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Visual assessment of causality in 
the Poisson effect
Takahiro Kawabe   *

When a material is stretched along a spatial axis, it is causally compressed along the orthogonal 
axis, as quantified in the Poisson effect. The present study examined how human observers assess 
this causality. Stimuli were video clips of a white rectangular region that was horizontally stretched 
while it was vertically compressed, with spatially sinusoidal modulation of the magnitude of vertical 
compressions. It was found that the Poisson’s ratio—a well-defined index of the Poisson effect—was not 
an explanatory factor for the degree of reported causality. Instead, reported causality was explained 
by image features related to deformation magnitudes. Comparing a material’s shape before and after 
deformation was not always required for the causality assessment. This suggests that human observers 
determine causality in the Poisson effect by using heuristics based on image features not necessarily 
related to the physical properties of the material.

In everyday life, human observers easily discriminate such physical properties of a material as viscosity, elasticity, 
plasticity, and so forth. Previous studies have reported the visual information that contributed to discrimination 
of physical properties. For example, the assessment of liquid viscosity is clearly explained in terms of image 
motion characteristics1 and/or mid-level image features2,3. Human observers are also good at discriminating the 
stiffness of cloth such as silk and cotton. Recent studies4,5 showed that the observers adroitly used image motion 
characteristics to discriminate the cloth’s stiffness. The assessment of elasticity for jelly-like materials is likely 
made on the basis of image parameters such as motion and shape6–8. In this way, human observers make use of 
static and dynamic image characteristics to assess the physical properties of objects and materials in the world.

A next important step in the research in material perception is to investigate how well human observers 
understand the physical behavior of materials. For example, when an extension force is applied to an elastic 
material along a single spatial axis, the material is at the same time compressed along the orthogonal axis (Fig. 1). 
This physical phenomenon is called the Poisson effect. Usually, the magnitude of compression is smaller than the 
magnitude of extension. The size of the Poisson effect is described by Poisson’s ratio ν, which is derived from the 
following formula,

ν =
d h
d w

/
/ (1)
y

x

where w is the length of the material along its axis of extension, h is the length of the material along its compression 
axis, dx is the magnitude of extension and dy is the magnitude of compression. The value of ν occupies the range 
below 0.5, depending on the type of material. For example, the Poisson ratio of cork is 0.0, the ratio of metal is 0.3 
and the ratio of natural rubber is 0.5.

In our daily life, human observers do not feel the Poisson effect is an unusual phenomenon. For example, it is 
common to experience that when we stretch fabric horizontally, the fabric is vertically compressed. To date, how-
ever, it has remained unclear how human observers combined the horizontal extension and vertical compression 
in the Poisson effect to judge the apparent causality of such deformations.

There are two possible strategies used by human observers to assess causality in the deformation. One strategy 
would be to directly represent the Poisson effect by generating a representation of the physical properties of elastic 
materials. Previous studies have shown that human observers anticipated the future of physical events on the basis 
of internalized physics (i.e., naive physics9,10) or an internalized physics engine that is conceptually similar to the 
physics engines used in computer graphics11,12. Thus, there was a possibility that observers might internally rep-
resent Poisson’s ratio and use the ratio to assess the causality of deformation. Generally, the proportion of reports 
of no causality would increase with Poisson’s ratio. Critically, it was expected that if human observers judged the 
causality of deformation in terms of a critical value of Poisson’s ratio (i.e., threshold Poisson’s ratio), the thresh-
old Poisson’s ratio would be constant across initial widths of stimuli because Poisson’s ratio was determined as a 
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function of initial widths as well as compression magnitudes, as described in Formula 1, and human observers 
would have base their judgments of causality on the same formulation of the internally represented Poisson’s 
effect. I did not make a specific prediction about the relationship between specific values of Poisson’s ratio and the 
observers’ responses because at this stage it was unclear whether human observers actually internalized Poisson’s 
ratio.

