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Preeclampsia is a complex cardiovascular disorder of pregnancy with underlying

multifactorial pathogeneses; however, its etiology is not fully understood. It is

characterized by the new onset of maternal hypertension after 20 weeks of gestation,

accompanied by proteinuria, maternal organ damage, and/or uteroplacental dysfunction.

Preeclampsia can be subdivided into early- and late-onset phenotypes (EOPE and

LOPE), diagnosed before 34 weeks or from 34 weeks of gestation, respectively. Impaired

placental development in early pregnancy and subsequent growth restriction is often

associated with EOPE, while LOPE is associated with maternal endothelial dysfunction.

The innate immune system plays an essential role in normal progression of physiological

pregnancy and fetal development. However, inappropriate or excessive activation of this

system can lead to placental dysfunction or poor maternal vascular adaptation and

contribute to the development of preeclampsia. This review aims to comprehensively

outline the mechanisms of key innate immune cells including macrophages, neutrophils,

natural killer (NK) cells, and innate B1 cells, in normal physiological pregnancy, EOPE and

LOPE. The roles of the complement system, syncytiotrophoblast extracellular vesicles

and mesenchymal stem cells (MSCs) are also discussed in the context of innate

immune system regulation and preeclampsia. The outlined molecular mechanisms,

which represent potential therapeutic targets, and associated emerging treatments,

are evaluated as treatments for preeclampsia. Therefore, by addressing the current

understanding of innate immunity in the pathogenesis of EOPE and LOPE, this review will

contribute to the body of research that could lead to the development of better diagnosis,

prevention, and treatment strategies. Importantly, it will delineate the differences in the

mechanisms of the innate immune system in two different types of preeclampsia, which

is necessary for a more personalized approach to the monitoring and treatment of

affected women.

Keywords: immune cells, pregnancy, late-onset preeclampsia, early-onset preeclampsia, preeclampsia,
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INTRODUCTION

Preeclampsia accounts for over 70,000 maternal and 500,000
fetal/neonatal deaths annually, with maternal deaths being
highest in developing countries (1, 2). The exact etiology of
preeclampsia is unknown, however, endothelial dysfunction,
inappropriate angiogenesis, inadequate trophoblast invasion
and spiral uterine artery remodeling, have all been identified
as key contributors (3–6). Adequate remodeling of spiral
uterine arteries into dilated, elastic, and low-resistance blood
vessels enables unlimited supplies of oxygen and nutrients to
the fetus. This requires appropriate invasion by extravillous
trophoblasts and replacement of maternal endothelial cells
(7). Inappropriate activation of the innate immune system
and subsequent inflammation, however, can lead to placental
dysfunction or poor maternal vascular adaptation and contribute
to the development of preeclampsia (8). In this review, we will
outline mechanisms of key innate immune cells implicated in
the development of preeclampsia and differentiate how these
mechanisms are affected in two phenotypes of preeclampsia,
early-onset preeclampsia (EOPE) and late-onset preeclampsia
(LOPE). The 2018 recommendations from The International
Society for the Study of Hypertension in Pregnancy (ISSHP)
define preeclampsia as de-novo hypertension (systolic blood
pressure> 140 mmHg and diastolic blood pressure> 90 mmHg)
after 20 weeks of gestation, accompanied by one or more of
the following features: proteinuria (>300 mg/day), maternal
organ dysfunction (including hepatic, renal, neurological), or
hematological involvement such as thrombocytopenia, and/or
uteroplacental dysfunction, such as fetal growth restriction
and/or abnormal Doppler ultrasound findings of uteroplacental
blood flow (1, 2, 9). Preeclampsia with severe features
is defined as cases with blood pressure values ≥160/110
mmHg, accompanied by significant proteinuria (≥300mg of
protein/day), or pulmonary edema, cerebrovascular and/or
liver function deterioration or thrombocytopenia (10). EOPE
is diagnosed before 34 weeks of gestation whereas LOPE is
diagnosed from 34 weeks of gestation (2).

INCIDENCE AND TREATMENT OF
PREECLAMPSIA

A systematic review of the incidence of hypertensive disorders
of pregnancy, including 39 million women from 40 countries,
found that preeclampsia affects ∼4.6% of all deliveries globally
(11). Another review reported that preeclampsia complicates 2
to 8% of pregnancies (12). The reasons for differences in the
incidence of preeclampsia among different countries, regions
or hospitals include inconsistencies in the diagnostic criteria,
difficulty in diagnosing preeclampsia, as well as differences
in maternal age and nulliparity, access to prenatal care and
education, and regional prevalence of other risk factors (2,
11, 13). Women who have chronic hypertension, autoimmune
disorders, kidney disease, pre-gestational diabetes, maternal body
mass index (BMI) > 30 kg/m2 and a family or personal history
of preeclampsia, are at higher risk of developing preeclampsia;

older age (>40 years) is also associated with increased risk of
preeclampsia (1). Treatment of preeclampsia can be divided
into expectant care and interventionist care (14). Expectant care
involves a balance of stabilizing the mother’s condition and
delaying delivery as far as the maternal condition allows, to
reduce the mortality and morbidity associated with premature
birth. Interventionist care involves early delivery to minimize
seriousmaternal and fetal complications. Expectant care provides
relief from symptoms, such as reducing blood pressure with
antihypertensive therapy and the use of magnesium sulfate as
anticonvulsant therapy (2, 15, 16). Evidence suggests that there is
no clear difference between an expectant or interventionist care
approach for preeclampsia with severe features (14). Without a
clear contraindication, delaying delivery for as long as possible
can improve outcomes for the fetus (17). Studies investigating
the prophylactic use of aspirin in high-risk pregnancies have
reported conflicting findings (9, 18). A meta-analysis including
18,907 women concluded that when taken before 16 weeks
of gestation at a daily dose of ≥100mg, aspirin could reduce
the risk of preterm preeclampsia diagnosed before 37 weeks of
gestation (19). As such, high-risk patients must be identified
early in pregnancy for any beneficial effects to be observed (16).
Calcium supplementation for women with low calcium diets may
lead to a reduction in the severity of symptoms associated with
preeclampsia and minimize the risk of preterm birth (2, 18).
In the case of diabetic pregnancies, women who were given
metformin with and without insulin treatment had a lower
incidence of preeclampsia (20).

