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Solid organ transplant recipients require long-term immunosuppression for prevention of
rejection. Calcineurin inhibitor (CNI)-based immunosuppressive regimens have remained
the primary means for immunosuppression for four decades now, yet little is known about
their effects on graft resident and infiltrating immune cell populations. Similarly, the
understanding of rejection biology under specific types of immunosuppression remains
to be defined. Furthermore, development of innovative, rationally designed targeted
therapeutics for mitigating or preventing rejection requires a fundamental understanding
of the immunobiology that underlies the rejection process. The established use of
microarray technologies in transplantation has provided great insight into gene
transcripts associated with allograft rejection but does not characterize rejection on a
single cell level. Therefore, the development of novel genomics tools, such as single cell
sequencing techniques, combined with powerful bioinformatics approaches, has enabled
characterization of immune processes at the single cell level. This can provide profound
insights into the rejection process, including identification of resident and infiltrating cell
transcriptomes, cell-cell interactions, and T cell receptor a/b repertoires. In this review, we
discuss genomic analysis techniques, including microarray, bulk RNAseq (bulkSeq),
single-cell RNAseq (scRNAseq), and spatial transcriptomic (ST) techniques, including
considerations of their benefits and limitations. Further, other techniques, such as
chromatin analysis via assay for transposase-accessible chromatin sequencing
(ATACseq), bioinformatic regulatory network analyses, and protein-based approaches
are also examined. Application of these tools will play a crucial role in redefining transplant
rejection with single cell resolution and likely aid in the development of future
immunomodulatory therapies in solid organ transplantation.
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INTRODUCTION

There are over 150,000 organs transplanted annually worldwide
(1), with numbers increasing yearly. The optimal solution for
organ failure is transplantation, however, organ transplantation
requires lifelong immunosuppressive therapy. In the absence of
adequate immunosuppression, acute rejection may develop,
which may be driven by T lymphocytes [acute cellular
rejection (ACR)], by antibody [antibody mediated rejection
(AMR)], or by both T lymphocytes and antibody [mixed acute
rejection (MAR)]. In addition to acute rejection, chronic rejection
may also develop, which involves not only inflammatory cell
infiltration into the graft, but also vasculopathy from repeated
injury and repair (2). While standard immunosuppression (IS) is
effective at decreasing CD8+ T cell driven ACR, excess IS may lead
to malignancies and infectious complications (3). Additionally,
current standard-of-care immunosuppressive therapies, including
calcineurin inhibitors (CNIs), corticosteroids (CCS), and
mycophenolate mofetil (MMF), have a multitude of toxicities
(4), including nephrotoxicity, neurotoxicity, gastrointestinal
toxicity, as well as metabolic derangements. These adverse
effects reduce quality of life and may contribute to decreased
patient and allograft survival (5, 6). Intriguingly, although CNI/
CCS/MMF-based regimens have been used as the primary means
for maintenance immunosuppression for decades now,
molecular insights governing graft acceptance and rejection
remain incompletely defined, especially for individual graft
resident and infiltrating immune cell populations.

Given the role of T cells in ACR, novel biologic therapies
focusing on T cell co-stimulatory blockade, such as belatacept
(CTLA4-Ig) (7) or iscalimab (anti-CD40 mAb) (8) have
been developed in hopes of decreasing treatment-mediated
toxicities while maintaining tolerance to the allograft. Notably,
for the first time under any maintenance immunosuppressive
regimen, long-term kidney transplant function improved under
belatacept as compared to the time of transplant (9). This shows
the promise of belatacept in reducing the nephrotoxicity that
can directly lead to decreased kidney allograft function.
However, there is an increased rate of rejection under these
new biologics. Under standard CNI and MMF combination
therapy, 1-year rejection rates are roughly 10-15% (10, 11),
while rejection rates under belatacept are roughly 20-25% (9,
12), when accompanied with anti-thymocyte globulin, which
targets T cells, or alemtuzumab, an anti-CD52 monoclonal
antibody against lymphocytes, as induction therapy (12). In
addition to increased rejection rates, rejection under belatacept
IS is more difficult to treat with conventional anti-rejection
therapies, such as high dose corticosteroid therapy and anti-
lymphocyte globulin therapy (13). Therefore, there is still a need
for a therapy that can both limit treatment-mediated toxicities
and decrease rejection rates.

Rejection episodes can also be challenging to classify, with
rejection classification and grading relying on visualization of
infiltrate and tissue damage via histological sectioning and
staining, subjecting it to considerable inter-observer bias
(14, 15). A particular issue is that of “sampling bias”, which
accounts for the fact that rejection can exist as focal regions and
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not be uniform throughout the allograft. Thus, depending on the
location of the biopsy, rejection may not be visualized even
though it is occurring in another region of the allograft. Further,
rejection markers, such as serum creatinine level and white cell
count, typically rely on peripheral blood sampling, which may
not accurately represent histological severity nor reflect what is
happening in the rejecting allograft. Additionally, renal allograft
dysfunction may occur as a result of processes other than
rejection, such as dehydration or infection. This prompts the
need to understand the underlying mechanisms employed by
cells within the rejecting organ.

