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Ranolazine is clinically approved for treatment of angina pectoris and is a potential
candidate for antiarrhythmic, antiepileptic, and analgesic applications. These therapeutic
effects of ranolazine hinge on its ability to inhibit persistent or late Na+ currents in
a variety of voltage-gated sodium channels. Extracellular acidosis, typical of ischemic
events, may alter the efficiency of drug/channel interactions. In this study, we examined
pH modulation of ranolazine’s interaction with the cardiac sodium channel, Nav1.5.
We performed whole-cell path clamp experiments at extracellular pH 7.4 and 6.0 on
Nav1.5 transiently expressed in HEK293 cell line. Consistent with previous studies,
we found that ranolazine induced a stable conformational state in the cardiac sodium
channel with onset/recovery kinetics and voltage-dependence resembling intrinsic slow
inactivation. This interaction diminished the availability of the channels in a voltage- and
use-dependent manner. Low extracellular pH impaired inactivation states leading to an
increase in late Na+ currents. Ranolazine interaction with the channel was also slowed
4–5 fold. However, ranolazine restored the voltage-dependent steady-state availability
profile, thereby reducing window/persistent currents at pH 6.0 in a manner comparable
to pH 7.4. These results suggest that ranolazine is effective at therapeutically relevant
concentrations (10 μM), in acidic extracellular pH, where it compensates for impaired
native slow inactivation.
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INTRODUCTION
Ranolazine is a piperazine derivative that was clinically approved
by the FDA in 2006 for treatment of angina pectoris. It decreases
late sodium currents (INa) through cardiac sodium channel,
Nav1.5, and thereby reduces calcium influx through the sodium-
calcium exchanger NCX during reverse mode activity (Sossalla
et al., 2008). Recently, more potential applications for ranolazine
have been explored and reported. Ranolazine demonstrated
antiarrhythmic properties in both atria and ventricles (Wu et al.,
2004; Undrovinas et al., 2006; Burashnikov et al., 2007; Dobrev
and Nattel, 2010). The proposed basic mechanism underlying
ranolazine’s antiarrythmic action in ventricles is inhibition of
late INa (Wasserstrom et al., 2009; Undrovinas et al., 2010). In
the atria, use-dependent inhibition of peak INa as well as IKr is
thought to play an important role in treatment of atrial fibrilla-
tion, in addition to suppression of late INa (Burashnikov et al.,
2007; Sossalla et al., 2010). Additionally, ranolazine displayed car-
dioprotection during ischemia (Hale et al., 2006, 2008; Stone
et al., 2010), and effectively diminished late INa in Long QT syn-
drome type 3 mutations (Fredj et al., 2006; Moss et al., 2008;
Kahlig et al., 2010; Huang et al., 2011).

Ranolazine may also be effective in non-cardiac tissue. It
blocks the skeletal muscle sodium channel, Nav1.4, (Wang et al.,
2008) and shows increased potency for paramyotonia congenita
mutants (El-Bizri et al., 2011). Ranolazine inhibits neuronal
channels, Nav1.7 (Rajamani et al., 2008; Wang et al., 2008) and

Nav1.1, (Kahlig et al., 2010) and shows potent reduction of persis-
tent currents in GEFS+, SMEI, and FHM3 mutants (Kahlig et al.,
2010). Ranolazine also decreases cell excitability of dorsal root
ganglion neurons (Estacion et al., 2010; Hirakawa et al., 2012),
thus demonstrating an analgesic utility in the treatment of neu-
ropathic pain (Gould et al., 2009). We previously reported the
effects of ranolazine on the brain isoform, Nav1.2 at normal and
acidic extracellular pH (Peters et al., 2013).

Similar to local anesthetic drugs, ranolazine’s action on
voltage-gated ion channels (including some Ca2+ and K+ chan-
nels, see Antzelevitch et al., 2011, for review) involves use-
dependent as well as tonic block. However, therapeutic benefits
of ranolazine for cardioprotection in ischemic conditions are
attributed to its distinctive ability to diminish late sodium current
in a variety of channels (Belardinelli et al., 2006). Ranolazine’s
IC50 for peak INa in Nav1.5 is reported to be several hun-
dred μM, while late Na+ current is inhibited in the 7–10 μM
range (Rajamani et al., 2009; Antzelevitch et al., 2011), close
to therapeutically achieved plasma concentrations (2 ÷ 6 μM,
Chaitman, 2006; 5.8 μM, Antzelevitch et al., 2011). Thus, while
not exhibiting prominent isoform specificity, ranolazine possesses
an intriguing type of functional specificity.

