 (Fig. 1B). Notably, cells

overexpressing heparanase (Hpa) displayed a lower

degree of Smad2 phosphorylation (Fig. 1A,B) as com-

pared to mock-transfected cells. Neither did TGF-b1
stimulation affect expression of heparanase.

To verify whether this effect of heparanase is specific

to Fadu cells, we examined additional cell lines. MCF-7

cells showed essentially no response to TGF-b1 at lower

concentrations, irrespective of heparanase overexpres-

sion (Fig. 2). A higher dose of TGF-b1 (5 ng�mL�1)

stimulated Smad2 phosphorylation in both Mock and

Hpa cells. Again, the Hpa cells displayed a lower degree

of Smad2 phosphorylation in comparison to Mock

cells. In CHO cells, the same trend was observed in hep-

aranase high (Hpa) cells, however, the reduction in

phosphorylated Smad2 was not as strong as in the

human cell models (Fig. S1).

To find out whether the TGF-b1-induced Smad

phosphorylation has impact on cellular activities,

we examined cell proliferation by the MTS assay.

In agreement with the TGF-b1-stimulated phos-

phorylation of Smad2 (Fig. 1B), prolonged incuba-

tion (24 h) with TGF-b1 stimulated the

proliferation of Mock cells, but had no effect on

Hpa cells (Fig. 3).

To verify if heparanase expression has a global

effect on TGF-b1-induced signaling activity, we

Fig. 1. TGF-b1-induced Smad

phosphorylation in Mock vs. Hpa Fadu

cells—Fadu cells stably overexpressing

human heparanase (Hpa) and mock (Mock)

transfected cells were seeded into six-well

plates at a density of 6 9 105 cells per

well. After 24 h of starvation (serum-free

medium), the cells were stimulated for

30 min with TGF-b1 at the indicated

concentrations. (A) Lysate supernatants

were analyzed by western blotting using

anti-phospho-Smad2 and anti-Smad2/3

antibodies. Overexpression of heparanase

in the Hpa cells was confirmed using anti-

heparanase antibody. (B) Band intensity

measured in three independent

experiments was analyzed by IMAGE LAB
TM

Software and the average band intensity

of P-Smad2 is shown. Band intensity value

of Mock cells without TGF-b1 stimulation

is defined as 1.
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checked Akt and Erk signaling in the cells and found

the same effect of heparanase on the TGF-b1-induced
phosphorylation of Akt and Erk (Fig. 4). It should be

noted that phosphorylation of Akt and Erk in Fadu

cells is sensitive to the concentration of TGF-b1,
where 5 ng�mL�1 of the cytokine showed less activity

than the concentrations of 0.5 and 1 ng�mL�1.

Altered molecular structure of heparan sulfate in

Fadu cells overexpressing heparanase

To investigate whether the reduced TGF-b1-depen-
dent phosphorylation in heparanase overexpressing

cells is associated with the fine structure of HS,

Fadu cells were cultured in the presence of 35S,

and metabolically labeled HSPG/HS was purified.

Analysis on a gel filtration chromatographic col-

umn (Superose 12) showed a marginally reduced

overall molecular size of HSPG (Fig. 5A) isolated

from the conditioned medium of heparanase over-

expressing cells (Hpa), accompanied by elevation in

the amount of smaller fragments. In the cell-

derived fractions, although the overall size of

HSPG in Mock vs. Hpa cells was unchanged

(Fig. 5B), the Hpa cells also displayed an accumu-

lation of smaller fragments. This indicates an

increased fragmentation of HS by overexpressed

heparanase. Analysis of the free HS chains released

from HSPG by alkali treatment revealed, again,

accumulation of smaller fragments in both the

medium (Fig. 5C) and cell (Fig. 5D) fractions.

Quantification of the total 35S (cpm) in HS and CS

fractions from the peaks showed that the ratio of

HS/CS is 4.4 in the conditioned medium of Mock

vs. 14.6 in the conditioned medium of Hpa-tg Fadu

cells, indicating a more than threefold increase in

shedding of HS. At the same time, the HS/CS ratio

was 5.4 in Mock vs. 2.7 in the Hpa high cells,

indicating an increased turnover of HS in the

Fig. 2. TGF-b1-induced Smad

phosphorylation in Mock vs. Hpa MCF7

cells—cells, either stably overexpressing

heparanase (Hpa) or mock transfected

(Mock), were seeded into six-well plates

at a density of 6 9 105 cells per well,

starved and stimulated with the indicated

concentrations of TGF-b1 for 30 min. Cell

lysates were analyzed by western blot (A)

and quantified (B) as described in the

legend to Fig. 1.