Recent development of novel genomics tools combined
with powerful bioinformatics approaches has enabled the
characterization of inflammatory processes that underlie
transplant rejection. These approaches are beginning to
provide profound insights into rejection biology, including
individual residential and infiltrating cellular transcriptomes
and cell-cell interactions. Here, we will discuss the available
transcriptomic methods as well as considerations of benefits and
limitations of these techniques (Table 1). Application of these
techniques will play a crucial role in redefining transplant
rejection and likely aid in the development of innovative and
targeted immunomodulatory therapies for mitigating and
preventing solid organ transplant rejection.
TARGETED TRANSCRIPTOMICS

The development of microarray technology, at the time, was a
revolutionary breakthrough because it allowed simultaneous
assessment of expression of thousands of genes. Microarray
analyses provide assessment of gene expression from cDNA
libraries generated after mRNA isolation from tissue or from
purified cells. The cDNA is fluorescently labeled, with differing
labels if desired to distinguish individual samples, before
hybridization on a chip that has been previously loaded with a
large array of oligonucleotide probes, each specific for an
individual gene. This method (16) helps create a gene
expression profile of the samples and allows for parallel
detection of specific genes in a single reading, which provides
insight into the differential gene expression between individual
samples. Additionally, this standardized protocol (16), along
with the ease and speed of analysis, made microarrays a useful
tool in transplant research.

The use of microarrays in transplantation has enabled the
identification of transcripts that correlate with rejection, allowing
gene expression data to be interpreted in conjunction with
histologic data to grade rejection. Microarray techniques have
been leveraged in multiple ways to not only examine the profile
of transplant rejection (39–41), but also identify serum protein
biomarkers, such as PECAM1, that correlate with acute rejection
(42) and autoantibodies that may play a role in rejection (43).
Indeed, many studies utilizing microarray techniques have been
done to study AMR (44–46). Microarray techniques were also
one of the first techniques used to identify C4d-negative AMR in
kidney transplantation through correlation of increased
October 2021 | Volume 12 | Article 750754
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expression of renal endothelial transcripts in the allograft with
biopsy proven acute rejection (47). Microarray analyses of AMR
in the INTERCOM study revealed that that results of a
microarray-based test using kidney biopsies correlated strongly
with conventional assessment methods of AMR and could also
predict early progression to transplant failure (45).

In addition to AMR, microarrays have been used to
characterize T cell mediated rejection (TCMR). In particular,
Frontiers in Immunology | www.frontiersin.org 3
identification of cytotoxic T cell transcripts involved in
rejection may aid in the estimating T cell infiltration in the
rejecting allograft (48). TCMR-related transcripts show
increased expression of genes related to effector T cells and co-
stimulation, as well as macrophage activation, providing insight
into potential cellular pathways involved in rejection. Further,
TCMR related transcripts are highly ranked in relation to
transcripts associated with rejection universally but low in
TABLE 1 | Advantages and Disadvantages of Advanced Geomics-Based Approaches.

Technology Advantages Disadvantages References

Microarrays • widespread use, leading to many validation datasets • analyses are supervised (16, 17)

• cost-effective compared to other techniques • cannot determine which cells particular transcripts are from

• simpler, more streamlined analysis • no combined protein analyses

• can be performed using FFPE tissue • no TCR/BCR analyses

• identified ARTs available • lacks histological context

BulkSeq • more quantitative analyses compared to microarrays • cannot determine which cells particular transcripts are from (18–20)

• does not rely on probe hybridization • limited analysis of complex transcriptomes

• can be performed using FFPE tissue • cannot determine cell specific TCR/BCR sequences

• better detection of lowly expressed transcripts • rejection-driving transcripts may be drowned out

• allows for identification of SNPs • lacks histological context

scRNAseq • provides transcriptomic information of single cells • difficult tissue preservation (21–27)

• can identify novel cell-type specific transcripts • difficult tissue digestion and single cell isoaltion

• allows for identification of SNPs • lacks histological context

• provides insight into the clonal immune response during
rejection

• can perform paired TCR/BCR analysis

• outlines pathway toward alloantigen identification

• many software programs available for in-depth
intercellular communication and cellular differentiation
analyses

Methods coupled to
scRNAseq
scATACSeq

• insight into gene regulatory networks • open chromatin sites captured may be limited (28–33)

• allows for cell lineage analyses • high background noise

mass cytometry/cyTOF • provides insight into protein expression

• combined mRNA & protein expression in of cells

CITEseq/REAPseq • combined mRNA & protein expression in of cells • supervised protein analyses via antibody selection

Index Sorting
Spatial Transcriptomics

• interrogates cellular interactions in their native context • lower throughput limited by flow rate

• no tissue dissociation requirements • hybridization-based approaches requires a priori knowledge of
genes of interest

(34–38)

• allows determination of Banff criteria on same tissue
slice as transcriptomic data

• RNA from FFPE tissue may be chemically modified or degraded

• can be performed using FFPE tissue

• hybridization-based approaches allow for single cell
resolution

• can incorporate TCR/BCR profiling

• combination with CODEX or Imaging Mass Cytometry
allows for protein expression in tandem
October 2021 | Volume 12 |
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AMR related transcripts, suggesting that microarray transcripts
seen in rejection are likely to come from TCMR related genes.
Therefore, when analyzing rejection as a whole, TCMR related
transcripts may be overrepresented. However, it is still unclear
proportionally how much this gene expression contributes to the
overall transcriptomic profile (14, 49, 50).