The other strategy would be to take advantage of image features in assessing causality. Recent studies in mate-
rial perception suggest that the visual system uses heuristics based on mid-level visual features to infer mate-
rial properties13–15. In particular, as described above, some studies have already provided evidence that human 
observers use dynamic and static image features to assess the elasticity of materials4–8. Thus, in addition to mate-
rial perception, the causality judgment may also be based on the image features related to the extension and/or 
compression of materials. Here no assumption is made that the causality judgment of deformations should follow 
the perception of elastic materials. Instead, I assume that human observers assess the causality of deformations in 
the Poisson effect in parallel with the determination of material types. Because there are many types of materials 
that show the Poisson effect, it may not be a good strategy for human observers to determine the material type in 
advance of the casualty judgment of deformation.

In this study the focus was on the ratio of the area of deformed regions to the area of original regions of the 
material, as an index of deformation magnitude (Fig. 1b). It is known that image area is an important visual 
cue used to assess liquid viscosity from images2,3. The degree of material deformation in the stimulus clip was 
quantified by calculating the ratio of the deformed area to the area of the original, intact material. The area 
ratio increased with the magnitude of image deformation. It was expected that the reports of no causality would 
increase with the area ratio.

The purpose of Experiment 1 was to explore, without a strong hypothesis, whether Poisson’s ratio or the area 
ratio could account for the causality perception of the Poisson effect in a systematic way. In Experiment 2, the role 
of the area ratio in the determination of causality was directly assessed by manipulating stimulus durations that 
could affect the area ratio. Experiment 3 checked whether contour shape played a critical role in the assessment 
of causality. Overall, the results suggest that human observers use image features (that is, the area ratio which is 
related to deformation magnitudes) in order to determine causality of deformation in the Poisson effect.

Results and Discussion
Experiment 1.  The purpose of this experiment was to explore whether Poisson’s ratio and/or the area ratio 
were the determinant of causality perception for orthogonal deformations in the Poisson effect. Two parameters 
(Fig. 2a) were manipulated: one was the magnitude of vertical compression (dy in Formula 1), the other was the 
initial width of the material (w in Formula 1). As is clear from Formula 1, as dy and/or w increase, Poisson’s ratio ν 
increases. The variation of the perception of causality with ν was examined. In addition, the relationship between 
the perception of causality and image parameters related to deformation magnitudes was examined.

First the experimental data were analyzed in terms of the two psychophysical parameters: the magnitude of 
vertical compressions and initial width. Second, the relationship between the psychophysical results and Poisson’s 
ratio was evaluated. Third, the relationship between the area ratio as an index of a deformation magnitude was 
examined. The experiment was controlled by using PsychoPy v1.8316,17.

Figure 3a shows the mean proportion of trials wherein the observers reported ‘NO’ causal relationship 
between the horizontal extension and the vertical compression. First, using quickpsy18, a psychometric function 
was fitted to each individual’s data for each initial width condition, and the amplitude threshold required to 
cause a 50% rate of reporting “no causality” was calculated, as shown in Fig. 3b. Using a linear mix effects model, 
a one-way repeated measures ANOVA with the initial widths as a within-subject factor was calculated, which 
showed that the main effect of the initial widths was significant [F(2,20) = 31.78, p < 0.0001, r2 = 0.95]. Multiple 
comparisons after adjustment with the Holm’s method showed that the 4.06 deg condition was significantly dif-
ferent from the 8.12 deg condition (z = 5.11, p < 0.0001) and 12.08 deg condition (z = 7.85, p < 0.0001). The dif-
ference between the 8.12 deg and 12.08 deg conditions was also significant (z = 2.745, p = 0.0061).