In the present study we examined effects of ranolazine on car-
diac sodium channel Nav1.5 transiently expressed in HEK293
cells as well as the effects of extracellular acidification to pH 6.0,
typically exhibited during myocardial ischemia (Maruki et al.,
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1993), on drug channel interaction. We suggest the capacity of
ranolazine to inhibit late INa at therapeutically relevant concen-
trations (10 μM) may be related to its ability to potentiate slow
inactivation. Ranolazine shifts the midpoint of the steady-state
availability curve to more hyperpolarized voltages, accelerates
entry into, and slows recovery from, a conformational state that
shares kinetic- and voltage-dependent profiles of Nav channel
slow inactivation. Extracellular acidification impairs inactiva-
tion states of Nav1.5, including slow inactivation, leading to an
increase in persistent current. Ranolazine remedies this defi-
ciency, restoring inactivation over a time course of seconds to tens
of seconds.

METHODS
EXPRESSION OF hNaV1.5 IN HEK293 CELLS
The human variant of the cardiac sodium channel, hNav1.5,
was in the pRC-CMV vector (A.L. George, Vanderbilt University,
Nashville, TN). Rat β1 subunit was in the pBK/CMV vector.
HEK293 cells were cultured using media comprising DMEM
(Gibco), FBS 20% (Gibco), and 10,000 U penicillin/streptomycin
solution (Sigma). Cells were transiently transfected (Polyfect,
Qiagen) with the hNav1.5 α-subunit, β1 subunit, and enhanced
Green Fluorescent Protein (pEGFP, graciously provided by Brett
Adams, Utah State University, Logan, UT) to identify channel
expression. Fluorescing cells were used for recording 24–36 h after
transfection.

MATERIALS
Ranolazine was obtained from Gilead Sciences (Foster City, CA)
in powder form, diluted to 100 mM stock in 0.1 M HCl, aliquoted
at 10 mM and stored at −20◦C. Working concentrations of 10 or
100 μM were freshly prepared in bath solution. pH was readjusted
before performing electrophysiological experiments.

ELECTROPHYSIOLOGY
Ionic currents were measured with whole-cell patch clamp using
an EPC-9 amplifier, an ITC-16 interface, and an iMac running
Patchmaster (HEKA, Lambrecht, Germany). Data were sampled
at 50 kHz and low pass filtered at 10 kHz. Pipettes were made from
borosilicate glass (Sutter Instruments, Novato, CA), coated with
dental wax, and fire polished to a resistance of 1–1.5 M�. Series
resistance, Rs, was typically 3 M� or less, Rs greater than 3 M�

was compensated by 60–75%. Only cells with a seal resistance of
1 G� or greater were used. All measurements were conducted at
room temperature (22◦C).

The pipette solution contained (in mM): 130 CsF, 10 NaCl,
10 EGTA, and 10 HEPES adjusted to pH 7.4 with CsOH. The
extracellular saline contained (in mM): 140 NaCl, 4 KCl, 2 CaCl2,
1 MgCl2, and 10 HEPES (pH 7.4) or MES (pH 6.0). pH was
adjusted with CsOH.

A −130 mV holding potential was used for most voltage
protocols except 10 and 25 Hz use-dependent trains, where an
intermittent −100 mV resting potential was used between test
pulses. We recognize −130 mV is more negative than the phys-
iological resting potential in cardiac myocytes of −80 mV and
the pathological resting potential of −65 mV during ischemia
and we thus may miss some physiologically relevant information.

However, the nature of our measurements require the chan-
nels to be in a “ground” state in which they are all closed and
fully recovered from inactivation. All test pulses were to −10 mV.
Cells were perfused at the holding potential for 5 min after
whole-cell configuration was achieved before recordings started
to allow dialysis of internal solution and stabilization of cur-
rent amplitude. In matched pair experiments (Figure 7: ramps;
Figure 9: tonic block and steady-state slow inactivation) con-
trol data were obtained first, followed by perfusion of cells
for 5 min with either 10 or 100 μM ranolazine while hold-
ing at −130 mV. Voltage protocols were then repeated in the
presence of ranolazine. This procedure minimized run down
and gradual deterioration of the seal during prolonged record-
ings. A −P/4 leak subtraction was used for most protocols
except use-dependent trains, ramps, and slow inactivation kinet-
ics protocols. Details of voltage pulse protocols are given in
the figure legends. Fit parameters are reported in Tables A1–A9
(Appendix).