The widespread use of microarray techniques in transplant
had led to the development of the Molecular Microscope™ to
describe transplant rejection. Through comparison of transcripts
from rejecting allografts versus non-rejecting organs, acute
rejection-associated transcripts (ARTs) have been identified
(51). This data has identified genes whose expression correlates
with rejection, which helps infer the cell populations involved.
Identification of ARTs also help distinguish between transcripts
that are truly involved in rejection and those that are increased
due to organ or vascular injury, which can occur without
rejection. This has enabled the identification of universal
rejection transcripts, which are largely comprised of interferon
gamma (IFNg)-inducible genes (52, 53). Importantly, ARTs have
been shown to be conserved between kidney and heart allograft
transplant rejection (44, 54), suggesting that ARTs may broadly
represent common mechanisms for solid organ allograft
rejection. Furthermore, almost all ARTs described are also
found in the universal rejection transcripts (53), confirming
the role of these IFNg-inducible genes in acute transplant
rejection. In addition to the identification of ARTs, integration
of transcriptional data from different organ rejections have also
enabled the identification of a common rejection module (CRM),
comprised of chemokines that control immune cell trafficking
(55). In this study, CRM expression was shown to correlate not
only with serum creatinine levels from rejecting kidneys, but also
the extent of allograft injury in acute rejection. By combining
multiple datasets to identify ARTs and CRMs, microarray
technology can be used in combination with histological Banff
grading of rejection to create a more sensitive and specific way to
monitor allograft acceptance and rejection.

In addition to furthering the understanding of transplant
rejection, microarrays also have the potential to be an important
clinical monitoring tool for transplant patients by providing a
large amount of data with a relatively fast turnaround time (56,
57). These studies suggest that microarray analyses provide
useful information regarding increased expression of genes in
transplant rejection. A key component in these studies is the
choice of the control sample for evaluating studies of transplant
rejection genomics. Initial studies using microarray techniques in
kidney transplant rejection compared the transcriptomic profiles
of rejectors versus non-rejectors, but these non-rejector controls
were from un-transplanted nephrectomies or kidneys with
carcinomas (51, 58). Since the control samples are taken from
un-transplanted kidneys, the gene expression readout could be
drastically skewed, as the kidney was never placed in an
allogeneic recipient. Indeed, this approach does not take into
consideration genetic signatures of injury from the transplant
surgery (e.g., ischemia/reperfusion, etc.) or the presence of
recipient immune cells in the biopsy. This issue was addressed
in subsequent studies that focused on using biopsies taken from
Frontiers in Immunology | www.frontiersin.org 4
patients that underwent a transplant but no rejection as controls
(44, 45, 59, 60), which focused differences observed to rejection
rather than transplantation-related factors.

However, there are still substantial limitations with the use of
microarrays (Table 1). With Affymetrix technology, the whole
genome can be interrogated, but NanoString offers a cost-
effective way to interrogate genes of interest. In contrast to
microarray techniques, NanoString does not require cDNA
synthesis and amplification, as it directly assesses mRNA
through hybridization thereby avoiding potential amplification
bias (17). However, this limits discovery as genes investigated are
pre-determined by the investigator. Further, due to the aggregate
nature of the analyses, it is not possible to determine which cells
particular transcripts came from, limiting the ability to
determine cellular drivers and mechanistic cell-cell interactions
and intracellular pathways of rejection. For example, due to
shared similarities in inflammatory genes between TCMR and
AMR, microarray analyses reveal an inability to reliably
distinguish between these two drivers of rejection (61, 62).
Furthermore, both ACR and AMR can coexist as MAR in
biopsy samples (63). Additionally, despite the identification of
ARTs, many signals associated with rejection were also
associated with injury-induced biopsies without rejection (62).
Therefore, these results outline a need for additional approaches
that allow unbiased transcript analysis and linkage of transcripts
to their cellular source.
BULK RNA SEQUENCING

One method that would help overcome the limitation of
supervised analyses of gene sets with microarrays is the use of
bulk RNA sequencing (bulkSeq). BulkSeq involves generation
of a cDNA library from a mixed sample of cells or whole tissue,
and high-throughput sequencing. Typically, cells or tissues are
first stored in an RNA-stabilizing solution to protect the RNA
integrity before RNA isolation. However, more recent
technological developments have enabled RNA isolation from
formalin-fixed, paraffin-embedded (FFPE) histological tissue
blocks (18). This has enabled the ability to perform RNA
analyses using the aforementioned microarray techniques or
bulkSeq. Despite this advancement, which opens the door for
in-depth, retrospective analyses of preserved samples, formalin
fixation of the tissue may lead to inferior RNA quality (64, 65),
producing artificial associations and overrepresentation of
histone transcripts (66).

In contrast to microarrays, bulkSeq does not require
transcript-specific probes, allowing for a more quantitative
analysis that does not rely on hybridization. Moreover, bulkSeq
quantifies all transcripts in a given tissue or cell population,
which has the advantage of identifying potentially novel
transcripts that may not have been thought to contribute to
disease (67). This results in a more unbiased approach to
understanding the gene expression of a sample. Due to these
benefits over microarray techniques, there has been a movement
toward these types of high-throughput sequencing approaches.
October 2021 | Volume 12 | Article 750754
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Initial studies directly compared microarray technology to
bulkSeq technology to determine the sensitivity and specificity
of the two different methods. These studies showed comparable
similarities between bulkSeq and microarray analyses (19) and
also revealed a strong correlation in the data obtained using both
techniques in peripheral blood and tissue compartments (68).
These comparison studies confirm that bulkSeq techniques are
able to capture data comparable to those obtained from
microarrays while also overcoming the limitations set by
microarrays. Two independent studies found that bulkSeq allows
for more sensitive and specific detection of transcripts, which
provides for a more quantitative analysis of differential gene
expression and also detection of genes with lower expression
levels (69, 70). Indeed, with microarrays, lowly expressed genes
may be masked by the background interference, while highly
expressed genes may not be fully quantitative due to probe
hybridization saturation (71, 72). BulkSeq techniques overcome
these limitations through better detection of lowly expressed
transcripts (73) and the depth of sequencing allows for a
broader range of quantitation of gene expression.