emarfht03emarfht51emarfts1

Figure 1.  Snapshots of the video clip which simulates a horizontally stretched cloth by using Blender (https://
www.blender.org/). As the cloth is horizontally extended across video frames, vertical compression of the cloth 
occurs.
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Figure 3c shows how Poisson’s ratio varied with the stimulus manipulation of initial widths and the magnitude 
of vertical compressions. Poisson’s ratio increased with the initial width as well as the magnitude of vertical com-
pressions. The proportion of trials with no report of causality was plotted as a function of Poisson’s ratio in Fig. 3d. 
The results showed that the proportions did not consistently vary with Poisson’s ratio. In other words, the propor-
tions were strongly dependent on the initial widths. Psychometric functions were again fitted to the proportions 
as a function of the Poisson’s ratio and the threshold Poisson’s ratio was calculated for each initial width condition 
(Fig. 3e). Using a linear mixed effects model, a one-way repeated measures ANOVA was calculated, with the 
initial widths as a within-subject factor, which showed that the main effect of the initial widths was significant 
[F(2,20) = 173.61, p < 0.0001, r2 = 0.95]. Multiple comparison tests after adjustment with the Holm’s method 
showed that the 4.06 deg condition was significantly different from the 8.12 deg condition (z = 8.91, p < 0.0001) 
and 12.08 deg condition (z = 18.62, p < 0.0001). The difference between the 8.12 deg and 12.08 deg conditions was 
also significant (z = 9.72, p = 0.0061). If human observers used Poisson’s ratio to determine apparent causality in 
the Poisson effect, no difference should have been observed among the initial width conditions because it would 
be expected that the cognitive system calculated the Poisson’s ratio on the basis of the initial width and the magni-
tude of vertical compressions. Based on these observations, it can be concluded that the observers did not assess 
causality between extension and compression deformations on the basis of Poisson’s ratio.

It may be necessary to clarify the relationship between Poisson’s ratio and initial widths. As described in 
Formula 1, the calculation of Poisson’s ratio uses the following two parameters: compression amplitude and initial 
width. If the cognitive system internally calculated Poisson’s ratio, the calculation would have been based on these 
two parameters. Please note here that no interaction could be assumed between Poisson’s ratio and the initial 
width, because the Poisson ratio itself is dependent on the initial width. Hence, it was predicted that no difference 
should have been observed among the initial width conditions if human observers used an internalized Poisson’s 
ratio, whose calculation used initial widths as a parameter. However, the results of Experiment 1 (Fig. 3d) showed 
that even when the Poisson’s ratio was 0.5, which could occur in the natural world, the proportion of no causality 
reports was strongly dependent on the initial widths. Moreover, the threshold Poisson ratio was statistically dif-
ferent among the initial width conditions. Taken together, the conclusion was that human observers do not use 
Poisson’s ratio to evaluate the causality of the perceived deformation.

Next, based on previous studies showing that image features do predict the perception of material proper-
ties13–15, the question became whether the area ratio was used to assess causality in the Poisson effect. Figure 3f 
shows how the area ratio varied with the magnitude of vertical compressions and the initial width of materials. 
Comparing Fig. 3a,f, the reader will notice that the pattern of variation was similar between the proportion of 
trials with no report of causality and the area ratio. Figure 3g shows a plot of the proportion of trials with no 
reported causality as a function of the area ratio, and shows that the proportion systematically varied with the area 
ratio. Importantly, the pattern of variations was similar among the three initial width conditions. The result of 
again fitting psychometric functions to the proportions as a function of the area ratio and calculating the thresh-
old area ratio is shown in Fig. 3h. Using a linear mixed effects model and conducting a one-way repeated meas-
ures ANOVA with the initial widths as a within-subject factor showed that the main effect of the initial widths was 
significant [F(2,20) = 0.755, p = 0.48, r2 = 0.94]. The results indicate that irrespective of the initial width, human 
observers use similar area ratio magnitudes to assess causality in the Poisson effect.

Experiment 2.  The purpose of this experiment was to confirm whether the area ratio was a determinant of 
the assessment of causality of deformations in the Poisson effect. Even with keep both the maximum amplitude 
of vertical deformation and initial width of a material constant, the area ratio depends on the number of sequen-
tial video frames (Fig. 4a). That is, as the number of sequential video frames increases, the area ratio linearly 
increases. Importantly, Poisson’s ratio does not vary with the number of sequential video frames. If the assessment 
of causality of deformations in the Poisson effect was dependent on the area ratio, the proportions of trials with no 
assessment of causality would be dependent on the area ratio that was modulated by the number of the sequential 
video frame.