Student’s t-tests with two-tailed p-values were used for sta-
tistical analysis using the Instat software package (GraphPad
Software, San Diego, CA). Results are presented as means ± SEM
unless otherwise stated. Statistical significance is assumed to be
p < 0.05 if not specifically given.

RESULTS
ACTIVATION AND FAST INACTIVATION
We examined the effects of extracellularly applied ranolazine
on Nav1.5, transiently co-expressed in HEK293 cells along
with the β1 subunit and eGFP marker. We studied ranolazine
action in two different extracellular pH conditions: pH 7.4
(Figures 1A,B) corresponding to normal physiological conditions
and pH 6.0 (Figures 1C,D) that approximates extracellular pH
during ischemic cardiac events.

Consistent with our previous studies (Jones et al., 2011; Vilin
et al., 2012) and others (Murphy et al., 2011), we observed a
∼7 mV depolarizing shift in the voltage-dependence of activation
at pH 6.0 (Figure 1; Table A1). At pH 7.4, the presence of 10 or
100 μM ranolazine in the extracellular solution caused a small but
statistically significant depolarizing shift of the activation curves.
Ranolazine did not significantly affect the V1/2 of activation at pH
6.0 compared to Ranolazine at pH 7.4.

Open-state fast inactivation kinetics were quantified by fit-
ting current decay with an exponential function from test
pulses between −20 and +10 mV (Figure 1B, inset; Table A2).
Acidic pH significantly slowed channel fast inactivation. 100 μM
ranolazine did not significantly affect fast inactivation time con-
stants at either pH.

Steady-state fast inactivation was assessed after 500 ms con-
ditioning pulses to voltages from −130 to +10 mV (Figure 2).
Acidic pH caused a ∼10 mV depolarizing shift of the V1/2 with
no effect on the apparent valence (Table A3). 100 μM ranolazine
did not significantly shift the V1/2 or apparent valence at either
pH.

We next studied the kinetics of fast inactivation recovery
after a 500 ms conditioning pulse to −10 mV measured by 20 ms
test pulses to −10 mV applied at various intervals (Figure 3).
Consistent with previous studies (Jones et al., 2011; Vilin et al.,
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FIGURE 1 | Voltage-dependence of activation and open-state

inactivation time constants. Representative currents in response to
20 ms depolarizations in 10 mV steps from −130 mV at extracellular pH
7.4 (A) and 6.0 (C) in drug-free conditions (black) and with 100 μM
ranolazine (red). (B) Conductance-voltage relationships at pH 7.4 in control
(open black circles), 10 μM ranolazine (solid green triangles), and 100 μM
ranolazine (solid red circles). (D) Conductance-voltage relationships at pH

6.0 in control (open black squares), 10 μM ranolazine (solid green
triangles), and 100 μM ranolazine (solid red squares). Fit parameters are
summarized in Table A1. (B, inset) Time constants of open-state
inactivation were obtained by fitting current decay with a single
exponential function in control (open black symbols) and with 100 μM
ranolazine (solid red symbols) at pH 7.4 (circles) and 6.0 (squares). Time
constants are reported in Table A2.

FIGURE 2 | Steady-state fast inactivation induced by 500 ms

conditioning pulses ranging from −130 mV to +10 mV in 10 mV

intervals and measured by a test pulse to −10 mV. Channels were held
at −130 mV for 10 s between sweeps. pH 7.4 control (open black circles)
differed significantly from pH 6.0 control (open black squares). 100 μM
ranolazine had no effect on steady-state fast inactivation (pH 7.4, solid red
circles; pH 6.0, solid red squares). Fit parameters are summarized in
Table A3.

2012), we detected accelerated fast inactivation recovery kinetics
at pH 6.0 (Table A4). Interestingly, 100 μM ranolazine induced a
profound slow component of recovery at pH 7.4, but not at pH
6.0 (Figures 3A,B).

USE-DEPENDENT INHIBITION BY RANOLAZINE
We next examined the extracellular pH effects on use-dependent
channel inactivation and block by ranolazine. At first, we used
high frequency depolarization trains (10 and 25 Hz, Figure 4)
that many studies employ to assess use-dependent block by
ranolazine, local anesthetics, and other compounds with state-
dependent action (Fredj et al., 2006; Kahlig et al., 2010; El-Bizri
et al., 2011; Huang et al., 2011; Hirakawa et al., 2012).

