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Single-cell variability in multicellular organisms

Stephen Smith! & Ramon Grima'

Noisy gene expression is of fundamental importance to single cells, and is therefore widely
studied in single-celled organisms. Extending these studies to multicellular organisms is
challenging since their cells are generally not isolated, but individuals in a tissue. Cell-cell
coupling via signalling, active transport or pure diffusion, ensures that tissue-bound cells are
neither fully independent of each other, nor an entirely homogeneous population. In this
article, we show that increasing the strength of coupling between cells can either increase or
decrease the single-cell variability (and, therefore, the heterogeneity of the tissue), depending
on the statistical properties of the underlying genetic network. We confirm these predictions
using spatial stochastic simulations of simple genetic networks, and experimental data from
animal and plant tissues. The results suggest that cell-cell coupling may be one of several
noise-control strategies employed by multicellular organisms, and highlight the need for a
deeper understanding of multicellular behaviour.

TSchool of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR Scotland, UK. Correspondence and requests for materials should
be addressed to R.G. (email: ramon.grima@ed.ac.uk)

| (2018)9:345 | DOI: 10.1038/541467-017-02710-x | www.nature.com/naturecommunications 1


mailto:ramon.grima@ed.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

t is now well established that stochastic gene expression is the

main driver of phenotypic variation in populations of

genetically identical cells™*. In populations of single-celled
organisms, individuals are known to switch between metabolic
states® or antibiotic resistant states?, and to randomly choose the
timing of reproduction®, among other stochastic survival strate-
gies. The availability of single-cell fluorescence data has pre-
cipitated a wealth of mathematical modelling approaches to
understand single-cell noise based on the chemical master
equation (CME)®, such as the stochastic simulation algorithm
(SSA)’, the finite-state projection algorithm (FSP)8, and the linear
noise approximation (LNA)%10,

In multicellular organisms, mouse olfactory development!! and
Drosophila vision!? are well-known examples of stochastic gene
expression in tissues, along with pattern formation!>!* and
phenotypic switching of cancer cells'>. More recently, it has been
observed that tissue-bound cells can take advantage of polyploidy
to reduce noise!®. Nevertheless, single-cell variability in tissues is
considerably less well understood than in isolated cells, for two
main reasons.

Firstly, acquiring fluorescence data for tissue-bound cells
requires a combination of high-resolution imaging and cell seg-
mentation software that has only recently become possible for
mRNA localisation!” and still poses a significant challenge for
proteins. The difficulty of accurate segmentation of tissue-bound
cells means that the majority of segmented time course data still
concerns populations of isolated cells'®, while tissue-level data has
historically been too low-resolution to distinguish individual cell
outlines!?, though improvements in microscopy are increasingly
eliminating this problem'®.

Secondly, the transfer of material between tissue-bound cells
makes mathematical modelling of tissues significantly more
complex than equivalent isolated cell models. In addition to the
long-range endocrine networks which connect all cells in a tissue,
neighbouring cells communicate via complex paracrine signalling
networks?’, and also via small watertight passages such as gap
junctions in animals, and plasmodesmata in plants. In plant cells,
molecules up to and including proteins are known to move
through plasmodesmata by pure diffusion?!?2, while those as
large as mRNA are actively transported?. In animal cells, pep-
tides diffuse through gap junctions®*, while larger molecules have
been shown to be transported across cytoplasmic bridges®® or
tunnelling nanotubes®®. A single cell in a tissue is therefore par-
tially dependent on its neighbour cells, but also partially inde-
pendent of them, and so mathematical models of cells within
multicellular organisms must take account of this coupling.

In this article, we start from a general mathematical description
of a tissue of cells, in which each cell contains an identical sto-
chastic genetic network, with identical reaction rates. Our
description permits molecules to move from a cell to a neigh-
bouring cell with a given transport rate or coupling strength,
representing signalling, active transport, or pure diffusion. We
subsequently consider two special cases: when the coupling is
very weak and very strong. In both of these cases, our complex
mathematical description reduces to simple expressions for the
single-cell variability. These equations are completely generic, and
apply to any biochemical network including oscillatory and
multimodal systems.