SIMILARITIES AND DIFFERENCES
BETWEEN EARLY-ONSET AND
LATE-ONSET PREECLAMPSIA

Gestational age has been identified as the most important
clinical variable in predicting both maternal and perinatal
outcomes (21). This led to stratification of preeclampsia into
two phenotypes, EOPE and LOPE (1, 2, 22). LOPE accounts
for the majority of preeclampsia cases, comprising ∼80 to 95%
of all preeclampsia cases worldwide (23). EOPE, although less
common, is associated with higher rates of neonatal mortality
and a greater degree of maternal morbidity compared to LOPE
(3). As a result, EOPE has attracted greater interest and more
studies have focused on elucidating the mechanisms underlying
this disease phenotype (23), leading to implementation of
preventative treatments (e.g., aspirin) and predictive biomarkers
more suited for EOPE than LOPE. LOPE, nevertheless, is
also a serious condition, associated with a high prevalence
of eclampsia and HELLP (hemolysis, elevated liver enzymes,
and low platelets) syndrome, which are two life-threatening
complications (24). Further studies are needed to address
this gap in research. Preeclampsia has been described as
a two-stage disease, with initial deficient remodeling of the
uterine spiral arteries leading to a stage of maternal systemic
inflammation and vascular dysfunction (25). This model is
more representative of EOPE. Impaired placental development
in early pregnancy and subsequent growth restriction is often
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associated with EOPE, while LOPE is likely associated with
maternal endothelial dysfunction (26). Both phenotypes exhibit
an increased inflammatory response that leads to adverse
maternal and fetal complications. Syncytiotrophoblast stress and
placental hypoxia are implicated as the main cause of excessive
systemic vascular inflammation. In EOPE, this is triggered by
dysfunctional perfusion of the placenta. In the case of LOPE,
syncytiotrophoblast stress likely occurs as a result of compression
of placental terminal villi, as the placenta outgrows the space
within the uterine cavity, which can also lead to uteroplacental
malperfusion (24, 27).

Timely detection of preeclampsia is complicated by the fact
that the disease is usually asymptomatic in its early stages
(2). Close antenatal monitoring, especially during the third
trimester, can be crucial in preventing maternal and fetal
complications. Detection using angiogenesis-related biomarkers
such as the ratio of soluble fms-like tyrosine kinase-1 (sFlt-1)
and placental growth factor (PIGF), as well as Doppler
ultrasound assessment, can be useful in detecting EOPE,
and to a lesser extent LOPE. Recently, other angiogenesis-
related biomarkers, FKBPL and CD44, were also implicated in
prediction and diagnosis of preeclampsia, particularly LOPE
(28). Further research is needed to elucidate the pathogenic
mechanisms and develop diagnostic biomarkers for LOPE early
in pregnancy, allowing interventions to begin before clinical
features manifest.

COMPLICATIONS ASSOCIATED WITH
PREECLAMPSIA

Women with a history of preeclampsia, in addition to short-term
complications, have a higher risk of subsequent cardiovascular
and metabolic disorders, especially following EOPE (29). A
meta-analysis including datasets from 3,488,160 women found
that women with previous preeclampsia were twice as likely
to develop ischemic heart disease compared to normotensive
pregnancies (30). It is not clear whether this increased risk
of subsequent cardiovascular disease is caused by underlying
maternal risk factors, which are exacerbated by preeclampsia,
or if this increased risk is a consequence of preeclampsia
(2). Potential overlapping mechanisms between preeclampsia
and cardiovascular disease including hypertension and/or heart
failure with preserved ejection fraction were recently identified
using a bioinformatics “in silico” approach (31, 32).

Untreated preeclampsia, regardless of the phenotype, can
result in severe complications including liver rupture, cerebral
hemorrhage, myocardial infarction, stroke, acute respiratory
distress syndrome, pulmonary edema, kidney failure, and
abruptio placentae (1, 9, 16). Delivery of the baby, even
if it is preterm, minimizes the risk of developing these
maternal and fetal complications, including fetal growth
restriction and fetal loss. Premature birth, nevertheless, is also
associated with a number of neonatal complications such as
respiratory distress syndrome, intraventricular hemorrhage, and
necrotizing enterocolitis (14). While there are a multitude
of factors that contribute to the pathogenesis and onset of

preeclampsia, in recent years, it has been highlighted that an
overactive maternal immune system can play a critical role in
preeclampsia development.

INNATE IMMUNE SYSTEM IN HEALTHY
PREGNANCY AND PREECLAMPSIA

The maternal innate immune system throughout the entire
gestation period plays an important role in ensuring protection
from pathogens, while concurrently inducing tolerance to the
semi-allogeneic developing fetus and placental development.
As outlined in Figure 1, this is achieved through a delicate
balance of various cell functions and interactions between the
innate immune system cells and other placental/uterine cells
in a timely manner (33, 34). Unfortunately, this is not always
the case and due to various factors, the aforementioned balance
is disrupted by maladaptation of certain immune cells during
gestation, which is demonstrated in Figure 2. In physiological
pregnancies, decidual macrophages found in proximity to
spiral uterine arteries help prepare these for remodeling via
secretion of angiogenic molecules (35–37). Macrophages also
phagocytize apoptotic cells during tissue remodeling, preventing
the release of self-antigens or paternal alloantigens, which could
trigger a maternal immunological response (38). There are
two phenotypes of macrophages, M1 or classically activated
macrophages, and M2 or alternatively activated macrophages.
M1 macrophages are involved in phagocytosis, and are
micro-biocidal and pro-inflammatory. M2 macrophages are
immunomodulatory and responsible for inducing maternal
tolerance, resolving inflammation, and are involved in tissue
remodeling and cell proliferation (39, 40). Therefore, in normal
physiological pregnancy, macrophages favor the M2 phenotype,
whereas in preeclampsia, this balance is shifted toward the
M1 phenotype (41). M1 cells secrete soluble fms-like tyrosine
kinase-1 (sFlt-1), an anti-angiogenic molecule that is associated
with impaired angiogenesis in preeclampsia (42). Consequently,
the transition of macrophage phenotype from M2 to M1
is indicative of a pro-inflammatory response as observed
in preeclampsia.

IMMUNOMODULATION BY INNATE
IMMUNE CELLS

Innate immune cells, while assisting in the initial stages
of pregnancy, also exhibit immunomodulatory characteristics
targeted at immunological responses toward the fetus. Mast cells
have demonstrated such characteristics through the release of
histamine and stimulation of the G protein-coupled receptors
(H1−4R) (43). Activation of the H4R appears to lead to
proliferation of regulatory T cells (Tregs), and H2R support
angiogenesis at the fetal-maternal interface (43, 44). Tregs
subsequently act to prevent lymphocytes from attacking the fetus.
There is limited evidence regarding the behavior of mast cells
during preeclampsia and their contribution to its onset. There are
some reports that they accumulate at higher density adjacent to
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FIGURE 1 | Figure summarizes the various roles displayed by the innate and other key immune system cells as well as syncytiotrophoblasts and mesenchymal stem

cells in normal physiological pregnancy. CD59+, Cluster of differentiation 59+; DAF, Decay-accelerating factor; FOXO1, Forkhead box protein-1; GM-CSF,

Granulocyte-macrophage colony-stimulating factor; hCG, Human chorionic gonadotropin; IFN-γ, Interferon-gamma; IL-4, Interleukin-4; IL-10, Interleukin-10; MCP,

Membrane cofactor protein.

spiral uterine arteries during preeclampsia and undergo intensive

degranulation, leading to a release of large concentrations of
histamines (45). The high histamine concentrations in the

circulation stimulate pro-inflammatory responses from both the

innate and adaptive immune system, leading to the secretion of

pro-inflammatory cytokines and molecules, contributing to the

increase in blood pressure, typical of preeclampsia (46).