Fig. 3. TGF-b1-stimulated proliferation of Fadu cells—starved Fadu

cells stably overexpressing heparanase (Hpa) and mock (Mock)

transfected cells were seeded on 96-well plate (10 000 cell per

well) and stimulated for 24 h with the indicated concentrations

TGF-b1. After addition of MTS reagent the absorbance at 490 nm

was measured. The experiment was repeated two times and the

average OD � SE is shown. The OD of Mock cells that were not

treated with TGF-b1 is defined as 1. *P < 0.05.
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heparanase overexpression cells (Table 1). A similar

pattern of the ratio between HSPG/CSPG confirms

the effect of heparanase on the intact proteogly-

cans.

The free HS chains were further subjected to anal-

ysis on a DEAE-Sepharcel column to evaluate the

overall charge density. The degraded CS disaccha-

rides were eluted at low salt concentrations. HS

from heparanase overexpressing cells and their cul-

ture medium showed a significant retardation in the

anion exchange column in comparison to the sam-

ples isolated from Mock cells, indicating a higher

overall sulfation of HS from the heparanase-overex-

pressing cells (Fig. 6).

The effect of heparanase on TGF-b1-stimulated

activity depends on its enzymatic activity

Given that the HS structure is altered, the effect of

heparanase expression on TGF-b1-dependent phos-

phorylation is presumable due to enzymatic modifica-

tion of HS in the Hpa cells. To verify this, we

examined Smad2 phosphorylation in CHO cell stably

overexpressing mutant (Glu225, Glu343) heparanase

that lacks catalytic activity [19,21]. Western blot analy-

sis revealed that overexpression of mutant heparanase

had essentially no effect on TGF-b1-simulated Smad2

C-terminal phosphorylation (Fig. 7), confirming the

notion that HS molecular structure plays pivotal roles

in TGF-b1 signaling activity.

Fig. 4. TGF-b1-induced Akt and Erk

phosphorylation in Mock vs. Hpa Fadu

cells—Fadu cells stably overexpressing

human heparanase (Hpa) and mock (Mock)

transfected cells were seeded into six-well

plates at a density of 3 9 105 cells per

well. After 24 h of starvation (serum-free

medium), for Akt signaling, the cells were

directly stimulated for 1 h with TGF-b1 at

the indicated concentrations. For Erk, the

cells were further cultured in the

starvation medium in the presence of

3 lM GW6604 followed by stimulation

with TGF-b1 for 1 hr. Lysate supernatants

were analyzed by western blotting using

(A) anti-phospho-Akt and (B) anti-Erk

antibodies. Band intensity measured in

three independent experiments was

analyzed by IMAGE LAB
TM Software. The

band intensity value of Mock cells without

TGF-b1 stimulation is defined as 1.

*P < 0.05.
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Discussion

Cell surface HS has important functional roles in for-

mation of cytokine gradients [2] and in mediating the

activities of different protein ligands including growth

factors [6]. The role of HS in growth factor signaling

has been most studied in relation to the FGF family.

In comparison, information regarding HS function in

TGF-b activity is limited. Nonetheless, several recent

studies have shown that HS is involved in TGF-b
functions [11–15,27]. Likewise, heparanase has been

shown to play a key role in renal fibrosis by regulating

TGF-b expression and activity [16]. It also promotes

bronchiolitis and lung fibrosis by enhancing the release

and activation of ECM-stored TGF-b through the

cleavage of HS [28]. Since TGF-b is a pluripotent

cytokine that can promote or suppress cancer progres-

sion and metastasis [29], it is important to elucidate

Fig. 5. Analysis of HS chain length—Metabolically 35S-labeled HS

samples (10 000 cpm) from Fadu cells were separated on a

Superose-12 column showing increased amount of smaller HS

fragments derived from heparanase overexpressing (Hpa) vs. Mock

cells. Shown are HSPG (A, B) and HS-free chains (C, D) from

medium (A, C) and cell extracts (B, D); Vo and elution position of

heparin (Hep, 14 kDa) are indicated. Degradation products

(disaccharides) of CS are eluted at 18–20 mL.

Table 1. Proportion of 35S-labeled HS and CS isolated from Hpa

vs. Mock Fadu cells.

Samples

Medium Cell

Mock Hpa Mock Hpa

HS/CS 4.4 14.6 5.4 2.7

HSPG/CSPG 2.3 9.9 3.2 1.6

Higher proportion of 35S-labeled HSPG/HS in the Hpa medium indi-

cates an increased shedding of the molecules. The lower propor-

tion of HSPG/HS in the Hpa cell fractions points to a rapid turnover

of the molecules.

Fig. 6. Increased overall charge density in HS from Hpa-Fadu cells

– Metabolically 35S-labeled HS samples (10 000 cpm) were applied

onto DEAE-sepharcel column connected to HPLC system and

eluted with a linear gradient of 0.25–2 M NaCl. The chromatograms

show that HS chains derived from Hpa medium (A) and the

corresponding cells (B) are more retarded in the DEAE-sepharcel

gel. The peaks eluted at low salt concentrations are degradation

products of CS.
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the involvement of heparanase and HS in TGF-b-
induced signaling and cellular effects.