The implication of the equations is that single-cell variability is
controlled by the strength of cell—cell coupling, in a manner that
depends on the Fano factor (FF) of the underlying genetic net-
work. If FF > 1, then cell-cell coupling will tend to reduce the
single-cell variability (or equivalently, the heterogeneity of the
tissue); whereas if FF < 1, then coupling will tend to increase the
single-cell variability. To confirm our theory, we use spatial sto-
chastic simulations of three biochemical networks, and
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experimental data from rat pituitary tissue, a leaf of Arabidopsis
thaliana, and a population of mouse fibroblast cells.

Results
Illustratory examples. Modelling approaches to genetic networks
such as the CME, SSA, or LNA assume that the cell is an isolated
volume with no molecules entering or leaving the system from
outside (Fig. 1a). Tissues of cells violate this assumption: each cell
is connected to a number of neighbour cells (Fig. 1b), and
molecules involved in the genetic network can be transported
from cell to cell. The differences between a population of identical
independent cells and a tissue of identical connected cells can be
seen with stochastic simulations of a simple genetic network.

In Fig. 1c we plot three independent realisations of the SSA for
the well-known two-stage gene expression network®:

o
0=MM-sM+P,Py, (1)
do

in which a molecule of mRNA (M) is transcribed with rate v, and
decays with rate dy. The mRNA can translate a protein (P) with
rate v; which in turn decays with rate d;. The trajectories in
Fig. 1c correspond to the number of protein molecules in three
independent cells.

To model a tissue, we imagine a N x N grid of cells (Fig. 1b)
numbered from 1 to N? with the genetic network (1) inside each
cell. In addition, we couple neighbouring pairs of cells by allowing
the protein P to be transported between them with a rate t. To
model this, we think of protein transport from cell i to cell j as a
simultaneous decay of protein in cell i and creation of protein in
cell j. Specifically, we can write the system in cell i as:

Yo t
d
0= M;, M; = M; + P;, P, = 0,P; = P, 2)
do t
where M; and P; denote the mRNA and protein respectively in
t
cell 4, and the reaction P; = P denotes the transport of protein
t

from cell i to cell j, if i and j are neighbouring cells. Transport is
therefore modelled as a kind of 'reaction’ involving two species P;
and P;, though biologically these are really the same species in
different locations. We note that this model of transport implies
exponentially distributed waiting times between successive
transport events, an assumption that has ;)reviously been used
when modelling active transport in tissues®”>?%, and in modelling
reaction-diffusion systems®*?. The main results of this article do
not depend on the exponential assumption since we only analyse
the fast limit of transport, though it is convenient for simulations
at finite transport rates.

This description of transport has a clear advantage for
modelling: we have reframed a complex problem of cell—cell
transport into a simpler problem of species and reactions on
which, in principle, we can use the FSP, SSA, or even LNA. In
reality, the FSP and LNA are impractical for such systems, owing
to their large dimensions: for a tissue with 100 cells, the system
(2) consists of many more species than system (1) (200 rather
than 2), many more chemical reactions (400 rather than 4) and
many additional transport “reactions” (roughly 400, rather than
0). The SSA, however, is still a useful technique for getting
accurate data about tissue systems like 2, though it will obviously
be substantially slower than for single-celled systems like (1).
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Fig. 1 Differences between a population of isolated cells and a tissue of cells. a A population of isolated cells: each cell contains an identical genetic
network. b A tissue of cells: each cell contains an identical genetic network and some molecules can be transported between neighbouring cells (dotted
lines). € Typical single-cell protein trajectories of system (1) in isolated cells. d Typical single-cell protein trajectories of system (1) in a tissue of connected
cells: noise is clearly reduced compared to c. e Typical single-cell protein trajectories of system (3) in isolated cells. f Typical single-cell protein trajectories
of system (3) in a tissue of connected cells: noise is clearly increased compared to e. Parameter values are vo =4, do =1, v; =10, d; =1, t =10, N2 =100, V¢
=1 for system (1) and k; =32, k, =0.01, t=10, N2 =100, Ve =1 for system (3)

We simulated system (2) with a version of the SSA3! with N2=
100 cells, giving 100 trajectories of protein number, one for each
cell. Three typical trajectories are plotted in Fig. 1d. Notably, the
tissue trajectories in Fig. 1d are considerably less variable (more
homogeneous) than the isolated cell trajectories in Fig. 1c.