THE ROLE OF NEUTROPHILS IN
MATERNAL TOLERANCE DURING
PREGNANCY

Neutrophils, also as part of a normal physiological pregnancy,
are recruited to the developing placenta via the chemokine,
IL-8 (47). Following the recruitment of circulating neutrophils
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FIGURE 2 | Figure highlights the functions of both immune and placental cells in the context of preeclampsia and both of its phenotypes, EOPE and LOPE. AT1-AA,

Angiotensin II type 1 receptor agonistic autoantibody; DC, Dendritic cell; dNK, Decidual natural killer; IL-6, Interleukin-6; IL-8, Interleukin-8; IL-10, Interleukin-10; MSC,

Mesenchymal stem/stromal cell; NET, Neutrophil extracellular trap; pNK, Peripheral natural killer; NLR, Neutrophil to lymphocyte ratio; sEng, Soluble Endoglin; sFtl-1,

Soluble fms-like tyrosine kinase-1; STB, Syncytiotrophoblast; STBM, syncytiotrophoblast micro-particles; TLR4, Toll-like receptor 4; TNF-α, Tumor necrosis factor-α.

to the placenta and under the influence of progesterone
and estriol, CD4+ T cells undergo immunomodulation via
transfer of the forkhead box protein 1 (FOXO1) from
neutrophils (48). These neutrophil-induced T (niT) cells,
in addition to establishing maternal tolerance of the fetus,
secrete IL-10, IL-17, and vascular endothelial growth factor
(VEGF) promoting angiogenic processes (48). Also in normal

physiological pregnancy, the natural cytotoxicity receptors
(NCRs) on maternal decidual natural killer (NK) cells are
inactivated to ensure maternal tolerance. This is not the
case in preeclampsia due to abnormalities in the NCR
structure, which increases their synthesis and expression on
NK cells, thus affecting maternal tolerance to the fetus (49).
Overactivation of NCRs on NK cells leads to discharge of
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pro-inflammatory cytokines, thus contributing to weakened
immunological tolerance potentially endangering the fetus (50).

INACTIVATION OF INNATE IMMUNE CELLS
IN PREGNANCY

Whereas the aforementioned cells either assist in required
gestational processes or exhibit immunoregulatory roles, other
innate immune cells become partially or fully inactivated
during pregnancy. NK cells within the uterus and decidua,
for example, maintain their immunological function against
infections without compromising the fetus. This is achieved by
inhibiting NK cell-mediated cytotoxicity toward trophoblasts
by interfering with their degranulation process (51). NK
cells additionally release IFN-γ, which stimulates decidual
CD14+ myelomonocytic cells to induce Treg proliferation via
transforming growth factor-beta (TGF-β) (52). The incomplete
activation of DCs by granulocyte-macrophage colony-
stimulating factor (GM-CSF) similarly leads to a reduction
in the capacity of these cells to adequately present antigens (53).
This effect consequently limits the development and activation
of T cells, increasing maternal tolerance toward the fetus (54).
DCs located proximally to the placenta remain inactivated or
immature during normal pregnancy; however, these cells become
inappropriately stimulated during preeclampsia. Although GM-
CSF initially acts as a regulator of DCs, in higher concentrations,
GM-CSF along with lnc-DC (long non-coding RNA expressed
in DCs), induces DC maturation (55, 56). Once mature, DCs
can more efficiently present antigens leading to an increase
in the proliferation of Th1/Th17 cells (56, 57). The Th1/Th17
cells consequently stimulate pro-inflammatory responses, which
significantly reduce maternal tolerance.

B1 CELL ACTIVATION IN HEALTHY
PREGNANCY AND PREECLAMPSIA

B1 cells, despite originating from the lymphoid group of immune
cells, also belong to the innate immune system and are important
in the initiation and maintenance of a healthy pregnancy. The
B1 cell population is subdivided into two groups, B-1a and B-1b,
each exhibiting unique roles throughout gestation (58). B-1b cells
produce typical antibodies in response to antigen identification,
providing protection against invading pathogens (58). On the
other hand, B-1a cells secrete “natural IgM antibodies” with low-
affinity, poly-reactivity, and self-reactivity, regardless of antigenic
stimuli (58, 59). These natural antibodies assist in the clearance
of apoptotic tissue cell bodies, affecting the immune response
during tissue remodeling (59). B1 innate cells, similar to other
immune cells, are irregularly activated in preeclampsia. Notably,
B-1a cells are stimulated to produce angiotensin II type 1
receptor agonistic autoantibodies (AT1-AA) in preeclampsia,
which does not occur in normal physiological pregnancies (60).
These antibodies, as the name suggests, act as agonists and induce
signaling pathways, leading to the vasoconstriction of blood
vessels and the secretion of aldosterone, which stimulates the
renin-angiotensin system and increases blood pressure (61).

INFLUENCE OF THE COMPLEMENT
SYSTEM

The capacity of the complement system during healthy
physiological pregnancy is also modulated to prevent its
activation, which could endanger the fetus. Regulatory proteins
including decay-accelerating factor (DAF), membrane cofactor
protein (MCP), and CD59, found on the surface membrane
of trophoblasts, help to degrade convertases within the
complement system inducing components of this system into
their inactive forms by way of cleavage (62). Due to the
widespread dysregulation of the maternal immune system during
preeclampsia, the complement system becomes overstimulated
as part of a compensatory mechanism. Over-activation of both
the classical and lectin complement pathways leads to greater
terminal activation, causing inflammation and the recruitment of
large numbers of phagocytes to the origin of the stimuli (63). This
subsequently contributes to the onset of maternal hypertension
and organ damage (63).

SYNCYTIOTROPHOBLAST CELLS AND
THEIR SECRETED EXTRACELLULAR
VESICLES

The blastocyst, in anticipation of implantation, initiates secretion
of human chorionic gonadotropin (hCG) before its synthesis
is superseded by syncytiotrophoblast cells (STBs) (7). The
continued secretion of hCG by STBs ensures appropriate
invasion of trophoblast cells into the endometrium. Upon
shedding of the STB layer, extracellular vesicles (EVs) are released
from apoptotic STBs, which bind to monocytes and B cells
(64). EVs encompass three main vesicle types: exosomes, micro-
particles/micro-vesicles and apoptotic bodies (65–67). These
EVs, upon binding, induce a shift in the cytokine secretion profile
of the neighboring cells, causing the release of anti-inflammatory
cytokines (64). On the other hand, in preeclampsia when
placental ischemia and hypoxia are present, a greater number
of the STB cells undergo apoptosis (68). There is subsequently
an increase in secreted EVs into the maternal circulation,
overwhelming the body’s ability to adequately scavenge and
clear them effectively (68, 69). These vesicles then act as
antigenic stimuli for components of the immune system leading
to unintended endothelial injury, inflammation, and hyper-
coagulation (68).

IMMUNOMODULATION BY
MESENCHYMAL STEM/STROMAL CELLS

Emerging evidence suggest that mesenchymal stem/stromal
cells (MSCs) also have important immunomodulatory roles
in pregnancy. Facilitated by paracrine signaling, MSCs target
B/T lymphocytes, DCs, and NK cells and interfere with their
pro-inflammatory responses. Simultaneously, MSCs stimulate
the shift of T-helper cells from a Th1 to Th2 phenotype by
promoting IL-4 production and inhibiting IFN-γ production,
thus heightening maternal immunological tolerance of the fetus.
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Furthermore, MSCs have also been shown to have a key pro-
angiogenic role in pregnancy (70). In preeclampsia, the function
of MSCs is likely impaired due to exposure to increased numbers
of reactive oxygen species (ROS) (70, 71). The presence of
aldehyde dehydrogenases (ALDH) during normal pregnancy
assists in detoxification from ROS, thus providing a degree
of protection against oxidative damage (71). However, due
to an unknown mechanism, levels of ALDH in preeclampsia
are decreased, exposing the MSCs to oxidative stress with
resulting damage and reduced functional ability to modulate
other immune cells (71).

