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Abstract

Background: Accurate detection and estimation of true exposure-outcome associations

is important in aetiological analysis; when there are multiple potential exposure variables

of interest, methods for detecting the subset of variables most likely to have true associ-

ations with the outcome of interest are required. Case-cohort studies often collect data

on a large number of variables which have not been measured in the entire cohort

(e.g. panels of biomarkers). There is a lack of guidance on methods for variable selection

in case-cohort studies.

Methods: We describe and explore the application of three variable selection methods to

data from a case-cohort study. These are: (i) selecting variables based on their level of

significance in univariable (i.e. one-at-a-time) Prentice-weighted Cox regression models;

(ii) stepwise selection applied to Prentice-weighted Cox regression; and (iii) a two-step

method which applies a Bayesian variable selection algorithm to obtain posterior proba-

bilities of selection for each variable using multivariable logistic regression followed by

effect estimation using Prentice-weighted Cox regression.

Results: Across nine different simulation scenarios, the two-step method demonstrated

higher sensitivity and lower false discovery rate than the one-at-a-time and stepwise

methods. In an application of the methods to data from the EPIC-InterAct case-cohort

study, the two-step method identified an additional two fatty acids as being associated

with incident type 2 diabetes, compared with the one-at-a-time and stepwise methods.

Conclusions: The two-step method enables more powerful and accurate detection of

exposure-outcome associations in case-cohort studies. An R package is available to

enable researchers to apply this method.

Key words: Case-cohort study, survival analysis, variable selection, Bayesian variable selection, type 2 diabetes,

fatty acids
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Introduction

Use of the case-cohort study design has become increas-

ingly widespread in epidemiology in recent years1, often

motivated by the impracticality of obtaining measures of

all variables of interest on an entire cohort (e.g. if the vari-

ables include a panel of biomarkers which are expensive to

measure). A case-cohort study for a particular outcome

(e.g. disease or event) consists of a random subcohort se-

lected from a cohort irrespective of outcome status, using a

pre-defined sampling fraction, together with all incident

cases of the outcome. Since all cases are included, the study

has similar efficiency to a nested case-control study,2 but

with the advantage that the same random subcohort can be

used in future case-cohort studies for different outcomes.

Methods for estimating exposure-outcome associations

in case-cohort studies, using an adaptation of standard Cox

regression based on a weighted ‘pseudo-likelihood’ func-

tion, are well documented3–5 and commonly used.1

However, despite the fact that case-cohort studies often col-

lect data on a large number of variables, there is a lack of

guidance on methodology for variable selection, i.e. how to

identify the subset of variables most likely to be causally

associated with the outcome of interest. Accurate detection

and estimation of causal associations is important in aetio-

logical analysis and when there are multiple variables of

interest, to inform future replication studies. In this work

we describe and explore the application of three variable se-

lection methods to data from a case-cohort study.

The first, simplest method is to analyse each variable one-

at-a-time using Prentice-weighted Cox regression, and assess

significance using a pre-determined multiplicity-adjusted P-

value threshold. However, this ignores correlations among

variables. Consequently, the number of causal associations,

and the most suitable candidates for follow-up, is often un-

clear. For example, if a single causal variable is strongly cor-

related with many other variables, as is often the case in

genomic data, all may result in similarly significant P-values

due to confounding. Stepwise selection, the second method

we consider, can be used to account for these correlations.

However, stepwise selection procedures are well known

to be both conservative and unstable, requiring arbitrary

P-value thresholds for selection, and often leading to poten-

tially spurious selections.6–8 Therefore the third method we

investigate uses Bayesian Variable Selection (BVS), a method

based on Bayesian sparse logistic regression which has previ-

ously been developed for cohort studies.9 Sparse (or penal-

ised) regression8 is an area under active development in both

the frequentist8,10–12 and Bayesian9,13–15 frameworks, which

has been shown to result in more robust and accurate

selections than stepwise methods.7

In the next section, we describe these three methods in

more detail. Then in the section on comparison of meth-

ods, we use simulations to compare the performance of

these methods, followed by a section applying all three

methods to data from the EPIC-InterAct case-cohort study.