This apparent increase in homogeneity is perhaps unsurpising,
and may be thought of as the obvious consequence of increasing
coupling. However, remarkably, coupling can also reduce the
homogeneity in a tissue. For example, a simple system
representing the synthesis of a protein P, and its consequent
dimerisation into a homodimer D, is defined by the reactions:

0 ppyptap. (3)

In a tissue, this system involves the transport of P between
neighbouring cells. We simulated system (3) both without and
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with transport using the same version of the SSA, and three
typical single-cell trajectories of the protein P are plotted in
Fig. le, f respectively. The independent cell trajectories are
relatively homogeneous, while the tissue-bound cell trajectories
are substantially more variable (more heterogeneous).

An intuitive explanation can be made for these initially
surprising observations. The transport of molecules between cells
has two distinct effects on the single-cell variability: (1) by
moving molecules into and out of cells, it allows for greater
cell—cell variation; (2) by smoothing out concentration gradients
between neighbouring cells, it homogenises concentrations across
the tissue.

The effect of transport on single-cell variability is determined
by the trade-off between effects (1) and (2). In Fig. 1c, the cells
have large fluctuations in molecule number which will be reduced
by effect (2), but new fluctuations will be induced by effect (1). In
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Fig. 2 [ as a function of protein transport rate for the two-stage gene
expression system (1). Theoretical values for the fast transport limit (red),
and slow transport limit (green) are shown as solid lines. Simulation data is
shown for the average single-cell variability (blue squares) for a variety of
protein transport rates. Parameter values are vo=3, do=1, vy=10; d; =1,
Ve =1, Vr=100. Inset: schematic diagram of system (1)

Fig. 1d new fluctuations have been added, but these are not large
enough to offset the reduction in the original fluctuations, and so,
overall, homogeneity is increased by transport. Meanwhile, for
system (3), effect (2) is much less significant because the single-
cell variability in Fig. le is already small, so effect (1) dominates
and there is an overall increase in heterogeneity in Fig. 1f.

Theory. To make this intuition mathematically precise (see
Methods), we consider a system of any number of species and any
number of reactions, a tissue with volume Vr, and a cell of
volume V. Furthermore, we let n be the number of molecules of
a species of interest in the tissue, while m is the number of
molecules of that species in the cell. Note that because each cell
contains the same genetic network, the variance of fluctuations in
a single cell, (m?) — (m)?, is a non-normalised measure of the
single-cell variability. We define our measure of single-cell
variability, L, to be:

Vi ((m?) — (m 2)
Ve((n?) - <">2) 7

i.e.,, the ratio of the variance of fluctuations in a single cell to the
variance of fluctuations in the entire tissue, scaled by volume. The
reason for this definition becomes clear when we consider the
limiting case of weak cell—cell coupling (i.e., isolated cells). In this
case, each cell is completely 1nde£>endent and hence it directly
follows by the Bienaymé formula®? (Methods section) that:

() = () =72 () = () )

which immediately implies that L= 1. That is, if L=1, then the
cell-to-cell variability is at the level we would expect if the cells
were completely independent of each other. This can be con-
sidered as a neutral state, neither particularly heterogeneous, nor
especially homogeneous.

If L <1, then the single-cell variability is lower than we would
expect from the Bienaymé formula, given the tissue-level
variance. It follows that the cells are more homogeneous than
decoupled cells. On the other hand, if L >1, then the cell-to-cell
variability is higher than we would expect from the Bienaymé
formula, given the tissue-level variance. It follows that the cells

L= (4)
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are more heterogeneous than decoupled cells. L is therefore a
non-dimensional statistical measure of single-cell variability (or
equivalently, population heterogeneity).