BulkSeq approaches have been instrumental in better
characterizing the gene expression profiles associated with
organ rejection (74, 75) by incorporating the ability to identify
donor versus recipient transcripts based on single nucleotide
polymorphisms (SNPs) (76) – something that cannot be detected
using microarrays. It is important to note that SNPs can also
affect microarray performance, as a majority of studies have been
performed in people of a white, European background. Using
bulkSeq, one group found that the ratio of heterozygous to
homozygous variants from a non-reference genome and
mRNA expression can be used to estimate and identify cellular
infiltration (76), which strongly correlates with rejection. These
data showed the capability of bulkSeq to identify variants that
help further classify allograft infiltration. Identification of SNPs
is a hallmark feature of bulkSeq that microarray technologies are
incapable of, providing greater insight into the genetic interplay
involved in rejection.

In addition to identifying nucleotide variants that may play a
role in rejection, bulkSeq techniques have also enabled
identification of new targets and determination of cellular
response to potential immunosuppressive therapies. One study
used bulkSeq to identify the effects of various anti-CD3 antibodies
on the transcriptomes of T cells in vitro, showing changes in genes
associated with cellular proliferation, DNA metabolic processes,
and cytokine secretion after treatment (77). Deeper analyses
revealed differentially expressed genes and immune-associated
pathways between the different antibody therapies, indicating
how bulkSeq can be used to assess the effects of similar
immunosuppressive therapies on cell populations. This
can provide potential indications of optimal therapies for
individual patients. Thus, the use of bulkSeq has enabled an
unbiased assessment of gene expression changes occurring after
immunosuppressive therapy, identifying critical pathways targeted
as well as off-target effects. This can drastically improve the current
understanding of how anti-rejection medication affects the cellular
mechanisms responsible for rejection.
Frontiers in Immunology | www.frontiersin.org 5
In addition to whole transcriptomic sequencing, bulkSeq
techniques have also been applied to determine the B lymphocyte
or T lymphocyte repertoire. T cells recognize peptides in the context
of human leukocyte antigens (HLA), whereas B cells recognize
native protein structures. Each T cell receptor (TCR) has two chains,
an alpha chain and a beta chain, and each B cell receptor (BCR) also
has two chains, a heavy chain and a light chain. To get the true
identity of an individual clone, both chains of a TCR or BCR must
be sequenced, since an individual beta or heavy chain can pair with
more than one alpha or light chain. Additionally, sequencing only
one of the chains of a TCR or BCR will only enable identification of
the number of transcripts and only gives an estimation on the
frequency of individual clones. Initial attempts at BCR repertoire
identification, termed Ig-seq, included bulk DNA or RNA
sequencing of the immunoglobulin heavy chain and light chain,
but cellular clonal frequencies were difficult to determine with these
bulk approaches (20). Further, the heavy and light chain pairings
were lost using this approach, limiting the ability to identify true
clonality. Nevertheless, the Ig-seq approach has been adapted to
characterize the B cell repertoire in transplantation. BCR
Sequencing (BCRseq) has been used to characterize the B cell
repertoire in kidney (78) and heart (79) transplant, which has
enabled identification of common “ancestor” molecules of B cell
clones. Despite only immunoglobulin heavy chain sequencing, these
studies provided preliminary insight into clonal expansion in
transplantation and its relationship to clones identified. Similarly,
high throughput sequencing of the TCR beta chain (80) has been
done to identify the T cell repertoire in combined kidney and bone
marrow transplantation (81) and liver transplantation (82).
However, due to the transcripts coming from a mixed population
of cells obtained from bulkSeq and only single chain sequencing,
specific T cell receptor (TCR) or B cell receptor (BCR) clones that
are responsible for TCMR or AMR cannot be identified. Therefore,
true assessment of individual clonal expansion and deletion cannot
be assessed with these methods.

Despite the benefits of bulkSeq, it shares a limitation with
microarray technology: the ability to determine gene expression
on the individual cell level (Table 1). This limitation prevents the
ability to determine the quality and quantity of immune (and non-
immune) cells within the rejecting allograft. Additional challenges of
bulkSeq include shorter read mapping, leading to limited analysis of
the transcriptomes of more complex samples (71). Investigating the
cell-specific gene expression is crucial to understanding the
mechanisms of rejection and providing insight into potential
pathways to be targeted to mitigate rejection episodes.
Furthermore, the cells driving rejection are very small in number,
and may be drowned out in bulkSeq approaches. Therefore, the
movement toward single-cell RNA sequencing has opened a new
era in the field of transplant genomics.
SINGLE CELL RNA SEQUENCING

While bulkSeq and microarray approaches can identify gene
expression within whole tissues, single cell RNA sequencing
(scRNAseq) approaches give unprecedented clarity to gene
October 2021 | Volume 12 | Article 750754
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expression patterns in tissues. With scRNAseq, tissue preservation
plays an integral role in the ability to isolate quality RNA from the
tissue. For biopsy samples, we and others have shown that the
tissue can be either processed fresh or preserved in a solution,
typically a DMSO-based medium, that allows for the sample to be
frozen down in an insulated container with an isopropanol
chamber to facilitate slow freezing (21, 83). This approach
allows the sample to then be thawed and processed at a later
time which is advantageous for multi-site clinical trials.
Preliminary experiments to perform scRNAseq using RNA
extracted from FFPE tissue have also been attempted (84), but
given the challenges of using FFPE tissue in microarray and
bulkSeq analyses, further optimization is necessary.