In summary, immune cells are critical in the progression
of normal physiological pregnancy, both in terms of maternal
tolerance and placental development; the roles of key innate and
other immunogenic cells in normal physiological pregnancy are
depicted in Figure 1. The vast majority of immune cells and
other associated placental/uterine cells become over-activated
or dysregulated in preeclampsia, contributing to the overall
symptoms and features of the condition, including hypertension
and organ damage.

MACROPHAGE PHENOTYPE PLASTICITY
IN PREECLAMPSIA

Macrophages can alter their phenotypic profiles in response to a
variety of environmental factors (39). M1 macrophages develop
in response to exposure to Th1 cytokines such as IFN-γ, tumor
necrosis factor (TNF)-α and lipopolysaccharide (LPS) (72, 73).
The development of M2 macrophages is favored in the presence
of TGF-β, IL-4, IL-10, and IL-13. Inflammatory cytokines, TNF-
α, IL-6, and IL-8, are significantly increased in preeclampsia, and
IL-10 is significantly decreased compared to normal pregnancy,
therefore promoting the M1 phenotype (74, 75). Decidual
macrophages comprise 20% of the immune cells present within
the placenta (76). Placental decidual macrophages in normal
pregnancy are mainly of the M2 subset and can be found near
spiral uterine arteries (40). They have an important role in
preparing spiral uterine arteries for remodeling by trophoblasts,
as well as phagocytozing pro-inflammatory substances formed
during the process of remodeling. The predominance of the
M1 decidual macrophage phenotype is conducive to the release
of substances such as TNF- α, IFN-y and nitric oxide (NO),
which inhibit trophoblast invasion and spiral uterine artery
remodeling (39, 72, 76). Various studies have reported increased
levels of decidual macrophages in preeclampsia (55, 77, 78).
Other studies have reported a reduction in macrophages in
the placental decidua in preeclampsia, possibly due to reduced
monocyte migration to the decidua or lack of differentiation into
macrophages (79, 80). Chitinase-3-like protein 1 (CHI3L1), also
known as YKL-40, is indicative of the number of macrophages,
and it has been shown to be present in significantly lower
levels in women who developed EOPE compared to normal
pregnancy (81). These conflicting findings may be a result
of different macrophage cell markers, methods employed, use
of tissue samples from different preeclampsia phenotypes and
different sections of the placenta being studied, considering

that decidual macrophages reside predominantly around spiral
uterine arteries (82).

MARKERS OF SYSTEMIC INFLAMMATION:
NEUTROPHIL EXTRACELLULAR TRAPS
AND THE NEUTROPHIL-LYMPHOCYTE
RATIO

Neutrophils are likely the main class of leukocytes that
cause the majority of vascular cell dysfunction in women
with preeclampsia (83). Neutrophil activation may occur from
exposure to oxidized lipids secreted by the placenta as a
consequence of placental damage. Activated neutrophils infiltrate
the maternal systemic vasculature and release substances
such as ROS, TNF-α and myeloperoxidase (MPO), causing
endothelial dysfunction (74, 83). MPO has been associated
with hypertension, and elevation in TNF-α is recognized
as a driving inflammatory mechanisms to preeclampsia (84,
85).

Neutrophil numbers in the maternal systemic circulation and
within the decidua steadily increase in pregnancy throughout
gestation, yet this increase is further amplified in preeclampsia (4,
74, 86–88). Elevation in neutrophil count has been noted in both
EOPE and LOPE compared to normal pregnancy, with a greater
elevation present in EOPE (26). This surge in neutrophils may
be an adverse reaction to the interaction between the maternal
immune system and micro-debris originating from the placenta
(89). Although the number of neutrophil granulocytes increases,
the phagocytic function of these cells reportedly decreases in
pregnancy, particularly in preeclampsia (88). Plasma elastase, a
marker of neutrophil activation, has been noted to be elevated
in preeclampsia when compared to normal pregnancy (90). A
small sample cohort study reported a significant increase in
plasma elastase in EOPE compared to normotensive controls (3).
Neutrophil extracellular traps (NETs) have been found in the
intervillous spaces of placentae in womenwith preeclampsia (25).
The formation of these web-like chromatin structures is induced
by STB microparticles (STBMs) released from the placenta and
ROS (91). Neutrophils, in addition to causing inflammation,
represent the first wave of leukocytes responding to inflammation
(5, 83). NETs are abundant within sites of inflammation causing
endothelial damage as demonstrated in cases of sepsis, and may
also cause damage to villous trophoblast cells in preeclampsia
(92, 93). The presence of NETs in the maternal circulation during
pregnancy can contribute to thrombotic events, inflammation,
and ultimately, fetal death (94). The neutrophil-to-lymphocyte
ratio (NLR), is a measure of systemic inflammation, and
has demonstrated prognostic value in several cardiovascular
diseases, including preeclampsia (4). Both normal pregnancy
and preeclampsia present with an increased NLR compared
to non-pregnant controls (95). Several studies, however, have
reported the NLR to be significantly higher in women with
preeclampsia compared to normotensive controls (6, 16, 96, 97).
A retrospective case-control study conducted with 186 patients
found the NLR to be highest in EOPE, and LOPE demonstrating
higher NLRs compared to normotensive controls (26). A change
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in the NLR can be noted at 16–18 weeks of gestation, and
thus has a potential as an inexpensive biomarker for the early
detection, monitoring and prompt intervention particularly for
EOPE (97).

NATURAL KILLER CELLS IN
PREECLAMPSIA

As discussed previously, in normal pregnancy the appropriate
remodeling of spiral uterine arteries into low resistance and
high capacity vessels coordinated with appropriate trophoblast
invasion is pivotal. When these two processes are not well-
coordinated, the consequent insufficient blood flow leads to a
series of events, which ultimately result in the development of
preeclampsia. This suggests that interactions at the maternal-
fetal interface in early gestation are important for determining
the course of pregnancy. In order to preserve an adequate
immuno-tolerant environment, DCs and T-lymphocytes have
limited access to the decidua during pregnancy (98). NK cells,
in fact, represent 70% of the immune cells in the decidua
(99, 100). These decidual NK (dNK) cells are a distinct
population from peripheral NK (pNK), both phenotypically
and functionally. Unlike pNK, the dNK subpopulation has
a CD56+/CD16− phenotype (101) and demonstrates a lower
cytotoxic potential and higher cytokine secretory profile (102).
Decidual NK cells, by secreting VEGF and PlGF, stimulate
spiral uterine artery remodeling, a process crucial for successful
establishment of the placenta and the feto-maternal interface in
pregnancy (103, 104). The lack of dNK cells has been shown
to lead to lower fertility and higher fetal resorption (105). NK
cells, on the other hand, are recruited by the innate immune
system in response to inadequate trophoblast invasion or
insufficient spiral uterine artery remodeling, processes observed
in preeclampsia. There are some inconsistencies among studies,
however, with respect to the number of these cells present
in preeclampsia compared to normotensive pregnancy. While
some studies have reported significantly lower numbers of
NK CD56+ cells within the decidua in preeclampsia (77,
106), other reports have indicated the opposite trend (107,
108). The heterogeneity among studies and the differences
in patient characteristics offer possible explanations for these
discrepancies. A recent study demonstrated that the increases
in both dNK and pNK cells were higher in EOPE compared to
LOPE (108).