In the presence of 100 μM ranolazine at pH 7.4, a series of
100 pulses produced 67 ± 1% peak current inhibition at 10 Hz
and 74 ± 3% at 25 Hz (Table A5). At pH 6.0 the degree of use-
dependent inhibition by ranolazine was significantly reduced at
both pulsing frequencies. This result correlates with our obser-
vation of drug-induced slow recovery component at pH 7.4,
but not at pH 6.0 (Figure 3). Use-dependent inhibition devel-
oped 4–5 fold slower at pH 6.0 than at pH 7.4, and sub-
sequently did not reach steady-state equilibrium within 100
pulses.

To assess the pH-dependence of ranolazine effect at more
physiologically relevant conditions, we applied trains of 500
pulses 300 ms in length at 1 Hz, roughly corresponding to
cardiac action potential frequency and duration (Figure 5).
pH 6.0 significantly slowed inhibition kinetics by 100 μM
ranolazine (Figure 5, Table A6). Interestingly, use-dependent
block by 100 μM ranolazine reached similar magnitudes at pH
7.4 and 6.0 by the 500th pulse (pH 7.4: 51 ± 4%; pH 6.0:
50 ± 4%).
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FIGURE 3 | Fast inactivation recovery at −130 mV. Fast inactivation was
induced by a 500 ms conditioning pulse to −10 mV. Cells were then
hyperpolarized to −130 mV for 0–1000 ms and current measured with a −10 mV
test pulse was plotted as a function of recovery pulse duration and fitted with a

double exponential function. (A) pH 7.4 in control (open black circles), 10 μM
ranolazine (solid green triangles), and 100 μM ranolazine (solid red circles). (B)

pH 6.0 in control (open black squares), 10 μM ranolazine (solid green triangles),
and 100 μM ranolazine (solid red squares). Fit parameters are in Table A4.

FIGURE 4 | Use-dependent inactivation induced by one hundred 5 ms

pulses to −10 mV applied at 10 Hz (A,C) or 25 Hz (B,D) from holding

potential −100 mV at extracellular pH 7.4 (A,B) and 6.0 (C,D). Error bars

removed for clarity. Use-dependence in presence of 100 μM ranolazine (red
symbols) was fit with single exponential function (solid lines). Fit parameters
are reported in Table A5.
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FIGURE 5 | Use-dependent inactivation by trains of five hundred

300 ms pulses to −10 mV applied at 1 Hz from holding potential

−130 mV at extracellular pH 7.4 (A) and 6.0 (B). Error bars removed

for clarity. Data in 100 μM ranolazine (red symbols) was fit with double
exponential functions (solid lines). Fit parameters are summarized in
Table A6.

RANOLAZINE EFFECTS ON LATE SODIUM CURRENT AND WINDOW
CURRENT
The clinical benefits of ranolazine are predominantly ascribed to
its ability to block late or window Na+ currents (Reddy et al.,
2010; Antzelevitch et al., 2011). We measured late sodium current
(late INa) with 50 ms depolarizations to −10 mV from a holding
potential of −130 mV (Figure 6). Fifty sweeps were averaged to
improve the signal to noise ratio. In line with previous studies
(Magyar et al., 2004; Huang et al., 2011) we found that Nav1.5
channels exhibit a very small late INa at pH 7.4 (0.94 ± 0.34% of
peak current amplitude). In the presence of 100 μM ranolazine,
we observed a small reduction of late INa (0.73 ± 0.17%). This
effect was, however, not statistically significant (p > 0.05).

Extracellular pH 6.0 substantially reduces Nav channel peak
current amplitude (Jones et al., 2011; Murphy et al., 2011; Vilin
et al., 2012). When normalized to peak current, late INa was sig-
nificantly increased to 3.4 ± 0.6% at pH 6.0 (Figure 6). Addition
of 100 μM ranolazine to the extracellular solution significantly
reduced the relative late INa to 1.1 ± 0.4% (p < 0.01).

Window currents arise due to partial activation and incom-
plete inactivation of voltage-gated ion channels at intermediate
membrane potentials. To examine the effects of ranolazine on
window currents, we applied 0.3 mV/ms ramps before and after
perfusion of 100 μM of the drug (Figure 7). Fifty sweeps were
averaged to improve the signal to noise ratio (Figure 7A). In these
matched recordings, 100 μM ranolazine significantly reduced
inward sodium influx (pH 7.4: 44 ± 7%; pH 6.0: 31 ± 6%). The
difference between reduction of window currents at pH 7.4 and
6.0 was not statistically significant. The effect of 10 μM ranolazine
was significant at pH 7.4 (23 ± 3%, p = 0.02), but not at pH 6.0
(10 ± 4%, p > 0.05).