In contrast to bulkSeq and microarrays, scRNAseq presently
requires generation of a single-cell suspension from the sample
in question. This presents a large challenge to analyze allograft
tissue, as tissue dissociation protocols typically require digestion
with enzymes that are active at 37˚C, resulting in potential heat-
induced artifacts. Recently, a novel, cold-active protease
digestion protocol (22) has been developed to mitigate these
effects, and has allowed the generation of high-quality scRNAseq
data. Following tissue dissociation, either plate-based (23)
limiting dilution or microfluidics (85) approaches are used for
droplet formation following generation of a single-cell
suspension. In each droplet, a cell is associated with oligoDTs
to capture RNA from the individual cells, along with bar codes
unique to each droplet. After cellular lysis and labeling of
transcripts with unique molecular identifiers (UMIs), the
captured RNA is reverse transcribed and amplified, generating
cDNA libraries with each cell possessing its own unique UMI.
Then, the cDNA can be amplified and sequenced. In contrast,
methods that do not require droplet formation or UMIs can also
be performed. For example, fluorescence-activated cell sorting
(FACS) can also be utilized to sort cells into individual wells of a
96- or 384-well plate, with PCR and barcoding occurring in the
individual wells of the plate (80, 86). Following sequencing, the
data can be analyzed and visualized using several bioinformatic-
based software programs.

Multiple droplet-based microfluidics approaches have been
used, including DropSeq (87) and InDrops (88, 89). These
techniques involve capturing individual cells and labeling their
mRNA with a unique barcode following cell lysis to track the
cellular origin of transcripts. DropSeq involves creation of a
droplet that consists of the cell and barcoded microparticle
beads, while InDrops uses a hydrogel droplet consisting of
barcoded primers that combine with cells in droplets. Both
of these techniques enable the parallel analysis of thousands of
genes in thousands of individual cells from a heterogeneous
population. However, an advantage of InDrops over DropSeq is
that InDrops is able to barcode a much higher fraction of cells
that are run through the system (89). Notably, both DropSeq and
InDrops can be done in the laboratory using widely available
equipment, making these a more affordable approach to single
cell transcriptomics, relative to the newer, more streamlined
approaches. Fluidigm C1 single cell mRNA sequencing
technology utilized techniques learned from DropSeq and
Frontiers in Immunology | www.frontiersin.org 6
InDrops while also allowing for TCR determination via
TraCeR analysis pipeline following full-length mRNA
sequencing (90). 10X Genomics (24) offers a similar approach
to Fluidigm C1 and also offers TCR and BCR sequencing using
their 5-prime V(D)J kit. However, there has been a movement
toward 10X Genomics’ pipeline due to their platform’s ability to
assess thousands of cells, versus only hundreds of cells using
Fluidigm-based techniques.

The ability to analyze the transcriptomic profile of single cells
has already proved to be groundbreaking in the characterization
of tissues in other disease processes. scRNAseq of tumors has
uncovered a multitude of specific cell populations in serous
epithelial ovarian cancer (91), with unique cell populations
present depending on the grade of the tumor and whether or
not the tumor was metastatic. Similar experiments were
conducted to identify gene expression signatures of tumor
epithelial and endothelial cells in breast cancer (92),
glioblastoma (93), renal carcinomas (94) and head and neck
cancer (95). Furthermore, scRNAseq has also been leveraged to
describe the tumor-infiltrating myeloid populations across
different tumor types (96). By identifying the similarities and
differences between common cancer types, this approach has
increased our fundamental understanding of the role played by
myeloid cells in tumor progression. In addition to furthering the
understanding of tumor biology, scRNAseq techniques have
been implemented to better understand chronic, progressive
diseases such as lupus nephritis (21) or focal segmental
glomerulonephritis (FSGS) (97). Similar to the studies done
with tumors, these studies identified a multitude of immune
cell populations, and were even able to capture intermediate
states of activation (21). Furthermore, identification of novel cell-
type specific transcripts (97) has greatly contributed to the single
cell atlas of organs. Due to the successes in other fields, there is
great potential for the use of scRNAseq for breakthroughs in
solid organ transplantation.

Preliminary studies using scRNAseq to understand organ
rejection have already provided valuable insight into the
pathology, including the use of this technique to understand
the lymphocytic infiltration involved in AMR after renal
transplantation (98, 99). Further, the use of scRNAseq to map
out the transcriptomic profile of pulmonary fibrosis of lung
explants prior to transplantation (100) proved to be a valuable
first step to providing comparators for future studies involving
the fibrosis of chronic lung rejection. scRNAseq analysis of lung
transplantation has revealed the presence donor-derived T cells
with a tissue-resident memory phenotype in the bronchoalveolar
lavage fluid of non-rejecting patients, which suggests that donor
T cells are present in the lung allograft even in the absence of
rejection (101). Further, the authors found that slower
replacement these donor T cells by recipient T cells correlated
with a lower incidence of rejection. Importantly, this study did
not find persistence of donor-derived memory T cells in the
peripheral blood, indicating resident memory T cell turnover.
Altogether, these conclusions suggest that the balance between
donor and recipient T cells is important for allograft tolerance.
Another study also looked at the role of donor-derived T cells,
October 2021 | Volume 12 | Article 750754
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but in the context of intestinal transplantation. Here, the authors
assessed how donor-derived tissue resident T cells can help
achieve allograft tolerance by destruction of recipient
hematopoietic cells (102). Since tissues such as the lung and
intestine may have more resident memory T cells, graft-versus-
host (GvH) disease is more commonly seen following lung and
intestinal transplantation as compared to other solid organ
transplantation. However, this study utilizes scRNAseq
techniques, combined with TCR sequencing, to show that GvH
may not necessarily be a negative complication. Intriguingly, the
authors showed that graft-derived GvH-reactive donor T cells
migrate into recipient circulation and bone marrow, promoting
engraftment of graft-derived stem cells to maintain mixed
chimerism and promote immune tolerance. These two studies
indicate there is great potential in understanding donor-derived
T cells, as they may play an integral role in allograft tolerance.