TOLL-LIKE RECEPTORS IN
PREECLAMPSIA

Toll-like receptors (TLRs) represent a family of transmembrane
signaling receptors found on all innate immune cells. Ten
different TLRs have been identified in humans based on their
cellular localization and respective ligands (109). All 10 TLRs
activate nuclear factor κB- (NF-κB) dependent and NF-κB-
independent pathways to generate cytokines and chemokines
(109). TLR expressions vary throughout pregnancy. Trophoblast
expression of TLRs changes throughout gestation, with TLR2-4

being highly expressed during the first trimester and TLR1-10
in the third trimester (110–114). TLRs activate inflammatory
responses by recognizing damage-associated molecular patterns
(DAMPs) released following tissue injury, as well as pathogen-
associated molecular patterns (PAMPs) specific to microbial
components (115–117). Continuous signaling from DAMPs due
to persistent cell death and remodeling of spiral uterine arteries
leads to over-activation of TLRs. Excessive TLR activity may
contribute to the pro-inflammatory effects and hypertension
observed in preeclampsia. Studies report that overstimulation
of these receptors due to either viral or bacterial infections
may lead to adverse pregnancy outcomes including preeclampsia
(114, 118). Upon trophoblast TLR-3 and TLR-4 activation
by microbial byproducts, chemokine secretion initiates the
innate immune response and the decidua becomes infiltrated
with pNK cells and macrophages (113). TLR4 activation by
bacterial LPS, in addition, inhibits trophoblast migration (119),
while TLR3 activation by poly I:C, a double-stranded RNA
(dsRNA) viral mimetic, increases inflammation and results in
the development of preeclampsia-like symptoms in pregnant
rats (120). Increased immunoreactivity of the TLR4 protein
in placentae from complicated pregnancies suggests that their
role in the activation of the innate immune system is in
response to the presence of infectious agents (112). It has
been recently shown that the expression of TLR4 in placentae
from women with EOPE was higher than TLR4 expression in
women with LOPE (121). It is possible that this upregulation
is part of a compensatory mechanism in preeclampsia, given
that higher expression of TLR4 has been described in human
term placentae compared to first trimester (122). Activation of
TLR3 in pregnant mice increased systolic blood pressure and
endothelial damage, both of which were further exacerbated
in the absence of IL-10 (123). Moreover, dsRNA and single-
stranded RNA (ssRNA) were shown to upregulate expressions
of TLR3, TLR7, and TLR8 in mouse placentae. This caused
pregnancy-dependent hypertension, endothelial dysfunction,
and placental inflammation (124). Women with preeclampsia
displayed activation of the aforementioned TLRs; however
the association between severity of the disease and activation
of TLRs was not confirmed (124). Increased expression of
TLR9 in the placentae and peripheral blood mononuclear cells
from women with preeclampsia compared to normotensive
controls has also been described (125, 126). A study by
He et al. showed that when mice were treated with a
TLR9 agonist, they developed preeclampsia-like symptoms.
This preeclampsia murine model also showed that with
exogenous overexpression of TLR9, the levels of sFlt-1 increased
while VEGF was downregulated. This suggests that TLR9 is
capable of suppressing angiogenesis (127) and that aberrantly
activated ligand binding to different TLRs may significantly
influence pregnancy outcomes. In a relatively recent study,
it was demonstrated that inhibition of TLR activation and
thus inhibition of downstream signaling, could not prevent
embryo resorption in the absence of dNK cells (105, 128).
Differential expressions of TLRs throughout pregnancy and
in preeclampsia, suggest that these receptors might represent
potential therapeutic targets.
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THE ROLE OF INNATE B1 CELLS IN
PREECLAMPSIA

As indicated above, there are two different subsets of B1 cells.
B1a cells are CD5+ and produce “natural antibodies,” which
are polyreactive, low-affinity and self-reactive antibodies. On the
other hand, B1b cells are CD5− and produce adaptive antibodies
when exposed to antigens (58). It is, however, the role of B1a cells
that is more closely associated with adverse pregnancy outcomes.
Namely, the proportion of B1a cells decreases throughout
gestation likely as a protective mechanism against poly-reactive
antibodies produced by B1 these cells, which recognize and target
a variety of antigens including fetal antigens (129). Their role in
preeclampsia has not fully been investigated. However, there are
studies emerging regarding their association with hypertensive
disorders in pregnancy. The number of peripheral blood B1a cells
in women with preeclampsia is significantly increased compared
to normal pregnant women (60), however no difference in their
number between severe andmild preeclampsia has been observed
(130). In addition to the well-established Th1/Th2/Th17-Treg
paradigm of the pathogenesis of preeclampsia [as reviewed in
(131)], the role of B1 cells is likely linked to stimulation of CD4+

T cells and their differentiation into Th17 effector cells (132). It
has also been demonstrated that B1a cells can produce agonistic
autoantibodies to AT1-AA in pregnancy, which can lead to
the development of preeclampsia (133). High affinity binding
of AT1-AA to receptors within the placenta leads to increased
secretion of anti-angiogenic factors (sFlt-1 and Endoglin), both
of which are associated with the onset of preeclampsia (134–
136). These autoantibodies appear to correlate with severity of
preeclampsia (137). The depletion of B-cells in an animal model
of preeclampsia resulted in a decrease in the level of AT1-
AA and a reduction in preeclampsia symptoms (138). Natural
antibodies secreted by B1a cells are mostly IgM antibodies and
are important in clearing and neutralizing pro-inflammatory
targets (139). Although the specific roles of B1 cells have not been
elucidated yet, their numbers were not significantly increased
following placental ischemia (140). Substantial depletion of B
cells by the monoclonal anti-human CD20 antibody, rituximab,
interestingly did not have a significant effect on the hypertensive
response in the RUPP model (140).

In summary, only a limited number of studies have assessed
the role of innate B1 cells in preeclampsia. Further research
is needed to evaluate the association of innate B1 cells with
hypertensive disorders in pregnancy, as well as their role and
pathogenic mechanisms in EOPE vs. LOPE.