Three methods for variable selection in the
analysis of case-cohort studies

In the following descriptions, for an individual i, we use xi

to denote measured values of each potential exposure vari-

able of interest, and di as a binary indicator that individual

i experienced the event of interest (i.e. was a case) during

the follow-up period.

One-at-a-time method

Standard Cox regression defines a model for the hazard

function of individual i as follows:

hiðtÞ ¼ h0ðtÞebHRxi

where h0ðtÞ represents the baseline hazard function and

bHR a vector of log hazard ratios for each variable.

Key Messages

• The case-cohort study, where all cases are combined with a random subcohort, is a useful design when it is impracti-

cal to obtain measures of all variables in the entire cohort.

• There is a lack of guidance on variable selection methodology for case-cohort studies, i.e. how to detect which

exposure variables are most likely to be truly associated with the outcome.

• We compare three possible strategies for variable selection, including the use of a recently published Bayesian

variable selection (BVS) algorithm, which we have implemented in an R package.

• In simulation studies a two-step method, using BVS in the first step, demonstrated higher sensitivity and lower false

discovery rates than other (one-at-a-time and stepwise) methods.

• The methods are exemplified using real data from the EPIC-InterAct case-cohort study.
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Estimates of bHR are obtained by maximizing the partial

likelihood function:

LCoxðbHRÞ ¼
Y

i

ebHRxidiX
j2Ri

ebHRxj

Ri is the ‘risk set’ for individual i, i.e. the set of individuals

still event-free and uncensored immediately before individ-

ual i’s event occurs.

Due to the over-representation of cases in a case-cohort

study, various weighting schemes for the likelihood func-

tion have been proposed. Weights originally proposed by

Prentice3 have been demonstrated in a range of scenarios

to provide good approximations to parameter estimates

that would have been obtained if data had been available

for all individuals in the original cohort on which the case-

cohort study was based.16

Using Prentice weights, cases outside the subcohort are not

considered to be at risk until just before their event, and so

are not included in the risk sets of earlier cases. Consequently,

they only contribute to the denominator at the time of their

event; the resulting ‘pseudo-likelihood’ function is:

LPrenticeðbÞ ¼
Y

i

ebHRxidi

ebHRxi þ
X

j2Ri;j6¼i
ebHRxj

Several robust variance estimators that account for the

weighting in the pseudo-likelihood have been pro-

posed.3,5,17,18 In this paper we use the method proposed by

Prentice,3 which is the default in the ‘cch’ package in R.

We define the one-at-a-time method as fitting a separate

Prentice-weighted Cox regression model to each variable in

turn, and selecting all variables that are significant according

to some pre-defined multiplicity-adjusted P-value threshold.

Stepwise selection method

Stepwise selection aims to account for correlations be-

tween variables by using multivariable models to identify

combinations of variables which are significantly associ-

ated with the outcome. We explore the use of a forward

stepwise selection for Prentice-weighted Cox regression.

The procedure is as follows.

i. Starting with no variables in the model, we fit a separ-

ate univariable Prentice-weighted Cox model including

each variable one by one. The variable (assuming there

is one) with the most statistically significant P-value

below a pre-defined inclusion threshold is selected.

ii. We fit separate multivariable Prentice-weighted Cox

models including the variable selected at stage 1 and

adding each remaining variable one by one. Of the re-

maining variables, the variable (assuming there is one)

with the most statistically significant P-value below the

inclusion threshold is selected.

iii. If a variable was added to the model at step (ii), all pre-

viously selected variables are checked to see if they still

reach the inclusion threshold, and are dropped one by

one if not, starting with the least significant.

iv. Steps (ii) and (iii) are repeated until none of the re-

maining variables have a P-value below the inclusion

threshold when added to the model including the pre-

viously selected variables.