EFFECTS OF RANOLAZINE ON SLOW INACTIVATION
We studied the effects of acidic pH on ranolazine modulation
of slow inactivation. The kinetics of onset and recovery from

slow inactivation states and ranolazine block were assessed using
a triple pulse protocol. Cells were given conditioning pulses
to −10 mV varying in length from 500 ms to 64 s, followed
by a −130 mV recovery pulse. Available current was measured
with 5 ms test pulses to −10 mV applied at 20, 100, 500 ms,
2, 5, 15, 30 and 60 s after the end of the conditioning pulse
(Figure 8). Here we report data from the 100 ms and 2 s recov-
ery intervals (Figures 8A–D). These recovery periods allowed us
to concurrently assess the slow inactivation onset and the onset of
ranolazine block.

In drug-free conditions, slow inactivation onset followed a
single exponential time course that was faster at pH 7.4 (τ1 =
7.0 ± 0.5 s, Figure 8A, open circles) than at pH 6.0 (τ1 = 11.2 ±
0.5 s, Figure 8C, open squares). Ranolazine causes an additional
decrease in test pulse current amplitudes (Figures 8A–D, solid
symbols). This reduction of channel availability in the pres-
ence of the drug was fitted with a double exponential function
(Table A7). The onset of ranolazine block can be measured best
with the 2 s recovery pulse. This time interval allowed near
complete recovery from native slow inactivation but not from
ranolazine block (Figures 8B,D). The drug-induced time con-
stant of onset was significantly faster at pH 7.4 (100 μM: 3.0 ±
0.3 s, Figure 8B, solid circles) than at pH 6.0 (100 μM: 18 ± 2 s,
Figure 8D, solid squares). We also observed a statistically sig-
nificant effect of 10 μM ranolazine at pH 6.0 (Figures 8C,D;
Table A7).

Recovery from slow inactivation and ranolazine block was
observed after 8 or 32 s conditioning pulses (Figures 8E–H).
Recovery followed double exponential kinetics in all conditions
(Table A8). In drug-free conditions, recovery was faster at low
pH. A distinct ultra slow recovery component developed in the
presence of ranolazine. Interestingly, this drug-induced compo-
nent of recovery was 4–5 fold slower at pH 6.0 than at pH 7.4.
Thus, acidic pH not only impairs native Nav1.5 slow inactiva-
tion but also affects the interaction between the channel and
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FIGURE 6 | Late Na+ current during 50 ms depolarization to −10 mV

from a −130 mV holding potential. Representative traces from
recordings at extracellular pH 7.4 and 6.0 are shown in (A) Inset scale
bars are 40 pA. (B) Late INa measured at 45–50 ms normalized to peak

current in drug-free conditions (pH 7.4: 0.94 ± 0.34%, n = 7; pH 6.0:
3.4 ± 0.6%, n = 7) and with 100 μM ranolazine (pH 7.4: 0.73 ± 0.17%,
n = 10; pH 6.0: 1.1 ± 0.4%, n = 8). Statistically significant differences are
indicated with asterisks.

FIGURE 7 | Window currents measured with 500 ms ramps (0.3 mV/ms)

from −130 to +20 mV. (A) Representative matched pairs before and after
perfusion of either 10 μM ranolazine (top) or 100 μM ranolazine (bottom).
Scale bars are 100 ms and 50 pA. (B) Total charge flow was calculated by

integrating current traces after subtracting the linear leak component. Charge
for every cell was then normalized to that in the absence of ranolazine and
plotted as a function of drug and pH. Statistically significant reductions in
charge influx are indicated with asterisks.

ranolazine, making both onset and recovery of the drug effect
considerably slower (Figure 8, Tables A7, A8).

Lastly, we examined the voltage-dependence of steady-state
slow inactivation and its modulation by ranolazine (Figure 9).
Cells were given a 30 s conditioning pulse to potentials rang-
ing from −150 to +10 mV in 10 mV intervals, then stepped
to −130 mV for 20 ms to recover fast-inactivated channels, and
finally a test pulse to −10 mV. Channels were allowed to recover
for 30 s at −130 mV between the sweeps. Experiments imme-
diately before and after drug perfusion were performed in a
limited number of cells to estimate the amount of tonic inhibi-
tion by ranolazine at −150 mV (pH 7.4: 10 μM 8 ± 3%, n = 3,
100 μM 33 ± 4%, n = 4; pH 6.0: 10 μM 20 ± 8%, n = 3, 100 μM
39 ± 4%, n = 6). pH did not significantly affect tonic block by

ranolazine. Steady-state availability curves normalized to peak
availability in the absence of ranolazine are plotted in Figure 9.
The insets show curves normalized to the respective current
maxima at −150 mV.