Figure 4b shows the proportion of trials with no report of causality, as a function of the number of sequential 
video frames contained in the stimulus clip. There was a clear tendency for the proportion to increase with the 
number of sequential video frames. In addition, the proportion decreased with the initial width of the mate-
rial, consistent with the results of Experiment 1. I conducted a two-way repeated measures ANOVA of the 

(a) (b)

Figure 2.  (a) Two snapshots of stimuli as used in Experiment 1. Left: the 1st video frame. Right: the 30th video 
frame. (b) The area which was used for the calculation of area ratio. The area ratio was calculated by dividing the 
blue area in the right panel by the green area in the left panel.
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proportion, with the number of video frames and initial widths as within-subject factors. The main effect of the 
number of video frames was significant [F(2,20) = 4.95, p = 0.0179, ηp

2 = 0.33]. Multiple comparison tests using 
a Bonferroni correction showed that the proportion in the 10-frame condition was not significantly different 

Figure 3.  (a) Proportions of trials with no report of causality as a function of the maximum amplitude of 
vertical compressions. Error bars denote standard error of the mean (N = 11). (b) Threshold amplitude to cause 
a 50% proportion of reporting “no causality” for each of the initial width conditions. (c) Variations in Poisson’s 
ratio as functions of the maximum amplitude of vertical compressions and the initial width of materials. (d) The 
proportion of trials with no causality reported as a function of Poisson’s ratio. (e) Threshold Poisson’s ratio to 
cause a 50% proportion of reporting “no causality” for each of the initial width conditions. (f) Variations of the 
area ratio as functions of the maximum amplitude of vertical compressions and the initial width of materials. 
(g) The proportion of trials with no report of causality as a function of the area ratio. (h) Threshold area ratio to 
cause a 50% proportion of reporting “no causality” for each of the initial width conditions.
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from the proportion in the 20-frame condition (p = 0.13), but was significantly different from the proportion in 
the 30-frame condition (p < 0.001). The proportion in the 20-frame condition was significantly different from 
that in the 30-frame condition (p < 0.0001). The main effect of the initial widths was significant [F(2,20) = 21.82, 
p < 0.0001, ηp

2 = 0.69]. Multiple comparison tests using a Bonferroni correction showed that the proportion in 
the 4.06 deg condition was significantly different from both the proportion in the 8.12 condition (p < 0.0001) and 
the proportion in the 12.18 deg condition (p < 0.0001). The proportion in the 8.12 condition was significantly 

Figure 4.  (a) Area ratio plotted as a function of the number of sequential video frames contained in the 
stimulus clip as used in Experiment 2. (b) Proportion of trials with no report of causality as a function of the 
number of sequential video frames contained in the stimulus clip. Error bars denote ± 1 standard errors of 
the mean (N = 11). (c) Correlation plots between the area ratio and the proportion of trials with no report of 
causality. (d) Correlation plots between Poisson’s ratio and the proportion of trials with no report of causality.
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different from the proportion in the 12.18 deg condition (p = 0.031). Interaction between the two factors was 
also significant [F(4,40) = 11.92, p < 0.0001, ηp

2 = 0.54]. The value of r2 was also calculated for a linear fitting 
function between the proportion of trials with no report of causality and the area ratio (Fig. 4c); and between the 
proportion of trials with no report of causality and Poisson’s ratio (Fig. 4d). It was found that the proportion was 
correlated more strongly with the area ratio (r2 = 0.89) than with Poisson’s ratio (r2 = 0.49).

The results indicate that, consistent with Experiment 1, the proportion of trials with no reported causality 
depended on the area ratio, that is, on the ratio of the area of deformed regions to the area of original material 
regions (Fig. 4c). The results support the preliminary idea obtained in Experiment 1—that observers make use 
of image features related to the magnitude of deformation to assess the causality of deformations in the Poisson 
effect. Consistent with Experiment 1, Poisson’s ratio could not satisfactorily account for the proportion of tri-
als with no reported causality. The results suggest that human observers do not directly represent the physical 
characteristics of elastic materials, at least in order to calculate the causal relationship between extension and 
compression deformations in the Poisson effect.