With this in mind, we next consider what happens to a tissue
of cells with cell—cell coupling. At zero coupling, we will naturally
have L= 1. As the coupling strength increases, L will change, but
the magnitude of the change will depend on a number of system-
specific factors including the topology of the tissue (which cells
are coupled to which), the structure of the genetic network, and
the rates of the reactions involved. To bypass these issues, we
consider the special case of infinitely fast cell-cell transport, and
we reason that the behaviour at finite transport rates will lie
between the zero coupling and infinite coupling cases.

Biologically we can think of infinite coupling as the extreme
case where a protein will move from cell to cell many times
during its lifetime. In this case, the probablllty of finding a given
molecule in a given cell is simply ¥ v This implies that the
probability distribution governing the number of molecules in the
cell is a convolution of the solution of the CME (which describes
the whole tissue) and a binomial distribution (Methods section).
While the convolution is generally impossible to solve, remark-
ably we can obtain a simple expression linking the variance of
fluctuations in the cell, with the variance in the entire tissue:

Ve V2

() = (= g2 )+ 05 () = () = (). (6)

Combining Egs. (4) and (6), and defining the Fano factor (Ff) as
the ratio of tissue-level variance to the mean, FF = ) =n) , we
find that the single-cell variability at infinite coupling is given by:

1 — X
L=Ye, W (7)

We note now that FF is a standard statistical measure of the
size of fluctuations. Probability distributions with FF=1 are said
to have Poissonian fluctations, while FF <1 corresponds to
subpoissonian and FF>1 to superpoissonian. Our earlier
intuition suggested that systems with large fluctuations would
tend to see a reduction in cell-to-cell variability as coupling
strength increases. Now we see that this is indeed the case:
combining FF>1 with Eq. (7), we find that L <1 at infinite
coupling strength, suggesting that coupling tends to decrease
single-cell variability for superpoissonian systems. Alternatively,
choosing FF < 1 we find that L > 1 at infinite coupling strength,
implying that coupling will increase single-cell variability for
subpoissonian systems.

For system (1), the Fano factor can be computed exactly since
the moment equations for the corresponding CME are closed™.
In particular, we have that FF =1+ ->1, implying that
increasing the transport rate will reduce the single-cell variability,
as shown in Fig. Ic, d.

For system (3), the presence of a bimolecular reaction prevents
the moment equations from closing, and so the moments are
instead obtained from the steady-state distribution of molecule
numbers. The mean and variance are given in ref.%, but we will not
state them here since they are complicated expressions. Instead we
note that FF < 1 for all parameter values, suggesting that the single-
cell variability will increase as cell—cell transport increases. See the
next section for more details of these calculations.

For these examples the qualitative changes in single-cell
variability are independent of parameter values, though this
would not be the case for systems with Fano factors which can
vary from subpoissonian to superpoissonian. We note that these
results are independent of the spatial structure of the tissue: they
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apply equally to neighbour-neighbour and long-range interac-
tions, and indeed any kind of coupling provided no cells in the
tissue are disconnected from the population. We also stress that
these results apply equally to systems out of equilbrium, including
oscillatory systems and systems far from steady-state, since no
assumptions have been made on the type of biochemical network
inside each cell.

Verification of theory using stochastic simulations. Our theory
pedicts that the single-cell variability L should move from 1 to the
value given in Eq. (7) as cell-cell transport increases. In this
section we test the accuracy of this prediction on data from
detailed stochastic simulations using a version of the SSA3! that is
well-suited to simulating tissues.

First, we again consider the two-stage gene expression system
(1) as shown in Fig. 1c, d and Fig. 2 1nset Since the moments of
the CME are closed for this system®® we can find exact

expressions for the tissue-level mean, V;{)";l"‘, and the tissue-level

). It follows that FF = 1 + ﬁ, and so
dotdi 176
do+dy+v;

variance, VT""V‘ (1 + d

Eq. (7) implies that L will decrease from 1 to
transport increases.

As a second example we consider the protein synthesis and
dimerisation system (3) as shown in F1§ le, f and 3 inset. The
mean and variance are given in ref>*, and they imply that

FF=3— ‘/’11(12) % where ¢ = VT\/; and I,(x) is the
(m*n <4¢>)

modified Bessel function of the first kind®> and 1'1 (x) is its
derivative. Numerical analysis confirms that FF < 1 for all values
of ¢, suggesting that L will increase from 1 as cell—cell transport
increases.