In drug-free conditions acidic pH depolarized the steady-state
availability by 18 mV (Table A9). 100 μM ranolazine produced
dramatic leftward shifts at both pH 7.4 and 6.0 and eliminated
the plateaus of the availability curves at depolarized potentials
(Figure 9). 10 μM ranolazine at acidic pH significantly left shifted
the availability curve by ∼16 mV.

DISCUSSION
We examined the effects of ranolazine on Nav1.5 channels
transiently expressed in HEK 293 cells at pH 7.4 and 6.0.
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FIGURE 8 | Slow inactivation onset and recovery and effects of

ranolazine at pH 7.4 (left) and 6.0 (right). Onset of slow inactivation
(A–D) was induced by conditioning pulses to −10 mV ranging from 500 ms
to 64 s. Amount of slow-inactivated channels (control, open black symbols)
or a combination of slow-inactivated and ranolazine blocked channels
(closed symbols) was assessed by 5 ms test pulses to −10 mV after either
100 ms (A,C) or 2 s (B,D) recovery at −130 mV. Onset kinetics were fitted

with a single exponential function for control conditions and with a double
exponential function for ranolazine conditions. Fit parameters are
summarized in Table A7. Slow inactivation and ranolazine block recovery
(E–H) was measured with a series of 5 ms test pulses ranged from 20 ms
to 60 s after either 8 s (E,G) or 32 s (F,H) onset. Recovery followed double
exponential kinetics in all conditions. Fit parameters are summarized in
Table A8.
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FIGURE 9 | The effects of ranolazine on steady-state slow inactivation

and tonic block. Slow inactivation was induced with alternating 30 s
conditioning pulses to a range of voltages (−150 mV through +10 mV in
10 mV intervals) followed by a 20 ms recovery period at −130 mV to allow
recovery from fast inactivation, and a −10 mV test pulse to measure
channel availability. Channels spent additional 30 s at holding potential
−130 mV between the sweeps. Matched pair experiments before and after
ranolazine perfusion were performed to assess tonic inhibition by the drug
at −150 mV (pH 7.4: 10 μM 8 ± 3%, n = 3, p = 0.001; 100 μM 33 ± 4%,

n = 4, p < 0.001; pH 6.0: 10 μM 20 ± 8%, n = 3, p = 0.01; 100 μM
39 ± 4%, n = 6, p < 0.001). Currents were normalized to the maximum
current in the absence of ranolazine (A,B) or to the maximum value at
−150 mV (insets) and plotted as a function of the conditioning potential for
control (open black symbols), 10 μM ranolazine (solid green triangles), and
100 μM ranolazine (solid red symbols). Data were fitted with a Boltzmann
equation. Fit parameters are listed in Table A9. The differences between
control and 10 μM ranolazine at pH 7.4 were not statistically significant
(p > 0.05).

We found that the kinetics of drug-channel interaction depends
on pH conditions. Both the onset of and recovery from
ranolazine modulation are slowed by 4–5 fold at pH 6.0
relative to pH 7.4 (Figures 4, 8). Ranolazine significantly
reduced late/window sodium current at both pH conditions
(Figures 6, 7).

PHYSIOLOGICAL EFFECTS OF EXTRACELLULAR pH
Extracellular pH plays a significant role in controlling activ-
ity of many physiological processes. Normal extracellular pH is
∼7.4. Pathological conditions, such as hypoxia and/or ischemia
decrease extracellular pH. Acidification decreases peak conduc-
tance of Nav channels by protonation of outer vestibule car-
boxylates (Khan et al., 2002, 2006; Vilin et al., 2012) and also
causes a depolarizing shift in the voltage-dependence of gat-
ing by surface charge screening (Hille, 1968; Benitah et al.,
1997). In Nav1.5, acidosis increases persistent INa (Figure 6),
which is considered to be a predisposing factor for cardiac
arrhythmias (Amin et al., 2010; Jones et al., 2011). Low extra-
cellular pH affects not only sodium channels. Peak current is
reduced and kinetic changes are induced by low extracellular
pH in a wide range of potassium channels (Deutsch and Lee,
1989; Kehl et al., 2002; Trapani and Korn, 2003). Similarly, cal-
cium channels and the sodium/calcium exchanger (NCX) are
affected by low extracellular pH in ways that are both direct
and, in the case of NCX, at least partly related to changes in
sodium channel behavior (see Carmeliet, 1999, for review). Our
experimental system isolates sodium channels and thus provides
only one facet of a complex suite of effects induced by low
extracellular pH.