Since the results of Experiment 1 clearly showed that human observers do not use Poisson’s ratio to judge the 
causality via the Poisson effect, the role of Poisson’s ratio on the apparent causality in the experimental design was 
not closely checked. Actually, the results of Experiment 2 showed that the proportion of “no causality” reports was 
negatively correlated with the Poisson’s ratio, when a positive correlation should have been observed if Poisson’s ratio 
was critical. The results again suggest that Poisson’s ratio is not an explanatory factor for the causality perception.

Still, it is necessary to discuss why negative correlation was observed between Poisson’s ratio and the propor-
tion of no causality reports. In the stimuli of Experiment 2, the initial width was a strong modulatory factor in 
Poisson’s ratio. Specifically, when the initial widths were 4.06, 8.12, and 12.18 deg, the Poisson’s ratio was approx-
imately 2.0, 4.0, and 6.0, respectively. Thus, there was a possibility that the proportions were negatively correlated 
with the initial widths, not in agreement with Poisson’s ratio. In Experiment 1, the larger initial widths caused the 
lower proportions of “no causality” reports, which was quite consistent with the results of the current experiment. 
Based on these results, it was concluded that the negative correlation between Poisson’s ratio and the proportion 
of “no causality” reports was a spurious correlation and that the actual correlation occurred between the initial 
widths and the proportion of “no causality” reports.

Experiment 3.  The purpose of this experiment was to check whether the assessment of causality by observers 
relies on the contour shape of the material in the final frame of the video clip. As shown in Figs 1, 2a, in the stimu-
lus clips used in the previous experiments, the shape of the material changed greatly before and after deformation 
in the Poisson effect. There was thus the possibility that observers compared the static shape of a material before 
and after the deformation, and reported no causality if the deformation magnitudes were too large for an internal 
criterion for assessment of causality. Another possibility was that observers used dynamic aspects of deforma-
tions in order to assess causality. Specifically, instead of comparing static snapshots of a material before and after 
deformation, the observers might use dynamic deformation cues to assess deformation magnitudes as a cue to 
causality of deformation in the Poisson effect. To assess this possibility, it was necessary to rule out visual cues that 
were relevant to shape comparisons before and after deformations. In this experiment, we eliminated shape cues 
from the clip. Textured material surfaces were used (Fig. 5a) to add dynamic texture changes during the defor-
mation. Here, the outer contour of a deforming shape was not visible; only the central region of the surface was 
visible, seen through a rectangular aperture the shape of which was extended in accordance with the movement 
of two black bars, as used in the stimuli of the previous experiments. The observers’ assessment of causality would 
be dependent on both the initial width and the maximum amplitude, in a similar way to the pattern observed in 
Experiment 1, provided that the observers assessed causality using dynamic image deformation in the video clip.

Figure 5c shows the proportion of trials with no causality report as a function of the amplitude of vertical com-
pression. As in Experiment 1, a psychometric function was fitted to the individual data of each initial width condition, 
and calculated the amplitude threshold required for the 50% “no report of causality” in Fig. 5d. As in Experiment 
1, using a linear mixed effects model, a one-way repeated measures ANOVA was conducted with the initial widths 
as a within-subject factor, which showed that the main effect of the initial widths was significant [F(2,20) = 12.551, 
p < 0.0002, r2 = 0.85]. Multiple comparisons after adjustment with the Holm’s method showed that the 4.06 deg con-
dition was significantly different from the 8.12 deg condition (z = 2.95, p < 0.007) and 12.08 deg condition (z = 4.982, 
p < 0.0001). The difference between the 8.12 deg and 12.08 deg conditions was also significant (z = 2.031, p < 0.05).

The results indicate that human observers are able to assess the causality of deformations in the Poisson effect 
without comparing the shape of material before and after deformation. This suggests that human observers can 
use motion patterns to infer the causality of deformation, consistent with previous studies proposing that image 
motion is a strong cue in inferring material properties1,4–6. On the other hand, the results do not necessarily tell us 
that the human visual system does not use shape cues to assess the causality of deformation in the Poisson effect. 
Rather, the results indicate that the observers could assess causality without the aid of explicit shape differences 
before and after deformation. Because we simply eliminated shape cues from stimuli, it is still unclear how shape 
and motion cues interact with each other, and this may be worth checking in future studies.