A common criticism of the stepwise variable selection is

the arbitrariness in selecting a P-value threshold for inclu-

sion. Here we will adopt the widely used threshold of 0.05

as default, but also consider results under a more liberal

threshold of 0.1.

Two-step Bayesian Variable Selection method

Step 1. Sparse BVS using multivariable logistic regression

Recall that xi denotes the measurements of all available

variables for individual i. Under a multivariable logistic re-

gression, the probability pi that individual i’s event is

observed (i.e. di ¼ 1Þ is modelled as a log odds:

logitðpiÞ ¼ log
pi

1� pi

� �
¼ aþ bORxi

where bOR is a vector containing log-odds ratios for each

of the measured variables. Logistic regression provides

valid odds ratios for both prospectively collected data (e.g. a

cohort study with a population-representative number of

incident cases) and retrospectively collected data (e.g. a case-

control study with equal numbers of cases and controls).

Therefore logistic regression is applicable to case-cohort data,

without the need for weighting to reflect over-representation

of cases relative to the general population.

The multivariable logistic regression defined above in-

cludes all available variables. If there is a large number of

variables, then the limited amount of information in the data

will be spread too thinly and the significance of odds ratios

will be unreliable and, in statistical terms, ‘over-fitted’ to the

dataset at hand. Using a BVS algorithm, we model the prob-

ability that each variable v is selected, i.e. the corresponding

log-odds ratio, bOR;v, and x values are included in the multi-

variable regression. A sparse prior distribution is assumed

for each variable’s selection probability, reflecting the belief

that most variables will be irrelevant. This leads to the exclu-

sion of many variables and thus reduces the problem of over-

fitting, leading to more reliable inference on the relative sig-

nificance of associations. BVS allows the calculation of pos-

terior probabilities that each variable is selected, as well as

probabilities for combinations of variables. A variety of
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formulations have been proposed;19–21 here we use

Reversible Jump Markov Chain Monte Carlo (RJMCMC).22

Specifically, we assign a Beta prior distribution to the pro-

portion of variables selected, h:

h � Betað1;PÞ

where P is the total number of variables. The marginal prior

odds of any single variable being selected is 1=P, and there-

fore decreases with the total number of variables explored,

providing an intrinsic correction for multiplicity.23 Further

technical details on the Reversible Jump variable search al-

gorithm we used are given in Newcombe et al.9

In addition to posterior probabilities of association, a

‘Bayes Factor’ for each variable can be calculated as the

posterior odds of selection divided by the prior odds of se-

lection. Intuitively, higher values of this ratio imply greater

evidence of an association. Thresholds of 3–5 have been

recommended for assessment of statistical significance.24

Note that we use the logistic model for Bayesian vari-

able selection since we are not aware of any methodology

that allows formal Bayesian inference to be drawn under a

‘pseudo’ likelihood with weights to reflect the over-

representation of cases in case-cohort data. As explained

above, the logistic model is valid in case-cohort data with-

out the need for weighting. We chose not to use a standard

Bayesian survival model, i.e. without weighting, since the

resulting bias in hazard ratios from ignoring the case-

cohort design would lead to inaccurate variable selections.

Instead we estimate hazard ratios using a (non-Bayesian)

weighted Cox regression in a second step, described below.

Step 2. Estimation of hazard ratios using multivariable

Prentice-weighted Cox regression

Having identified a set of significant variables in Step 1, for

example using a Bayes Factor threshold of 5, hazard ratios

for each of these variables (adjusted for the others) can then

be estimated by including them in a multivariable Prentice-

weighted Cox model. Logistic regression assumes the cen-

soring times are independent of the failure time and covari-

ates x, whereas (Prentice-weighted) Cox regression requires

the weaker assumption of independence only with the fail-

ure times. Therefore, we recommend leveraging the event

times and censoring data, which are ignored by logistic re-

gression, in the final estimation of effects.

Comparison of methods using simulation

Data-generating mechanisms

To compare the three methods described in above, we gen-

erated datasets for various scenarios, based on different

numbers of variables and different sizes of correlations be-

tween variables. The assumptions for each scenario are

summarised in Table 1.