For our third example we consider the bimodal three-stage
gene expression network studied in refs. 6,9 (Fig. 4 inset):

kot .
vgn voft
Gon = Goft, Gon — Gon + M, Goit — Gogr + M, g
ko, (8)
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Fig. 3 L as a function of protein transport rate for the dimerisation system
(3). Theoretical values for the fast transport limit (red) and slow transport
limit (green) are shown as solid lines. Simulation data is shown for the
average single-cell variability L (blue squares) for a variety of protein
transport rates. Parameter values are k; =32, k, =0.01, V=1, V+=100.
Inset: schematic diagram of system (3)
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in which a gene can be in an active state (G,,) or an inactive state
(Gogr). The active gene transcribes mRNA (M) with a rate vJ"
while the inactive gene transcribes mRNA with a rate 3. The
protein is translated as in the earlier system (1). We again
calculate the mean and variance of fluctuations for the protein P
from the moment equations, as for the previous examples, and we
find that the Fano factor is larger than 1 so Eq. (7) again implies
that L will decrease as cell transport increases.

In summary, in Figs. 2, 3 and 4 we compare the analytical
expressions for fast transport, Eq. (7), with the simulation data for
systems (1), (3) and (8), respectively. It is clear that in every case
our theoretical predictions are correct. For each example the
single-cell variability, L, from simulations (blue squares) moves
from the slow limit, 1, (green line) to the predicted fast transport
limit (red line). As predicted by the Fano factor criterion, for
systems (1) and (8) L decreases with transport rate, while L
increases for system (3).

Application to experimental data. Testing our predictions on
simulations is useful, because by varying the rate of transport we
can confirm that increasing it leads to the predicted change in
single-cell variability, but with experimental data the transport
rate is both fixed and completely unknown. However, we know
that L lies between 1 and the value given by Eq. (7), and that the
parameters of Eq. (7) are either tissue-level quantities (FF), or
easily calculable (V and V(). It follows that we can use tissue-
level time course data to estimate L, without any knowledge of the
underlying genetic network. In general, the corresponding single-
cell data would not be available, however we specifically choose
examples with both tissue-level and single-cell data so as to check
that our estimates are correct.

We first apply our method to fluorescence data of GFP
concentration in two distinct rat pituitary tissues?® in which cells
communicate both via paracrine signalling and active transport
across gap junctions. The fluorescence data is available at the
single-cell level, so the tissue-level data is obtained simply by
summing up the single-cell fluorescence. We apply our method to
this tissue-level data, and subsequently check its accuracy using
single cells.
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Fig. 4 L as a function of protein transport rate for the three-stage gene
expression system (8). Theoretical values for the fast transport limit (red),
and slow transport limit (green) are shown as solid lines. Simulation data is
shown for the average single-cell variability (blue squares) for a variety of
protein transport rates. Parameter values are ko, =0.1, ko;s=0.1,

v =3, =1,do=1,v=1,d=1, Vc =1, Vy=25. Inset: schematic
diagram of system (8)
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Fig. 5 Comparison of fast (red) and slow (green) transport limits with single-cell data (blue squares: mean; blue bars: 1 standard deviation above mean) for
a a tissue of 117 E18.5 rat pituitary cells, b a tissue of 114 P1.5 rat pituitary cells. Insets: typical single-cell trajectories from the raw data. Data are taken from

ref. 20

The first tissue is taken from a day 18.5 embryonic rat (E18.5),
where cell—cell junctions are rare and their related proteins (E-,
N-cadherin and B-catenin) and paracrine signalling proteins are
expressed at a low level; while the second tissue is taken from a
day 1.5 post-natal rat (P1.5) where junctions are considerably
more common, and there is a high level of expression of related
proteins?®. The authors of ref. 2% note that the P1.5 tissue, while
clearly more mature than the E18.5 tissue, has not yet reached the
level of connectivity of the adult tissue for which the number of
gap junctions is likely to be even higher. With this in mind, we
expect L in the E18.5 cells to be noticeably closer to 1 than the
P1.5 cells, but the P1.5 cells should not be too close to (7) since
they still are not fully mature.