In the 30th frame, texture patterns on the material surface were strongly deformed, so one might argue that 
the comparison of the magnitude of texture deformations served as a cue to the assessment of causality. This 
possibility has not been empirically ruled out in this experiment. However, though rather speculative, the pos-
sibly is unlikely. When we examine the right panel of Fig. 5a, we do not get the impression that the material in 
the panel is laterally extended, but when we view the clip, the impression is fairly compelling. Thus, it is unlikely 
that observers could utilize the static deformation as a cue to material extension as well as compression. The 
critical phenomenal difference between static and dynamic presentation of stimuli indicates that observers pre-
dominantly used dynamic deformation cues to infer causality of deformation in the Poisson effect, when shape 
information was absent.
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Figure 5.  (a) Snapshots of a stimulus clip used in Experiment 3. Left and right panels show the initial (the 
1st) and final (the 30th) video frames, respectively. (b) Optical flow fields of the simulation video clip (Fig. 1). 
Left and right panels respectively show horizontal and vertical motion vectors between the 1st and the 30th 
frames of the simulation video clip. (c,d) Experiment 3 results. (c) Proportion of trials with no causality report 
as a function of maximum amplitude. Error bars denote ± 1 standard errors of mean (N = 11). (d) Threshold 
amplitude to cause 50% proportion of no report of causality for each initial width condition. Error bars 
denote ± 1 standard errors of the mean (N = 11).
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General Discussion
The findings suggest that instead of using Poisson’s ratio, the observers employed image cues (the area ratio) 
related to deformation magnitudes in order to assess the causality of deformation in the Poisson effect 
(Experiments 1 and 2). Shape comparisons before and after deformations were not always necessary for the 
assessment of causality of deformation (Experiment 3).

Although previous studies have reported that human observers can perceive a force in the so-called launching 
effect and its variants19,20, the present study first shed light on the matter of how human observers perceive the 
causality of deformations in an elastic object. There are many physical events that are related to force perception, 
but few examples have been tested from a psychological perspective. The approach in the present study may rep-
resent a promising direction for investigating how the perception of force is linked to the perception of materials.

From the perspective of motion perception, an interesting issue is how the human visual system perceives a 
material that is horizontally extended and vertical compressed. Previous studies have shown that motion vectors 
are averaged21,22 or integrated23 into perception of a single coherent direction of motion. In addition, different 
studies have also reported that human observers could integrate local motion signals into a complex motion 
pattern such as dilation, divergence, shear, and vorticity24–26. Among the vector patterns, our stimuli contained a 
shear flow pattern. The visual system perhaps tries to detect a shear pattern and evaluate whether it comes from 
the extension/compression deformations of a single material. Another possibility is that the visual system decom-
poses orthogonal motion vectors27 and groups the vectors into a hierarchical structure within a single material28. 
When the combination of orthogonal motion vectors does not meet a single criterion required to create a hierar-
chical structure, the impression of causality between the orthogonal motion vectors in our stimuli may be broken.

It is necessary to carefully discuss whether human observers do not actually represent physical properties 
of material. In this study, although both physically expected and unexpected versions of the Poisson effect were 
presented, Poisson’s ratio was an explanatory factor in neither the range of physically expected nor unexpected 
Poisson effects (Figs 3d and 4d). Although it was clear that Poisson’s ratio was not used for the determination of 
causality perception in the Poisson effect, it is necessary to carefully consider whether or not Poisson’s ratio is 
used by the visual system at all. It is still possible that the area ratio is used for the crude analysis of whether defor-
mations in the Poisson effect are causally related or not; after causality is internally established, the visual system 
might use Poisson’s ratio to assess the finer details of the physical aspects of the material.

Some stimuli in this study contained sinusoidal vertical compressions which might possibly be interpreted as 
shape changes due to depth. Specifically, in some stimuli with large vertical compressions, some observers may 
have perceived a material as if it were being pulled in a receding direction. On the other hand, the interpretation 
of shape change in depth may arise only when the interpretation of the Poisson effect is unlikely. That is, a shape 
change in depth may be perceived only when human observers interpret that the source of a vertical deformation 
cannot be attributed to a horizontal extension alone. It would be intriguing to investigate the relationship between 
the brain’s attribution of the source of image deformation and deformation features in stimuli.