We considered M¼ 20, 100 or 1000 variables. For each

member of a cohort of 20 000 individuals, we generated the

values of the M variables from a multivariate normal distri-

bution with zero means, unit variances and, in separate

scenarios, correlation 0.2 (weak correlation), 0.5 (moderate

correlation) or 0.8 (strong correlation) between each pair of

variables. Each combination of M and strength of pairwise

correlation led to nine simulation scenarios in total.

In every scenario, five variables were assumed to be truly

associated with the outcome, and assigned log hazard ratios

(log HRs) ranging in magnitude from log(1.1) to log(2) in

equal steps (on a log scale), but with alternating directions,

so there were three positive and two negative associations.

Survival times were then generated based on these HRs and

a baseline Weibull(30,4) hazard function, as used in Jones

et al.25 Survival times were right-censored at a fixed time C,

chosen so that 5% of events occurred before C for each scen-

ario. Random censoring times were generated from an expo-

nential distribution with rate –log(0.9)/C such that �10% of

individuals were censored before C.

For each scenario we simulated data for 200 cohort

studies, from which case-cohort datasets were generated,

using a subcohort sampling fraction of 5%. The case-

cohort datasets included on average 918 cases and 954

non-cases.

Sensitivity and false discovery rate

We compared the three variable selection methods in terms

of sensitivity, i.e. the proportion of ‘signal’ variables which

were detected, and false discovery rate, i.e. the proportion

of selected variables which were in fact ‘noise’ variables.

For each scenario and method, the sensitivity over 200

simulations is shown in Table 2. For a fair comparison, the

P-value threshold for the one-at-a-time method and

the posterior probability threshold for the BVS method

were chosen so that the resulting false discovery rates were

the same as that of the stepwise method. Therefore,

we compare sensitivity across the methods at a fixed false

discovery rate.

The one-at-a-time method resulted in consistently lower

sensitivity than the multivariable stepwise approach, in all

scenarios. This clearly demonstrates a loss of efficiency

from ignoring correlations between variables. The BVS

method consistently resulted in the highest sensitivity, par-

ticularly for the scenarios involving 100 and 20 covariates

where absolute sensitivity was increased by more than 5%

and 10% relative to the stepwise method. Any loss of in-

formation due to ignoring times to event in the logistic
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BVS approach is apparently outweighed by use of a super-

ior multivariable search strategy.

We also compared the false discovery rates of the three

methods (Table 3) when the P-value and posterior prob-

ability thresholds for the one-at-a-time and BVS methods

were used that resulted in the same sensitivity as the step-

wise method. False discovery rates were similar for the

BVS and stepwise methods in the 20 variable scenarios.

However, the BVS selections consistently resulted in lower

false discovery rates (often markedly so) for the harder 100

and 1000 variable scenarios. As expected, the one-at-a-

time method had a higher false discovery rate than both

multivariable methods.

Relative patterns of performance among the frame-

works were not materially changed when a more liberal

P-value inclusion threshold of 0.1 was used in the stepwise

selection procedure (Supplementary Tables 1 and 2,

available as Supplementary data at IJE online); the

BVS method continued to offer the best discrimination

of signal to noise variables in terms of both sensitivity

and specificity.

Application of the methods to data from the
EPIC-InterAct case-cohort study

We exemplify the three variable selection methods using

data from 777 incident type 2 diabetes (T2D) cases and a

subcohort of 972 individuals (including 28 of the T2D

cases) from one of the centres (Cambridge, sampled from

23 081 individuals with stored blood) contributing to the

EPIC-InterAct case-cohort study. In this example, each

Table 1. Assumptions used to generate artificial datasets used in the comparison of methods

Scenario Number of

variables

Pairwise

correlations

Number of

signals

HR

signals

Baseline hazard

function

1 20 0.2

2 20 0.5

3 20 0.8

4 100 0.2

5 100 0.5 5 1.1, 0.78, 1.48, 0.58, 2 Weibull(30,4)