In Fig. 5a, b we plot the fast and slow transport limits (green
and red lines), and L averaged over each cell (blue squares) and
bars representing one standard deviation above the mean (blue
bars) for the E18.5 and P1.5 tissues respectively. As expected, L
remains between the two in both cases, but is noticeably closer to
1 in Fig. 5a than in Fig. 5b.

The above dataset is further confirmation of our theory, but
both it and the simulated systems are either in equilibrium or
approaching it. Since this is frequently not the case in reality, we
now apply our method to two oscillating datasets, one which we
expect to have fast transport and one with slow transport. We
stress that our method should apply to oscillatory systems since
we have made no assumptions about the underlying genetic
networks—only that the same genetic networks should be present
in each cell, with the same reaction rates.

The second dataset corresponds to luminescence data of an
oscillatin% protein concentration in a single leaf of Arabidopsis
thaliana". The luminescence data is available in image form, in
which each pixel is close to single-cell resolution, so we can apply
our method to the whole-leaf protein trajectory and subsequently
check its accuracy with the single-pixel data.

In Fig. 6a we plot the slow and fast transport limits (green and
red lines respectively) over time, and also L averaged over each
pixel of the leaf image (blue squares) and bars representing one
standard deviation above the mean (blue bars). Since proteins are
frequently transferred between cells in a plant tissue, we might
expect L to remain between the two limits but close to the fast
limit, and such proves to be the case.

The third dataset consists of luminescence data of an oscillating
protein concentration in a small population of mouse fibroblast
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cells*®. The cells were imaged on the same plate for a period of
over a month, and were sufficiently far apart that single-cell
resolution is easily possible. The cells therefore do not exactly
form a tissue (though we might expect some very low-level
exchange of material) so we expect L to be close to 1.

In Fig. 6b we plot the limits (green and red lines), and L
averaged over each cell (blue squares) and bars representing one
standard deviation above the mean (blue bars). As expected, L
remains between the two, but is significantly closer to 1 than to
the fast limit.

Discussion

Single-cell variability in tissues is an immediate consequence of
the stochastic nature of gene expression, but it can have sig-
nificant phenotypic implications ranging from pattern formation
to cancer. The cell—cell coupling characteristic of tissues ensures
that the question of single-cell variability will be more complex
than in the well-studied case of noise in single-celled organisms.
As an attempt to address this question, we introduced a measure
of single-cell variability, L, which is a non-dimensional statistical
coefficient which determines whether the cells in a tissue are
more or less heterogeneous than an equivalent population of
independent cells. We found that L is sensitive to the strength of
coupling between cells in the tissues, in a manner that depends on
the statistics of the underlying genetic network.

In the case of biochemical systems which naturally have large
stochastic fluctuations (superpoissonian systems), we showed that
increasing the coupling strength will tend to decrease the single-
cell variability. On the other hand, for systems with small sto-
chastic fluctuations (subpoissonian systems), we found that
increasing the coupling strength will tend to increase the single-
cell variability. These predictions were confirmed with stochastic
simulations of simple genetic networks, and experimental data
from both animal and plant tissues. These results suggest that
cell—cell coupling could be one of several techniques cells use to
control noise, while also highlighting the need for much greater
understanding of multicellular behaviour.

We note here that we have focussed on fluctuations caused by
the stochastic nature of biochemical reactions (intrinsic noise)
and not noise induced by fluctuations in the enviromental con-
ditions (e.g., light level, temperature). This is because environ-
mental fluctuations affect each cell in the population equally®’,
and so will not affect the heterogeneity of the population.
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Fig. 6 Comparison of fast (red) and slow (green) transport limits with single-pixel data (blue squares: mean; blue bars: 1 standard deviation above mean)
for a a single leaf of Arabidopsis thaliana, b a population of 30 mouse fibroblast cells. Insets: typical single-cell trajectories from the raw data. Data is taken

from a ref. 1°, available at ref. 3%, b ref. 36

We also note that, although we are interested in heterogeneity,
we have concentrated here on homogeneous tissues, that is, tis-
sues where each cell contains an identical genetic network. We
have found that it may be possible to extend our results to tissues
with heterogeneous populations of cells, where different cells
could have different noise statistics, though the relevant analyses
are more complex than those in this article. This extension of our
results would have fascinating applications to tissue ageing®® and
tumour growth, and will be the subject of a future paper.