In AMR and TCMR, B cells and T cells play a crucial role in
the rejection process, so sequencing the B cell receptor (BCR) or
T cell receptor (TCR) in the context of scRNAseq studies would
provide information about the clonality and the paired chain
CDR3 sequences that determine receptor specificity, potentially
leading to the identification of targets that are recognized.
Notably, targets in TCMR remain poorly characterized and
poorly understood. For decades, alloreactive T cells driving
direct ACR have been viewed as either responding primarily to
unique determinants on allo-HLA (HLA-centric responses), or
to a plethora of non-self peptides presented by allo-HLA
(peptide-centric). Recent data however has suggested that
many alloreactive T cells are allospecific, responding to
unique peptide-HLA complexes present on the surface of
allografts and displaying similar levels of specificity towards
their targets as do conventional T cells (103). Therefore,
alloreactive T cells may be reactive toward allo-peptides and
viral peptides, while allospecificity refers to reactivity only
toward allo-peptides. Indeed, structural and biochemical
studies have shown that the binding of alloreactive TCRs can
be dependent upon unique features of both the allo-peptide and
the allo-HLA, mimicking how TCRs recognize pathogen-
derived peptides presented by self-HLA (104). While there is
increasing clarity around the functional, biochemical, and
structural basis of TCR recognition of allo-peptide/HLA in
general, the lack of knowledge regarding the specificities of
alloreactive T cells is a major reason for our limited biologic
insights into TCMR.

Importantly, the ability to determine CDR3 sequences from T
cell clones driving TMCR may facilitate identification of allo-
peptides with the assistance of novel informatics or screening
tools, such as GLIPH (25) or combinatorial peptide libraries.
GLIPH uses an algorithm to identify shared motifs within CDR3
sequences, which helps to organize these sequences and cluster
TCRs based on CDR3 similarity (25). This could eventually
enable the prediction of TCR binding to MHC-restricted peptide.
Further, screening with combinatorial peptide libraries could
enable the identification of the peptide antigen that a particular
TCR recognizes. A major breakthrough in T cell biology was the
identification of T cell epitopes, enabling MHC tetramers. MHC
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tetramers are complexes of four identical MHC-peptide pairs
bound to a fluorochrome, enabling the binding of 3-4 TCRs at
once, allowing increased avidity and staining intensity (105).
This development has allowed for the tracking and analysis of T
cells from activation to memory development in infection (106,
107), cancer (108), and autoimmunity (109–111). Identification
of allo-peptides may facilitate similarly groundbreaking studies
of T cells driving direct ACR.

Utilization of scRNAseq not only enables the transcriptomic
description of these cells responsible for rejection, but also
provides the opportunity to study the allospecificity and track T
and B cell clonal dynamics. Studies of cardiac cellular rejection
have shown that graft infiltrating T cells overlapped with those
found in the peripheral blood, but interestingly, there was
minimal overlap of the B cells between the two compartments
(112). The authors used this data to suggest that there is B cell
clonal expansion in the allograft, which could occur as part of a
well-known phenomenon of germinal center-like structures
present in chronically rejecting allografts (113, 114).
However, it is unclear if these GC-like structures are
sufficient to promote class-switch recombination or somatic
hypermutation. Other studies have also begun to identify and
track alloreactive TCRs in intestinal transplantation by using
recipient blood responding to donor-derived lymphocytes in a
mixed lymphocyte reaction (MLR) (115). Dividing donor-
reactive cell proliferation can be tracked with fluorescent dyes
and proliferated cells can then be sequenced and “fingerprint”
donor-reactive TCRs.

In addition to using the sequences to identify potential
alloreactive, graft-infiltrating T cells, sequencing of TCRs can
also help identify virus-specific T cells and their associated
HLA alleles (116). Differentiating allo- versus virus-specific
T cells will help distinguish between clonally expanded intragraft
T cell populations and enable the characterization of the
transcriptomic profile of truly alloreactive clones. Also
complicating the interpretation of specificity is the fact that
many alloreactive T cells can also have viral-specificity due to
TCR degeneracy (117, 118). However, a limitation of these studies
is that they only have the TCR beta chain and B cell
immunoglobulin heavy chain sequenced, limiting the ability to
truly track clonality, and in the case of T cells, limits antigen
discovery and determination of true alloreactivity. To help with
this, one group has developed and used VDJPuzzle to reconstruct
the TCR alpha and beta chain from scRNAseq data to help
identify hepatitis C-specific T cells (119). The challenge of using
such an approach in transplantation and identifying alloreactive T
cells is that the antigens and epitopes are still unknown.
Determination of proper TCR alpha and beta chain pairs
enables the determination of target peptides, either allo- or viral-
reactive (or both), as discussed above. Indeed, methods, including
those developed by 10X Genomics (26) and BD Biosciences (27),
allow for the identification of single cell, paired TCR or BCR
sequencing, generating data on true clonality. Thus, TCR and BCR
sequencing in conjunction with scRNAseq will provide invaluable
insight into the clonal immune response in organ rejection and
gives a potential pathway toward alloantigen identification.
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Additional Approaches Coupled
to scRNAseq
While scRNAseq can determine the transcriptional landscape of
individual cells, it does not provide information regarding the
epigenetic background of those cells. Recent developments have
enabled a single-cell assay for transposase accessible chromatin
(scATACseq) (28), which identifies regions of open chromatin
by virtue of transposase insertion at such regions. Thus,
combining scRNAseq with scATACseq is a very powerful
approach to understanding potential gene regulatory networks
(GRNs) as well as cell lineage analysis (120–123). In addition to
performing scATACseq, bioinformatic approaches also are
instrumental in identifying GRNs. Techniques such as SCENIC
(124) have been developed to map out GRNs, which can be used
to determine cellular states and cluster cells based on regulatory
subnetwork activity. This computational approach can also be
used to reconstruct the cellular differentiation trajectory. In solid
organ transplant rejection, this epigenetic and genetic data could
help identify the gene regulatory networks utilized by alloreactive
T cells that enable their developmental trajectory, proliferative
expansion, and functional differentiation. Deeper mechanistic
understanding to these GRNs will undoubtedly lead to novel
therapeutic targets to mitigate allograft rejection.