6 100 0.8

7 1000 0.2

8 1000 0.5

9 1000 0.8

Table 2. Sensitivity of variable selection methods, for each

scenario

Method Pairwise correlation between all variables

0.2 0.5 0.8

5 signals among 20 variables

One-at-a-time* 0.76 (0.01) 0.48 (0.01) 0.44 (0.01)

Stepwise 0.76 (0.01) 0.72 (0.01) 0.59 (0.01)

Two-step BVS* 0.89 (0.01) 0.84 (0.01) 0.73 (0.01)

5 signals among 100 variables

One-at-a-time* 0.69 (0.01) 0.44 (0.01) 0.40 (0.01)

Stepwise 0.76 (0.01) 0.71 (0.01) 0.59 (0.01)

Two-step BVS* 0.84 (0.01) 0.78 (0.01) 0.66 (0.01)

5 signals among 1000 variables

One-at-a-time* 0.64 (0.01) 0.41 (0.00) 0.34 (0.01)

Stepwise 0.77 (0.01) 0.70 (0.01) 0.56 (0.01)

Two-step BVS* 0.79 (0.01) 0.73 (0.01) 0.58 (0.01)

Mean sensitivity, the proportion of true signals selected, is displayed for

200 simulations with the corresponding Monte Carlo errors in brackets.

*Selection thresholds chosen to match the false discovery rate of the step-

wise method in each simulation, for which a nominal P-value inclusion

threshold of 0.05 was used.

Table 3. False discovery rates of variable selection methods,

for each scenario

Method Pairwise correlation between all variables

0.2 0.5 0.8

5 signals among 20 variables

One-at-a-time* 0.09 (0.01) 0.58 (0.02) 0.40 (0.02)

Stepwise <0.01 (<0.01) <0.01 (<0.01) 0.01 (<0.01)

Two-step BVS* <0.01 (<0.01) <0.01 (<0.01) <0.01 (<0.01)

5 signals among 100 variables

One-at-a-time* 0.25 (0.02) 0.77 (0.02) 0.67 (0.02)

Stepwise 0.01 (<0.01) 0.03 (0.01) 0.08 (0.01)

Two-step BVS* <0.01 (<0.01) 0.01 (<0.01) 0.01 (<0.01)

5 signals among 1000 variables

One-at-a-time* 0.53 (0.03) 0.93 (0.01) 0.78 (0.02)

Stepwise 0.07 (0.01) 0.14 (0.01) 0.27 (0.01)

Two-step BVS* 0.01 (<0.01) 0.01 (<0.01) 0.06 (0.01)

Mean false discovery rate, the proportion of noise variables selected, is dis-

played for 200 simulations with the corresponding Monte Carlo errors in

brackets.

*Selection thresholds chosen to match the sensitivity of the stepwise

method in each simulation, for which a nominal P-value inclusion threshold

of 0.05 was used.
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individual has values of nine saturated fatty acids and 11

polyunsaturated fatty acids, measured in plasma phospho-

lipids. The prospective associations between each of these

fatty acids and incident T2D have already been published

for the full EPIC-InterAct study;26,27 further information

about the study design is also included in these papers.

Figure 1 presents the –log10(P-value) for each fatty acid

from the one-at-a-time and stepwise methods, and poster-

ior probabilities of selection from the BVS method. All

analyses were adjusted for age and sex. Eight fatty acids

were significant according to a Bonferroni threshold (0.05/

20¼ 0.0025) using the one-at-a-time method, whereas the

forwards stepwise algorithm selected six fatty acids using a

P-value inclusion threshold of 0.05 and an additional

seventh fatty acid using an inclusion threshold of 0.1.

Accounting for correlations in the multivariable stepwise

framework, four fatty acids were ruled out under both in-

clusion thresholds, and two fatty acids were included

which had not been significant using the one-at-a-time

method: c202n6 and c180. There were substantial correl-

ations between the fatty acids (Supplementary Figure 1,

available as Supplementary data at IJE online) which, in

the presence of multiple signals, can cause both exagger-

ation and attenuation of signals in one-at-a-time analysis.