EMERGING ROLE OF Èδ T CELLS IN
PREECLAMPSIA

Within the decidua, Èδ T cells despite originating from the
lymphoid lineage facilitate proliferation of trophoblast cells while
concurrently suppressing their apoptosis through the secretion
of IL-10 (141, 142). This ensures adequate migration and
invasion of trophoblast cells leading to appropriate placental
development. The role of γδ T cells has not yet been determined

in preeclampsia, but increases in the production of pro-
inflammatory stimuli, interferon (IFN)-γ & IL-17, by γδ T
cells have been reported in women with idiopathic recurrent
pregnancy loss (143). Furthermore, in mice, a competitive
antagonist binding of the histocompatibility complex (MHC)
class II found on the surface of Èδ T cells, resulted in the
reduction of their immunological capabilities (144). The Èδ

T cell “knockout mice” displayed a resistance to developing
preeclampsia-like features, implying that these cells could have
a role in the pathogenesis of the condition (144). In the
same study, preeclamptic placentae demonstrated significantly
increased levels of γδ T cells (144).

THE DYSREGULATION AND
OVER-ACTIVATION OF THE COMPLEMENT
SYSTEM DURING PREECLAMPSIA

The distribution and activity of the complement system’s
components vary between EOPE and LOPE, likely stemming
from their different underlying pathogeneses. Dysfunction
related to the complement system in EOPE has been correlated
with single nucleotide polymorphisms (SNPs) as demonstrated
by Wu et al. (145). More specifically, C6 (rs7444800, rs4957381)
and MASP1 (rs1108450, rs3774282, rs698106) polymorphisms
were shown to correspond independently to a risk of EOPE
and severe preeclampsia (145). Another modification to the
complement system that is unique to EOPE is the reduction in
the placental concentrations of complement 3a receptor (C3aR)
mRNA and protein (146). These reductions lead to an increase
in the plasma concentration of C3a, the ligand for this receptor
(146). Lokki et al. expanded upon these findings and compared
the activation of the complement pathways in EOPE vs. normal
pregnancies. In their cohort study of 22 women, those with
EOPE displayed higher placental deposition of C1q, specifically
proximal to areas of fibrinoid necrosis (147). They demonstrated
that 43% of EOPE cases had a gene deficiency for C4a/b, a
deficiency known to also be implicated in certain autoimmune
disorders (147). Finally, Lokki et al. noted that areas of C3b
deposition were positively correlated with C1q and negatively
with Factor H, a regulatory factor of the alternative pathway
(147). The over-activation of the complement system in EOPE
is reinforced by the rise in the plasma concentration of C5b-
9, which is indicative of terminal activation (148). C-reactive
proteins of the system, specifically, C3a, have also been found
circulating in high concentration within the amniotic fluid in
EOPE (149).

LOPE shares many characteristics with EOPE in dysregulation
of the complement system, with some key distinctions. As
in EOPE, the MASP1 gene has been shown to display SNPs,
however, in LOPE the variants indicated are rs1357134 and
rs698090 (145). The aforementioned variations in the genes are
completely different from the ones detected in EOPE cases and
are specifically correlated with LOPE (145). Examining the sera of
both EOPE and LOPE, severe preeclampsia cases revealed some
degree of activation of the complement system, as demonstrated
by Jia et al. (150). Serum levels of C1q, Factor H, C3 and C4

Frontiers in Immunology | www.frontiersin.org 9 August 2020 | Volume 11 | Article 1864

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Aneman et al. Innate Immunity in Preeclampsia

significantly decreased, while the Bb concentration increased
in the presence of either EOPE or LOPE compared to their
respective controls (150). Despite this, the concentrations of
the C-reactive proteins observed in LOPE were not significantly
different than in the EOPE cohort (150). Nevertheless, another
recent study by He et al. using similar sample size, characterized
the components of the complement system using plasma samples
from 30 EOPE and 30 LOPE patients with severe preeclampsia.
The results obtained contradicted Jia’s investigation, showing
elevated Bb, C3a, C5a, and MAC in both EOPE and LOPE,
whereas LOPE was specifically associated with elevated C1q
and C4d compared to normotensive controls (151). Lokki et al.
built upon this data, by inspecting the dissimilarities of C1q
deposition in the STB layer of the placenta of LOPE patients. This
investigation revealed that the C1q deposits negatively correlated
with Factor H, characterizing a shift toward activation within the
complement system (147).

SYNCYTIOTROPHOBLASTS PLAY
IMPORTANT ROLE IN PREECLAMPSIA

STBs form the feto-maternal placental barrier, which separates
the fetal and maternal circulations (65). The STB-containing
layer, as described above, is shed into the maternal circulation
by the placenta during normal pregnancy, releasing STBMs
(152, 153). STBMs levels were increased in EOPE compared
to matched normal pregnancies, whereas no change was
observed between LOPE and normal pregnancy samples (154).
This increase in STMBs potentially contributes to endothelial
dysfunction and systemic inflammation (155). Another study
confirmed no significant difference between levels of EVs from
various cells including STBs, in normal pregnancy compared to
LOPE (156). Further studies are needed to determine whether
this shedding is potentially more prominent in EOPE compared
to LOPE. STBM shedding has been linked to increased levels of
active tissue factor, leading to enhanced aggregation of platelets
(157). This is evident in EOPE with severe features, but not
observed in LOPE, which supports evidence suggesting two
distinct phenotypic pathogeneses. Further studies are needed
to explore if higher levels of STBMs in EOPE are due to
their prevalence being greater in early gestation, independent of
the presence of preeclampsia (153). STBMs act as ligands for
receptors, growth and coagulation factors, and RNA molecules,
and have an important role in cell-cell communication (65).
STBMs bind TLRs and activate monocytes, DCs, NK cells, and
neutrophils. The subsequent release of various inflammatory
cytokines and superoxide radicals contributes to the systemic
inflammation associated with preeclampsia (74, 88, 94, 158).

The release of sFlt-1 from STBs exerts indirect anti-angiogenic
effects by competitively blocking binding of VEGF and PIGF to
their respective receptors (158, 159). Levels of sFlt-1 are increased
in preeclampsia and can be used as a biomarker of STB stress
associated with EOPE (67, 158). LOPE does not present with
this early pathology, with studies reporting changes in angiogenic
biomarkers near term, observing similar plasma concentrations
in both normal pregnancies and LOPE, thus not providing

reliable detection of LOPE (160). Contrary to findings describing
the prominent role of STBMs, it has been suggested that
soluble factors directly released from STBs mediate endothelial
dysfunction in preeclampsia rather than EVs (161).

MSC REGULATION OF INNATE IMMUNE
SYSTEM RESPONSE IS IMPAIRED IN
PREECLAMPSIA

Increased attention has been directed toward investigating the
role of MSCs and their immunomodulatory capacity during
pregnancy and its complications. As their potential therapeutic
role in preeclampsia has been discussed elsewhere (70, 162,
163), here we discuss their contribution to irregular innate
immune system signaling in preeclampsia. MSCs are found in
many tissues, such as bone marrow, and adipose, decidual and
fetal tissue (164–166). Adipose-derivedMSCs have demonstrated
impaired function associated with senescence in women
with preeclampsia (167). Decidual MSCs mediate appropriate
placentation and ensure immune tolerance to the semi-allograft
fetus (168, 169). These decidual MSCs have the ability to decrease
NK cell cytotoxicity and cytokine production (170). This may
potentiate the transition of peripheral into decidual NK cells, a
process critical for adequate decidual function. Decidual MSCs
in addition regulate dNK through their intracellular cytokine
expression profile, including TNF-α and IL-4 and via the
interaction between collagen and LAIR-1 (171). Bone marrow-
derived MSCs are also capable of modulating NK cells by
inhibiting their proliferation, cytokine secretion, and cytotoxicity
against HLA-class I- expressing targets, either via soluble factors
or via cell-to-cell specific interactions (172, 173). A study
by Aggarwal and Pittenger showed that immunosuppressive
MSC features are associated with the inhibition of TNF-α
and IFN-γ, and the secretion of prostaglandin E2 (PGE2)
(174, 175). Notably, it has been previously suggested that the
lack of this prostaglandin in preeclampsia leads to a decrease
in both renal blood flow and sodium excretion (176). The
immunomodulatory interactions between MSCs and NK cells,
along with existing studies, provide promising results that
strengthen the potential immunomodulatory effects of MSCs.
Although MSC are considered privileged immune cells, they can
be recognized and eliminated by activated NK cells (172).