Despite the powerful information that can be obtained from
mRNA, gene expression analyses do not necessarily translate
into protein expression. Integrating scRNAseq data with mass
cytometry or cytometry by time of flight (cyTOF) allows for
simultaneous analysis of mRNA and protein (29, 30). Additional
techniques, including cellular indexing of transcriptomes and
epitopes by sequencing (CITEseq) (31) and RNA expression and
protein sequencing (REAPseq) (32) also allow for a combined
measurement of mRNA and protein expression of cells. Index
sorting also helps link protein and gene expression from single
cells together by first using fluorescently labeled antibodies to
sort cells into wells of a plate before RNA sequencing each well
(33). However, limitations of index sorting include not only the
flow rate of the sorter, but also the number of cells assayed, which
is limited by the number of wells in the plate. This leads to a
much lower throughput from index sorting as compared to other
methods (Table 1). Nevertheless, these approaches in measuring
both mRNA and protein expression on the same cells validate
findings obtained and facilitate the understanding of pathways
and proteins of interest. Thus, the ability to combine genomic
and protein expression analyses in conjunction with scRNAseq
make it a highly beneficial tool in understanding the cellular
landscape during organ rejection.

Since the transcriptomic profile of cells in the allograft are
minimally understood after immunosuppressive therapies,
scRNAseq techniques can be leveraged to understand changes in
the cellular composition of the allograft after various treatments.
With sequential allograft biopsies, scRNAseq can help delineate
not only the transcriptomic profiles of cells in refractory rejection,
but also how these cell interactions change after various anti-
rejection therapies. This allows for the interrogation and
hypothesis generation of alternative pathways that could be
responsible for immunosuppressive escape and persistent
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rejection, and potentially identify new therapeutic targets. The
development of multiple computational software analysis programs
provides the opportunity to dive even deeper into cells and
pathways essential in immunosuppressive escape and persistent
allograft rejection. By generating data on the gene expression of
individual cells, receptor-ligand pairs can help determine cellular
interactions. Software programs such as CellChat (125) aid in
understanding intercellular communications by using pattern
recognition approaches to predict signal coordination. Another
program, RNA Velocity (126), uses an estimated time derivative
to predict the future of individual cells on a timeline. In a mouse
model of kidney transplant, this technique was used to follow the
path of differentiation of intragraft myeloid and helped to identify a
gene, Axl, that they showed plays a role in intragraft myeloid and T
cell differentiation (127). Programs such as RNA Velocity can be
leveraged to not only understand the lineage tree of cells of interest
in a rejecting allograft, but also possibly predict response to therapy
through determination of the future gene expression of these cells.

Despite all the benefits scRNAseq could provide in the field of
transplantation, caveats of this technique have made mass
analysis of allograft acceptance and rejection difficult.
Depending on the approach used, only relatively few numbers
of cells can be assessed. Further, even though receptor-ligand
pair interactions can help infer cell to cell communication, these
interactions cannot be confirmed due to lack of spatial context.
In addition to the aforementioned challenge with tissue
dissociation techniques and enzyme activity temperatures,
taking cells, especially endothelial cells, out of their native
context leads to rapid death and dissemination of cellular
mRNA, leading to potential contamination and increased
number of mitochondrial reads. Due to the challenge of
analyzing cellular interactions and using techniques that
involve tissue dissociation, there has been a large interest in
utilizing scRNAseq techniques in a spatially resolved manner,
leading to the development of spatial transcriptomics.
SPATIAL TRANSCRIPTOMICS

While scRNAseq gives tremendous data on individual cells, it
lacks histologic contextual information. The next iteration of
transcriptomic analysis is that of spatial transcriptomics (ST),
which analyzes transcriptomic data on histological tissue
sections. A substantial advantage of this ST approach is that
the locations of cells of interest can be determined, and cellular
interactions can be interrogated in their native context. This
provides an advantage over scRNAseq, as the requirement for
tissue dissociation into a single cell suspension in scRNAseq
limits understanding of cellular communications (Table 1).

A vast majority of techniques used for spatial transcriptomics
involve hybridization-based assays. Methods using probe
hybridization utilize techniques developed for in situ
hybridization but include capture of a substantial number of
probes instead of one. Several spatial platforms have been
developed, including seqFISH (34, 128), smFISH (129, 130), and
MERFISH (35, 131). seqFISH utilizes multiple rounds of barcoding
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hybridization using probes with a fluorescence marker attached.
After each round of hybridization, the tissue is imaged, and the
probes are washed off. By using consecutive rounds of hybridization
and washing, a greater number of transcripts can be investigated.
Unique transcripts can be identified by using a combination of
signals from each round of barcoding. However, due to multiple
rounds of hybridization of washing, this technique is time
consuming. Additionally, selection of the probes for hybridization
requires a priori knowledge of the genes of interest. smFISH and
MERFISH use similar techniques, where smFISH uses spectrally
resolved probes and MERFISH uses error-corrected barcodes. By
using error-corrected barcodes, MERFISH aims to reduce the
amount of false positive or false negative barcodes that can be
generated through multiple labeling rounds, giving a crisper picture
of the transcriptomic profile of the tissue. Another advantage of
MERFISH is that due to its single cell resolution, it enables the
incorporation of TCR and BCR profiling, which allows for the
determination of the relative location of expanded clones. Similar to
scRNAseq, this gives clues to cellular clonality and potential
specificity. However, one major concern of these techniques is
spectral overlapping through density saturation. seqFISH+ (34)
overcomes this density concern, and data obtained from
seqFISH+ has been shown to cluster similarly to scRNAseq data
on the same samples.