It would be essential to discuss the relationship between the causality judgment of deformations in the Poisson 
effect and material perception. In a preliminary pilot experiment some observers were asked to freely report the 
material types they saw during the observation of stimulus clips. Elastic materials were consistently reported 
when the amplitude was small, while reported material types were not consistent among the observers when the 
amplitude was large. More importantly, in debriefing they reported determining the perceived type of material 
depending on the assumed causal relationship between horizontal and vertical compressions. The debriefing 
outcome led to the supposition that causality perception might precede material perception. That is, when the 
vertical compression magnitude was large, the observers could not find the causal relationship between the hori-
zontal and vertical deformations, and likely reported inconsistent material types. This set of observations indi-
cates that the observers may rely on their judgment of material types in the presence/absence of causality and that 
the causality judgment is not based on material perception. On the other hand, it is dangerous to make a hasty 
conclusion that the causality judgment of deformation always precedes material perception. It may depend on the 
types of image deformation and/or material types in stimulus clips. Careful examination in separate studies will 
be necessary to determine the relationship between causality perception and material perception.

Method
Experiment 1.  Observers Eleven naive people (seven females and five males) participated in the experiment. 
Their mean age was 35.5 (SD10.4). All observers in this study reported having normal or corrected-to-normal 
visual acuity. They were recruited from outside the laboratory and received payment for their participation. 
Ethical approval for this study was obtained from the ethics committee at Nippon Telegraph and Telephone 
Corporation (Approval number: H28-008 by NTT Communication Science Laboratories Ethical Committee). 
The experiments were conducted according to principles that have their origin in the Helsinki Declaration. 
Written, informed consent was obtained from all observers in this study.

Apparatus Stimuli were presented on a 21-inch iMac (Apple Inc. USA) with a resolution of 2048 × 1152 pixels 
and a refresh rate of 60 Hz. A colorimeter (Bm-5A, Topcon, Japan) was used to measure the luminance emitted 
from the display. A computer (iMac, Apple Inc., USA) controlled stimulus presentation, and data were collected 
with PsychoPy v1.8316,17.

Stimuli were video clips that consisted of white material with a rectangular shape, two black bars that pulled the 
material horizontally, and a gray background (Fig. 2a and Supplementary clip 1). The luminance of the material 
was 51 cd/m2. At the first video frame of the stimulus video clip, the vertical height of the material was 8.12 deg. 
The height gradually deformed so that the top and bottom sides of the material underwent a spatially sinusoidal 
modulation. The maximum amplitude of the modulation was randomly chosen from one of the following six levels: 
0.24, 0.48. 0.96, 1.90, 2.86, and 3.80 deg. The top and bottom sides of the materials linearly deformed across a video 
clip consisting of 30 video frames. At the first video frame of the stimulus video clip, the horizontal width of the 
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material was randomly chosen from one of the following three levels: 4.06, 8.12, and 12.18 deg. The width was line-
arly extended so that the maximum width reached 5.96, 10.02, and 14.08 deg at the 30th frame of the stimulus clip. 
That is, with all of the width conditions, the width extended 1.902 deg in the end. The height and width of the black 
bars were 12.2 and 1.0 deg, respectively. The luminance of the bars was 0.2 cd/m2. In the stimulus clip, the black bars 
moved linearly by 1.902 deg so that the right and left edges of the left and right black bars were respectively attached 
to the left and right edges of the white material. The horizontal level of the material was matched with the horizontal 
level of the black bar. The material and bar were presented against a gray background with a luminance of 20 cd/m2.

Procedure Each observer was individually tested in a dimly lit chamber. The observers sat 64 cm from the 
display. With each trial, the first video frame of the stimulus clip was displayed for 0.5 sec, followed by the pres-
entation of the stimulus clip for 0.5 sec (30 video frames in total). Finally, immediately after playing the clip, the 
final (30th) video frame of the stimulus clip was displayed for 0.5 sec. After the disappearance of the stimulus 
clip, the observer assessed whether the horizontal extension of the material was causally related to the vertical 
compression of the material in a binary, forced-choice manner. Observers were explicitly told that the causality 
of deformation in stimulus clips meant that the vertical compression in the material was mechanically caused by 
the horizontal extensions in a physically plausible manner. The observers reported their assessment by pressing 
one of two assigned keys. Each observer had four sessions, each consisting of 3 initial widths × 6 compression 
amplitudes × 5 repetitions. Within each session the order of trials was pseudo-randomized. Thus, each observer 
had 360 trials in total. It took 30–40 minutes for each observer to complete all of four sessions.