Human placental MSCs also have an immunoregulatory
effect on macrophage differentiation, favoring the expression
of the M2-immunosuppressive phenotype (177). This
immunoregulatory effect may be mediated by soluble molecules
acting partially via glucocorticoid and progesterone receptors.
MSC treatment decreases IL-6 and TNF-α, while increasing
anti-inflammatory cytokine, IL-10 (178). A previous study
has suggested that PGE2 plays an important role in the
immunoregulatory effects of MSC, indicating that M2
macrophage polarization is initiated via the COX-2-PGE2
pathway (178, 179). MSCs are the most widely used stem cell-
based therapies due to their beneficial immunomodulation, anti-
oxidant, pro-angiogenic, and regenerative therapeutic effects.
Their therapeutic potential for the prevention and treatment of
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TABLE 1 | Therapeutic strategies targeting aberrant innate immune system mechanisms implicated in preeclampsia.

Innate immunity target Treatment Mechanism Safety in pregnancy References

Macrophages Salidroside (SLDS) is a phenylpropanoid

glycoside extracted from the root of

Rhodiola rosea L

Reduction in M1 macrophage/microglia polarization and an

increase in M2 macrophage/microglia polarization in mice

Unknown (73, 181)

Macrophages Macrophages transplantation Increase in M2-polarized macrophages Risk for fetal and maternal micro-chimerism (182)

Neutrophils Maternal corticosteroid administration-

Betamethasone

Reversal of delayed neutrophil apoptosis (returning the

normal rate of spontaneous neutrophil apoptosis)

Betamethasone acetate Category C (TGA)

Betamethasone dipropionate

Category B1 (TGA)

(90)

STBM Neprilysin (NEP) inhibitors

Racecadotril (Hidrasec®)

Inhibition of STBM released, promoting vasodilatation, and

natriuresis

Category B1 (FASS) (183, 184)

Maternal microbiome Probiotic-rich food

Milk-based probiotics e.g., Lactobacillus

acidophilus and Lactobacillus rhamnosus

Consumption of probiotic-rich food during pregnancy has

been associated with lower rates of preterm birth and

preeclampsia

Probiotics have been implicated in the modification of

placental trophoblast inflammation, systemic inflammation,

and blood pressure, all features of preeclampsia

Lactobacillus could be associated with lower risk of

preeclampsia in primiparous women

Overstimulation of the innate immune system due to dysbiosis

of the maternal microbiome has been linked to preeclampsia

Generally recognized as safe (GRAS) by FDA (185–188)

IL-10 Recombinant Human Interleukin-10 Increased anti-inflammatory capacity Recombinant IL-10 reverses hypoxia-induced

effects in pregnant mice

No significant effect on fetal development in mice

(189–191)

TNFα Infliximab TNFα antagonist

Anti-inflammatory effects

Category B (FDA)

No increases in miscarriage, structural neonatal

malformations or prematurity were observed

compared with non-exposed pregnancies

(85, 192)

Complement system Ravulizumab

(Ultomiris®)

Inhibit cleavage of C5 into C5a and C5b Category B2 (FASS) (193)

TLR9 TLR9 antagonist Low-dose naltrexone

(LDN)

Reduced inflammatory activity (studied in Crohn’s disease) Category B3 (FASS) (194–196)

TLR2 & TLR4 Sparstolonin B (SsnB) derived from the

Chinese herb Spaganium stoloniferum

Blocks TLR2- and TLR4-mediated NFκB activation in mouse

macrophages induced by LPS and Pam3CSK4

Anti-angiogenic and anti-estrogen toxicity effects in

pregnant rodents

(197)

TLR4 Ibudilast Upregulation of anti-inflammatory cytokines (IL-10, IL-4)

Antagonism of TLR4

Not tested in pregnant women (198)

www.clinicaltrials.gov

(NCT01389193)

TLR9 TLR9 inhibitory oligodinucleotide

(ODN2088)

Antagonism of TLR9 associated with reduction in systolic

blood pressure

No adverse effects were observed in mice receiving

this treatment in a model of type 1 diabetes mellitus

ODN2088-treated mice gave birth to healthy pups

(199–201)

TLR4 Berberine- isoquinoline alkaloid mainly

extracted from Rhizoma Coptidis

LPS antagonist

Inhibition of LPS/TLR4 signaling

Berberine can cause or worsen jaundice in newborn

infants and could lead to kernicterus

(202–206)

TLR4/NF-κB pathway Parthenolide- Feverfew (Tanacetum

parthenium L.)

Inhibition of the TLR4/NF-κB pathway Not safe in pregnancy

Feverfew (Tanacetum parthenium L.) shows

potential emmenagogue activity and

induces abortion

(202, 207, 208)

(Continued)
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preeclampsia is emerging from a number of pre-clinical studies,
which show the ability of MSCs and their associated EVs to
abrogate symptoms and features of preeclampsia (reviewed in
(70). Their relevance specifically to EOPE and LOPE needs to be
elucidated further.

THERAPEUTIC STRATEGIES FOR
TARGETING INNATE IMMUNE SYSTEM
ABERRANT MECHANISMS AS POTENTIAL
TREATMENTS FOR PREECLAMPSIA

Finding potential novel treatments for preeclampsia is an area
of unmet clinical need and is inherently challenging. Significant
knowledge gaps exist surrounding the safety, effectiveness and
long-term effects of drugs for the use in pregnancy (180).
Clinical trials investigating therapeutics that could be potentially
repurposed for preeclampsia often have pregnancy as an
exclusion criterion because of possible teratogenic risks or other
harmful effects to the fetus (Table 1). Consequently, phase 2 or 3
trial data in pregnancy are generally lacking, making it difficult
to inform novel treatment strategies. Physiological changes occur
in nearly all organs during pregnancy and the pharmacokinetics
and pharmacodynamics of drugs are often significantly altered,
although the specific changes are mostly undetermined (212).
New micro-physiological systems technology such as “Organ on
a chip” models may in the future be used to help fill these gaps in
knowledge (213).