Another technique is NanoString’s GeoMx Digital Spatial
Profiler (36, 37), which uses oligo-labeled antibodies or probes
with a UV photocleavable linker. A unique aspect of this system is
that the machine includes an autoconfiguring mirror that allows for
separation of specific components of the tissue, such as separating
the immune cells from tissue epithelial cells. This allows for in-
depth analyses of individual components of the tissue, providing a
clearer tissue image and transcriptomic outline. However, this
technique shares a similar limitation as those mentioned above –
there is a lack of transcriptome-wide analysis due to the need of
prior knowledge of the probes or antibodies of interest. 10X
Genomics ’ Visium overcomes this issue by using a
transcriptomic-wide approach to interrogate tissue sections. To do
this, Visium requires tissue sections placed on special microscope
slides that have barcoded reverse transcriptase primers, allowing for
the mRNA of the tissue to hybridize once permeabilized. These
primers also enable the identification of the location of the
transcripts once the cDNA is extracted for library preparation
and sequencing. Currently, the barcoded regions do not allow
spatial resolution down to a single cell level (currently 5-10 cells),
which limits the understanding of regulatory networks and cellular
interactions. However, there are plans to achieve a single cell
resolution in the near future, making this a valuable approach for
unbiased, whole cell transcriptomic analysis in a spatially resolved
manner. Furthermore, both the technologies from Nanostring and
10X have been developed to accommodate both fresh and preserved
tissues. The ability to use ST techniques on FFPE tissue is a huge
breakthrough in using this technique as it enables the analysis of
banked tissue, especially since FFPE tissue is how Banff scores are
primarily obtained. However, a challenge of using banked FFPE
tissue is the potential for RNA to be chemically modified and
degrade over time, reducing the sensitivity of this approach.
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In additional to probe-based approaches for spatially resolved
transcriptomics of mRNA expression, other techniques allow for the
analysis of protein expression on histological tissue sections. These
techniques include multiplexed spatial protein analytical methods
such as co-detection by indexing (CODEX®) technology or mass
cytometry imaging. Both these techniques utilize conjugated
antibodies to tag the histological tissue section prior to imaging.
Similar to the probe-based approaches discussed, CODEX®

leverages repeated fluorochrome conjugation and removal to
increase the number of markers that can be assessed (38).
Additionally, similar to CITEseq, CODEX® enables in-depth
analysis of clustering based on particular antibodies of interest. In
contrast, Fluidigm’s Imaging Mass Cytometry™ parallels CyTOF
by using metal ion-tagged antibodies instead offluorochromes. This
mitigates concerns of antibody staining order or serial staining and
marker removal (132). Although it is currently not possible to
perform RNA probe-based and protein-based techniques on the
same tissue section simultaneously, performing these techniques on
separate tissue sections from the same histological block could
provide invaluable information on mRNA and protein expression.

Due to their novelty, there has been little use of ST to investigate
solid organ transplant rejection, but given the preliminary use of
these techniques in other fields such as cancer research (133–135)
and developmental biology (136), ST will be an invaluable tool in
the analysis of organ rejection, providing understanding of not only
the transcriptomic profile of rejection, but also overlaying that on
the histologic of the rejecting allograft. Additionally, because ST
techniques also allow for either hematoxylin and eosin (H&E) or
immunofluorescence staining prior to tissue permeabilization,
determination of Banff criteria on the same biopsy core and
tissue slice as the transcriptomic analysis are possible. This would
ensure the transcriptomic data match the pathology report. Thus,
integration of spatial transcriptomic approaches to understand
allograft rejection will be revolutionary.
CONCLUSIONS

Technologies used to understand solid organ allograft rejection have
come a long way in the past 15 years, from the use of microarrays to
understand genes relevant in TCMR and AMR to new avenues to
interrogate rejection with single cell resolution (e.g., scRNAseq,
scATACseq, spatially resolved transcriptomics). The success of
microarray technology, as seen with the molecular microscope
diagnostic technique, has paved the path for newer technologies to
potentially make a similar transition from bench to bedside.
However, current techniques of scRNAseq or spatial
transcriptomics are not streamlined enough for clinical diagnostics.
Nevertheless, with the speed of advancing new technologies, it is
possible these techniques will be standard in the near future. In
addition to theaforementioned techniques that allow interrogationof
the transcriptome of rejecting allografts, donor-derived cell-free
DNA (ddcfDNA) has also shown potential to be a valuable tool in
the clinical analysis of transplant rejection. The ability for ddcfDNA
to measure allograft damage directly and quantifiably, coupled with
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the non-invasive nature of the peripheral blood draw used to obtain
the sample, makes the use ddcfDNA in transplantation an attractive
alternative to biopsies. Even though peripheral blood sampling may
not properly recapitulate cellular mechanisms of rejection in the
allograft, the utility of assessing for biomarkers should not be
underestimated. However, sampling of the urine or BAL may be a
better non-invasive test for predicting allograft rejection in the kidney
or lung, respectively. Nevertheless, widespread implementation of
scRNAseq technology to understand allograft rejection and cellular
response to therapy will play an instrumental role in furthering the
understanding of solid organ transplantation, paving the way for
newer, targeted, and personalized therapeutics.
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