The significant associations revealed for c202n6 and c180

when accounting for correlations were further supported by

the BVS method, which also provided strong evidence of as-

sociation for both these fatty acids. Notably, c202n6 had a

Figure 1. Results from application of three variable selection methods to data from the EPIC-InterAct case-cohort study. Panel A) shows the log10(P

value) for each fatty acid from one-at-a-time Prentice-weighted Cox regression models; the dashed line indicates the Bonferroni significance threshold

(0.05/20 =0.0025) . Panel B) shows the log10(P values) for the combination of fatty acids selected using the stepwise method according to inclusion

thresholds of P=0.05 and P=0.1. Panel C) shows posterior probabilities of selection using the BVS method; the dashed line indicates a Bayes Factor of 5.
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P-value of 0.23 from the one-at-a-time method [HR: 0.94

95% confidence interval (CI): (0.85, 1.04)] but was signifi-

cant using the BVS method [HR: 0.80 95% CI: (0.69, 0.92),

posterior probability 1, Bayes factor 1]. In total, 12 fatty

acids had significant inclusion probabilities (based on Bayes

Factor >¼ 5) using the BVS method. There was strong evi-

dence for two additional fatty acids which were not signifi-

cant using the one-at-a-time or stepwise methods: c140 and

c225n3. Table 4 shows the estimated associations for the 12

fatty acids selected by the BVS method.

Discussion

We have described a two-step method for variable selection

in case-cohort studies, combining a multivariable BVS algo-

rithm in the first step with Prentice-weighted Cox regression

in the second step. In simulations based on artificial datasets

including up to 1000 variables, this method provided sub-

stantial improvements in sensitivity and false discovery rate

compared with either one-at-a-time or simple stepwise

approaches. We have also demonstrated the applicability of

the method to real data from a case-cohort study.

The BVS method uses a logistic regression model in the

first step, which ignores time to event data. Our simulations

and real data example both indicate that any power loss

from ignoring time to event data is outweighed by the use

of a superior variable selection algorithm, relative to

stepwise selection using multivariable weighted Cox

models. This is consistent with Staley et al. (submitted),

who report similar findings comparing logistic and

Prentice-weighted Cox regression analyses of data from

genome-wide association studies, and other recent work

that suggests the efficiency loss from using logistic regres-

sion compared with Cox regression is low.28

A penalized regression-based variable search strategy

was recently described for a likelihood function modified

for a case-cohort study.29 However, without associated

published software, it seems unlikely that this method will

be a viable option for applied researchers and so we did

not consider it further here. Moreover, an attractive fea-

ture of BVS compared with Lasso-type penalized regres-

sion methods, and why we explored BVS here, is that

interpretable measures of significance are obtained for all

variables. This would enable prioritization of significant

findings for planning follow-up studies.

The variable selection frameworks we explored

assumed additive models, i.e. searched for main effects of

continuous or binary variables but not interactions.

Searching for interactions in a high-dimensional variable

space is a very challenging problem. In the future we plan

to explore extensions to the BVS framework incorporating

recently proposed sparse regression methodology capable

of exploring interactions, such as that by Lim and

Hastie.30 Searching over variables with multiple categories

would also require a modification of the current algorithm.

However, any number of known confounders (including

categorical variables) may be accounted for by fixing them

in the BVS model while searching over other predictors

(which is equivalent to ascribing the confounders a prior

inclusion probability of one).

In summary, we propose that the two-step BVS method

should be used in analysis of a case-cohort study where the

aim is to detect associations of multiple variables with the

outcome. Software to implement the method is freely avail-

able in the R2BGLiMS R package, available via github,

and an example script is provided in the Appendix, avail-

able as Supplementary data at IJE online.

Supplementary Data

Supplementary data are available at IJE online.
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