Dysregulation of TLRs and detection of host-derived DAMPs
contribute to the pathogenesis of preeclampsia, as described
above (214). Novel TLR antagonists, especially inhibitors of TLR4
and TLR9, have potential as exciting new therapeutic agents
for inflammatory disorders. The anti-inflammatory properties
of TLR antagonists have been explored in numerous clinical
trials for diseases such as systemic lupus erythematosus,
infection-associated sepsis and vascular disorders such as
hypertension (194), yet it is unknown if these agents are
safe to use in pregnancy. This is a research area that
therefore warrants further investigation perhaps in pre-clinical
models of preeclampsia. Many of the aforementioned immune
cells have similar unexplored potential and are presented in
Table 1. The understanding of the role of the innate immune
system in the multifactorial pathogenesis of preeclampsia
has been significantly advanced. This progress makes novel
therapeutic strategies for targeting aberrant mechanisms within
the innate immune system possible as potential treatments for
preeclampsia. To support this advancement, greater research
capacity and robust and safe clinical trials with pregnant women
are needed, with particular focus on delineating differences
in EOPE and LOPE management. Anti-inflammatory and
immunomodulatory drugs used for other diseases may not be
appropriate and safe to use in preeclampsia. It is important
to rule out drugs that are not suitable for repurposing in
order to streamline future research strategies to focus on more
viable alternatives.
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DISCUSSION

There is a plethora of evidence supporting the role of
the maternal innate immune system in the pathogenesis of
preeclampsia. Mechanisms of irregular signaling and function
of the innate immune cells could be explored as potential
biomarkers or therapeutic targets in preeclampsia. Moreover,
these cells appear to play different roles in the two phenotypes
of preeclampsia, EOPE and LOPE, which could lead to
better risk stratification and personalized management of
preeclampsia. Developing reliable predictive and diagnostic
biomarkers especially for LOPE has been challenging given that
preeclampsia is a multifactorial disease with a poorly understood
pathogenesis (215). As depicted in this review, there are a number
of different cell types, both from the innate immune system
and other supportive systems such as MSCs and STBs, which
if exhibiting irregular signaling, can lead to the development of
EOPE or LOPE, or both (Figure 2).

While in some cases quantifying a particular cell types could
be utilized as a biomarker of the disease, such as the number
of innate B1 cells or NK cells (both pNK and dNK), the
mechanisms involved are often diverse and therefore a panel of
biomarkers would be necessary to accurately predict or diagnose
preeclampsia. Given that the two phenotypes of preeclampsia
are often not considered and distinguished in research, it is
encouraging that in terms of the innate immune system, there
is important evidence emerging regarding the influence of the
innate immune system in both EOPE and LOPE. For example,
both dNK and pNK cells, as well as TLR4, are likely increased in
EOPE, whereas in LOPE there does not appear to be a difference
in these factors compared to healthy pregnancy. Another
frequently observed difference between EOPE and LOPE is the
proliferation of neutrophils and neutrophil associated processes,
with increases in NLR, elastase and NETs being much higher in
EOPE than in LOPE. Macrophages and innate B1 cells, on the
other hand, do not seem to be dysregulated differently between
EOPE and LOPE.

Despite the emergence of novel research highlighting
the differences in the behavior of certain innate immune
cells in terms of the pathogenesis of EOPE and LOPE, it is
important to acknowledge that given the complexity of this
condition, there are often inter-personal variations in both the
mechanisms and symptoms of the disease. Consequently,
these factors impose further difficulties in monitoring,
diagnosis, and treatment of preeclampsia. In light of this, it
is not surprising that there is a lack of effective treatment
strategies for this devastating pregnancy condition. A holistic
approach to disease monitoring is necessary to identify women
at high risk of developing preeclampsia in conjunction
with determining a panel of biomarkers representative
of the multifactorial nature and different phenotypes of
this disease.

Our evaluation of the existing literature describing
interactions between maternal innate immune cells and cells of
placental/uterine origin identified a number of limitations in
the field. As the heterogeneous nature of preeclampsia has only
been recently classified, there is a delay in current research, with

a limited number of studies fully examining the interplay among
innate immune cells and components of the placenta in the
context of both EOPE and LOPE. Certain cell types, nevertheless,
have been well-characterized for these two phenotypes of
preeclampsia. Evidence is lacking, however, for other cell types
of the innate immune system regarding their involvement in the
pathogenesis of preeclampsia regardless of the phenotype. These
include eosinophils, basophils, mast cells, DCs, and Langerhans
cells. It is possible that some of these do not play an important
role in the development of preeclampsia. However, given the key
roles of mast cells and DCs in pregnancy (Figure 1) and some
evidence of their roles in the placental bed in preeclampsia, albeit
with conflicting results (40), it is likely that these cells could
influence preeclampsia monitoring and treatment in the future.
A portion of the reviewed literature did examine the various cell
types discussed above, however, evidence was provided regarding
their behavior in cases of mild and severe preeclampsia, rather
than EOPE and LOPE. As a consequence, while there is currently
some literature reporting on the behavior of innate immune cell
types in preeclampsia, more substantial evidence is required to
accurately distinguish immune cell behaviors in both phenotypes
of the condition.

Carrying out research with vulnerable groups such as
pregnant women is inherently challenging and results in certain
limitations. Adherence to stringent ethical considerations and
difficulty in obtaining early placental tissue reduces the ability
of an investigation to fully elucidate the roles that the immune
cells may play in the pathogenesis of preeclampsia. Recent
developments in a number of microfluidics or 3D multicellular
platforms may greatly increase our understanding of the cellular
and molecular mechanisms of the innate immune system
associated with inadequate remodeling of spiral uterine arteries
or placental development/growth relevant to preeclampsia.
The DAX-1TM chip manufactured by AIM Biotechnology has
been demonstrated to successfully and accurately recapitulate
human tumor immune microenvironments (216). Utilizing
this microfluidics platform, investigators were able to examine
cell type dependent interactions and provide a novel insight
into the tumor immune responses (216). Utilization of these or
similar platforms might be able to reproduce the multicellular
autocrine and paracrine conditions of preeclampsia, and the
behavior of innate immune cells within the microenvironment
could be further studied. Thus, researchers can circumnavigate
the hurdles of collecting early pregnancy placental tissue while
still producing accurate and relevant data. Replicating an
EOPE or LOPE environment will be challenging given the
distinct and overlapping features of these two phenotypes
of preeclampsia. Nevertheless, additional benefits of the
microfluidics platforms include the ability to track molecular
changes in real-time and the potential to test emerging
drug treatments.

CONCLUSION

Components of the innate immune system are fully or
partially inactivated, or experience a tolerogenic shift in
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their immunological function throughout gestation. This, in
conjunction with the ability of certain placental cells to modulate
the immune system, confers a level of protection to the
developing fetus against detrimental immunological responses.
This delicate balance is disrupted in preeclampsia, leading to
the inappropriate over-activation of these immune cells, causing
disruption of appropriate placentation and contributing to the
development of this hypertensive condition with end-organ
damage. Although the dysfunction of these cells is observed in
LOPE, the imbalance appears to be most pronounced in EOPE.
While existing literature provides some evidence regarding
the roles of the innate immune cells, including NK cells and
neutrophils in EOPE and LOPE, further investigation specifically

in the context of both phenotypes of preeclampsia, is required
to address knowledge gaps. This could lead to the identification
of specific disease mechanisms, which could be explored as new
diagnostic biomarkers or treatment targets, hence improving the
management of preeclampsia and identifying potential emerging
treatments for both EOPE and LOPE.
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