The HS endo-glucuronidase (heparanase) is overex-

pressed in most tumor tissues, correlating with tumor

vascular density and metastatic potential, and with

patient survival [30]. Our earlier study has found that

overexpression of heparanase in mice led to produc-

tion of highly sulfated HS that displayed a higher

potency in assembling FGF2-FGFR ternary structure

[9]. To investigate whether heparanase expression has

a similar effect on TGF-b1 activity, we examined

TGF-b1-stimulated signaling pathways in human can-

cer cells that stably overexpress heparanase. Unexpect-

edly, we found that heparanase overexpression

attenuated TGF-b1-induced Smad2, Akt, and Erk

phosphorylation in heparanase-overexpressing tumor

cells, contradictory to its effect on FGF activity [9,24].

However, our results are in line with the finding that

transgenic overexpression of an endo-sulfatase (Sulf1)

promoted activation of the TGF-b1/Smad pathway

[13]. This mutual feature can be plausibly ascribed to

the sulfation status of HS in the cells. Sulf1 specifically

removes 6-O-sulfate in a given HS chain. Conse-

quently, overexpression of sulf1 will lead to reduced

HS sulfation and thereby higher TGF-b1 activity [13].

In contrast, overexpression of heparanase leads to pro-

duction of highly sulfated HS (Fig. 5) [9], and hence

attenuated TGF-b1 activity.

Unlike many growth factors TGF-b is a bifunctional

regulator [31] that has both stimulatory and inhibitory

activity in the same cells [32]. This effect of TGF-b is

believed to be dependent on the molecular context of

the cells. This feature of TGF-b is evidenced in our

experiments. Stimulation at lower concentration of

TGF-b1 increased phosphorylation of Akt and Erk in

Fadu cells, but at higher concentration suppressed

phosphorylation. Similarly, the cell proliferation exhib-

ited a bell-shape in response to the stimulation of

TGF-b1 (Figs.3,4). Our results, together with the find-

ings with Sulf1-overexpressing cells [13], suggest that

the molecular structure of HS on the cell surface plays

a role in the pluripotent activity of TGF-b1. Notably,

HS biosynthesis and postmodification are spatially and

temporally regulated by diverse factors [3], offering an

explanation for the apparently contradictory activity

of TGF-b1 on the same cell type cultured under differ-

ent conditions [32].

Two distinct types of FGF-HS-FGFR complexes

were discerned; one structure showing two FGF–
FGFR pairs that interact in a symmetrical mode with

two oligosaccharides (2:2:2 complex) [33]. The other

model involves a single HS that interacts with two

FGFs but only one of the two FGFR molecules

(2 : 2 : 1 complex) [34]. In comparison, the molecular

feature of TGF-b/HS/TGF-b receptor interaction is

largely unveiled. A model has been proposed, showing

Fig. 7. Mutant heparanase has no effect

on Smad phosphorylation. CHO-K1 cells

stably overexpressing enzymatically

inactive mutant human heparanase (Hpa-

M; Glu225, Glu343) or Mock transfected

were seeded into six-well plates at a

density of 6 9 105 cells per well. After

24 h starvation, the cells were stimulated

(30 min) with TGF-b1 at the indicated

concentrations. Cell lysate supernatants

were analyzed as described in the legend

to Fig. 1. Cell lysates were analyzed by

western blot (A) and the band intensity

was quantified and presented in (B).

Overexpression of mutant heparanase

was confirmed using anti-heparanase

antibody (the point mutation of heparanase

did not affect its epitope for recognition by

the antibody) (lower panel in A).
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HS modulation of TGF-b1 receptor complex forma-

tion [11]. The absence of HS promotes formation of

receptor Complex 1 that is constituted mostly of type

II rather than type I TGF-b1 receptor, leading to sig-

nal transduction. Thus, the attenuated TGF-b1 activity

found in the heparanase-overexpressing cells may

involve two independent or associated mechanisms; a

highly charged HS on the cell surface traps TGF-b1
preventing its interaction with receptors; or/and the

increased sulfation of HS interferes with the formation

of receptor Complex 1, leading to the degradation

pathway [11]. An additional parameter is that hep-

aranase overexpression increases the turnover of HS,

which may abrogate the stability of HS interaction

with TGF-b1, and potentially with its receptors.

In conclusion, our finding that TGF-b1 activity is

associated with the molecular structure of HS has con-

veyed a novel notion for the functions of TGF-b fam-

ily members. Given that heparanase expression is

elevated in the majority of tumor tissues, and that HS

isolated from tumor cells and tissues exhibit a higher

sulfation content [9], it is of importance to establish

the functions of heparanase, as well as HS, on TGF-

b1 activity and the related effects on tumor growth.
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Fig. S1. CHO-K1 cells were seeded at a density of

3 9 105 cells per well of six-well plate in 3 mL of

F12K supplemented with 10% FBS and cultured for

24 h.
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