pH EFFECTS ON USE-DEPENDENCE IN RANOLAZINE
It is well-established that ranolazine at high concentrations (such
as 100 μM) causes prominent use-dependent inhibition in var-
ious types of sodium channels at physiological extracellular pH
(Fredj et al., 2006; Rajamani et al., 2008, 2009; Kahlig et al., 2010;
Huang et al., 2011; Hirakawa et al., 2012). Consistent with these
previous reports, we found that at extracellular pH 7.4 100 μM
ranolazine produced substantial use-dependent block at 10 or
25 Hz (Figures 4A,B). At extracellular pH 6.0 use-dependent
block with 100 μM ranolazine is substantially diminished at both
frequencies (Figures 4C,D). The kinetics of use-dependence is
also greatly slowed at acidic pH (Figure 4, Table A5).

The loss of channel availability during the pulse trains occur
due to onset of ranolazine inhibition during the depolariz-
ing pulses, and to slow recovery of channels from ranolazine-
induced block between the pulses. In the presence of 100 μM
ranolazine at pH 7.4 a pronounced slow component of recovery
after 500 ms conditioning is evident (Figure 3A). Such a dis-
tinct slow component cannot be observed at pH 6.0 (Figure 3B).
We hypothesized that its absence is due to slow kinetics of
onset at acidic pH: a 500 ms conditioning pulse is insuffi-
cient to cause a detectable degree of inhibition by 100 μM
ranolazine.

Prolonged trains of long (300 ms) and low frequency (1 Hz)
depolarizations approximating cardiac action potential pace and
duration demonstrate that 100 μM ranolazine produces substan-
tial inhibition of sodium current even at pH 6.0 (Figure 5).
This inhibition develops at a rate that is ∼5 fold slower at pH
6.0 than at pH 7.4 but reaches a comparable magnitude after
500 s. The slow kinetics of onset at pH 6.0 explains the observed
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lack of effects of 100 μM ranolazine in short pulse duration
protocols (Figures 1–3) and the reduced affects on high frequency
use-dependence (Figure 4).

However, the effects of ranolazine on use-dependent reduc-
tion of peak sodium current at concentrations as high as
100 μM might not be therapeutically relevant. Ranolazine under-
goes extensive biotransformation, primarily via CYP3A-mediated
pathways of metabolism (Chaitman, 2006). Less than 7% of
the parent compound remain un-metabolized (Jerling and
Abdallah, 2005). Thus, with now commonly used sustained-
release ranolazine, the concentration in patients’ blood serum
reaches only 2–6 μM (Chaitman, 2006; Antzelevitch et al., 2011).
In our experimental conditions a therapeutically relevant con-
centration (10 μM) did not produce a significant use-dependent
block of peak INa at either pH (Figures 4, 5). This finding might
be important in the context of cardiac therapy since a prominent
use-dependent block in the ischemic condition can be especially
pro-arrhythmic (Moreno et al., 2011). The action of ranolazine
in acidic conditions suggests the drug as ever more promising
in the setting of ischemia due to stabilization of the inactiva-
tion state and, critically important, a reduction in the extent of
use-dependent block.

IMPAIRMENT OF INACTIVATION STATES BY ACIDIC pH AND ITS
RESTORATION BY RANOLAZINE
Acidic pH 6.0 impairs Nav channel inactivation states causing
depolarizing shifts in the steady-state profiles, slowing the onset
of, and accelerating the recovery from both fast and slow inac-
tivation. Addition of ranolazine selectively offsets the effects of
low pH on slow inactivation. Therapeutically relevant ranolazine
concentration (10 μM) at pH 6.0 essentially negates the effects of
acidic pH (positive 18 mV shift, Figures 9A,B, open symbols) on
the steady-state availability curve (pH 7.4: control V1/2 = −89 ±
3 mV; pH 6.0: 10 μM ranolazine V1/2 = −87 ± 2 mV). Although
the onset and recovery drug kinetics are 4–5 fold slower at pH 6.0
(Figure 8), the Kd-value at steady-state is expected to be in the
similar range in both pH conditions.