Methods

Derivation of fast and slow limits of L. We consider a tissue of N? cells with
volume Vr, and a single cell with volume V= Vi/N?, as well as identical systems
of M chemical species X, ..., X) interacting in each cell. Let P(#; V1) be the
probability that there are 7i = (11, ... ,ny) molecules of X, ..., X, respectively in
the entire tissue. The tissue-level Fano factor of species X; is defined as

5 2
FF; = % Now, let 1 = (my, ... ,my) be the number of molecules of X,
...» Xap, respectively, in the single cell, and let the corresponding probability dis-
tribution be Q(; V).

If transport is slow, the system in each cell is independent of the rest of the
population, and so, by the Bienaymé formula®?, the sum of the variances in each
cell is equal to the variance in the tissue. The variance in a single cell is then given

by, <m12> - <mj>2= KHJZ> - <nj>2] /N?=(V¢/Vr) {<n12> - <nj>2].
Furthermore, since all cells are statistically identical the mean concentration in
each cell is the same and equal to that of tissue, (m;)/Vc = (n;)/Vr. It follows
immediately from these considerations that L=1.

For the fast transport limit we can relate the local solution Q to the global
solution P using the theorem of total probability, Q(7; V) =
> Pr(m|#i; Ve, Vr)P(#; V), where the notation > > (+) is shorthand for

=0 -+ Lomi—o(+), and Pr(i|f; Ve, V) is the probability of finding 7
molecules of X, ..., X respectively in V¢ given that there are # molecules
respectively in V.

The limit of fast transport implies that molecules move into and out of the the
cell much more frequently than they are involved in reactions. The molecules are
uniformly distributed in Vp under these conditions, so that the probability that a
randomly chosen molecule is in V is simply % It follows from combinatorics that
the probability of finding m; molecules of species X; in V. given that there are n; in
Vs (nj!/ (m!(nj — mj)!) (Ve/Vr)™ (1 — Ve /Vp)" ™™, that is, a Binomial
distribution. It follows that Pr(#|#; V¢, V) is the product of the mass functions of
M Binomial (nj, Vc/Vp) distributions for each species X;. An expression for the
single-cell distribution Q in terms of the global distribution P can then be written,

= _ 00 =, M nj Ve ™ Ve i
QUi Ve) = S50 P VO T | () (5) " (1= 3) " 1|

The indicator function 1j<j prevents the expression from evaluating the
impossible probabilities of finding more molecules in V¢ than in Vi, and therefore
permits us to sum from zero to infinity without worry. Since this equation gives the
single-cell distribution Q, we can use it to evaluate the single-cell second moment
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which is given by <m]2> =

and 7, and absorbing the indicator function into the latter summations, gives:

(m) = gP(ﬁ; Vi)

{i > "“f,ﬁ(li)(x—:)”(l—x—:)"”k}

o me(Wt, V). Swapping the summations over 7

©)
m;=0 mpy=0 —

The local second moment is therefore the expected value of the quantity in square
brackets under the global distribution P. The quantity in square brackets, however,
is merely the expected value of 7 under the M independent Binomial(n;, Vc/Vr)

2
distributions, and is therefore equal to n; (“ﬁ—‘) ( — %) + 12 1<, It follows that the
T T JVr

local second moment is simply given by <mf> == (n) +“;—§ <n]2> - % (n) 1t

subsequently follows that the fast transport limit of L has the form of Eq. (7).

Data analysis. Fluorescence trajectories are passed through a moving average filter
with a window size dependent on the time-resolution of the data. The smoothed
trajectory is considered to be a time-dependent mean, (n). Subtracting the mean
from the raw trajectory gives a stationary noise component. The variance of this
component is used to obtain a time-dependent estimate for L or FF.

Data availability. All relevant data are available from the authors.
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