Experiment 2.  Observers Eleven naive people (seven females and four males), who had not participated in 
Experiment 1, participated in this experiment. Their mean age was 34.6 (SD 9.6).

Apparatus The apparatus was identical to that as used in Experiment 1.
Stimuli These were also identical to those as used in Experiment 1 except for the following. In this experiment, 

the number of video frames contained in the stimulus clip was manipulated. A stimulus clip was presented for 
0.167 sec (from the 1st to the 10th frames), 0.334 sec (from the 1st to the 20th frames), and 0.5 sec (from the 1st to the 
30th frames). All six maximum amplitude conditions as used in Experiment 1 were no longer tested. The focus here 
was on the 3.80 deg condition, which was the greatest of the maximum amplitude conditions used in Experiment 1.

Procedure As in Experiment 1, each observer was individually tested in a dimly lit chamber. The observers sat 
64 cm from the display. For each trial, the first video frame of the stimulus clip was displayed for 0.5 sec, followed 
by presentation of the stimulus clip for 0.167 sec, 0.334 sec, or 0.5 sec (10, 20, and 30 video frames in total). Finally, 
immediately after playing the clip, the last (10th, 20, and 30th, respectively) video frame of the stimulus clip was 
displayed for 0.5 sec. After the stimulus clip disappeared, the observer assessed whether the horizontal extension 
of the material was causally related to the vertical compression of the material in a binary, forced-choice manner. 
The observer reported his/her assessment by pressing one of two assigned keys. Each observer participated in 
two sessions, each consisting of 3 initial widths × 3 different numbers of video frames × 10 repetitions. Within 
each session the order of trials was pseudo-randomized. Thus, each observer underwent 180 trials in total. It took 
15–20 minutes for each observer to complete both sessions.

Experiment 3.  Observers Eleven naive people (seven females and five males), who had participated in 
Experiment 1 participated in the experiment. They were still naive as to the purpose of the experiment because no 
debriefing about the purpose of the experiment was provided to them after Experiment 1.

Apparatus The apparatus was identical to that as used in Experiment 1.
Stimuli These were also identical to those used in Experiment 1, apart from the following changes. Instead of white 

material, a material with a textured surface was used, as shown in Fig. 5a (See also Supplementary clip 2). As the black 
bars moved laterally, textures inside the material also deformed so that the textures were horizontally elongated and ver-
tically compressed. For vertical compression, the deformation was spatially modulated in a sinusoidal manner. Analysis 
of the optical flow fields of the video clip for an extended cloth is shown in Fig. 1, showing that the optical flow fields had 
a linear pattern across both horizontal and vertical dimensions (Fig. 5b). Therefore, similar patterns of linear changes 
in deformation fields were applied to the deformation of the texture patterns in the stimuli. As in Experiment 1, three 
levels of initial widths of the material were tested: 4.06, 8.12, and 12.18 deg. Here, the following six levels of maximum 
amplitude modulation were used: 0.12, 0.24. 0.48, 0.96, 1.43, and 1.90 deg. The amplitudes were just half of those used 
in Experiment 1. The reason for halving the values was the experimental failure to correctly control the spatial deforma-
tion magnitude based on the original maximum deformation amplitude. In the video clip, the contour of the material 
was not visible. The large size of the textured surface was deformed on the basis of the parameters described above, and 
the central region of the textured surface was clipped so that the vertical height was kept constant at 8.12 deg, varying 
the horizontal width in accordance with the movement of the two black bars in a way similar to that used in Experiment 
1. Deformation was completed across 30 video frames as in the stimuli of Experiment 1.

Procedure This too was identical to that used in Experiment 1.
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