In situations where Nav fast inactivation is impaired and
unable to shut off the ion flux through the pore slow inactiva-
tion can act as a “fail safe mechanism.” Consistent with this view,
we suggest the stabilizing effect of ranolazine on slow inactiva-
tion reduces channel availability in a voltage-dependent manner
(Figure 9) leading to a decrease in persistent (Figure 6) and
window (Figure 7) sodium currents at both pH conditions.

ON THE MECHANISM OF ACTION OF RANOLAZINE
Ranolazine action on Nav channels is commonly viewed within
the framework of the Modulated Receptor hypothesis (Hille,
1977), and presumed to be similar to local anesthetic drugs that
were extensively studied over the past 3 decades (see Fozzard et al.,
2005, for review). According to this paradigm, drug affinity is
dependent upon the conformational state of the channel. Resting
channels display lower affinity while open or inactivated channels
have higher drug affinity. Within this framework, ranolazine use-
dependent inhibition is often attributed to open channel block
(Rajamani et al., 2008; Wang et al., 2008; Huang et al., 2011). This
interpretation also assumes that binding of the drug molecule to

the channel physically obstructs (“blocks”) ion flow through the
channel pore. While this presumption is not an essential element
of Modulated Receptor hypothesis and has not been unequivo-
cally proven, it is often taken for granted. An alternative concept,
“gating modifier,” suggests that binding of a drug molecule does
not block the ion flow through the pore per se, but modulates con-
formational balance of the channel’s intrinsic states. Most of the
agents recognized as gating modifiers at present are toxins (Swartz
and MacKinnon, 1997; Sokolov et al., 2008; Wang et al., 2011;
Zhang et al., 2011) that interact primarily with voltage-sensing
domains and modulate activation or fast inactivation gating.
Ranolazine, along with lacosamide (Errington et al., 2008), may
represent a distinct class of gating modifiers that affect slow inac-
tivation gating of the channel. A crystal structure of the channel
drug complex could provide strong evidence in favor of either the
blocker or gating modifier hypotheses; however, such a structure
is not available at this time.

Our data suggest that ranolazine does not block open Nav

channels. Instead, we propose that ranolazine induces a slow
inactivation-like state with slow onset kinetics (seconds at pH
7.4, tens of seconds at pH 6.0), slow recovery kinetics (tens
of seconds), and sharing the voltage-dependent profile of Nav

channel’s intrinsic slow inactivation. First, our steady-state slow
inactivation protocol featuring 30 s conditioning pulses demon-
strates a significant reduction of channel availability at negative
voltages where channel openings do not occur or are extremely
rare (Figure 9). Second, in our matched ramp experiments, we
observed a significant reduction of inward sodium currents dur-
ing 500 ms ramp depolarizations (Figure 7). This result suggests
the drug is already bound at voltages as negative as −130 mV
rather than binding to open/inactivating channels during the
ramp. Hence, 500 ms is a relatively short time for development of
ranolazine block as revealed by the slow onset kinetics described
in Figure 8.

Additional arguments for a specific interaction between
ranolazine and slow inactivation come from previous studies.
Multiple mutations in various Nav channels that show increased
persistent current also demonstrated increased sensitivity to
ranolazine (Nav1.5 LQT3: �KPQ Fredj et al., 2006; Y1767C
Huang et al., 2011; R1623Q Rajamani et al., 2009; Nav1.1 GEFS+,
SMEI, FHM3: Kahlig et al., 2010). These mutations typically
destabilize Nav channel fast inactivation but ranolazine’s effec-
tiveness may be owing to its property to boost the “fail safe” slow
inactivation mechanism. Recent studies of El-Bizri et al. (2011) in
Nav1.4 and Hirakawa et al. (2012) in Nav1.3 demonstrated that
ranolazine’s effect on steady-state channel availability progres-
sively increases with longer conditioning pulses, consistent with
selective interaction between ranolazine and the slow-inactivated
states.

Our results suggest that hNav1.5/β1 heterologously expressed
in HEK293 cells are affected by ranolazine in a manner similar
to ventricular sodium channels as opposed to sodium channels
in atria. In canine atrial myocytes, Burashnikov and Antzelevitch
(2008) demonstrated substantial use-dependent block by 10 μM
ranolazine as well as fast onset kinetics. In our experimental setup,
the lack of significant use-dependent block at 10 μM and slow
kinetics of drug-channel interaction suggests that atrial sodium
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channels differ substantially from the heterologously expressed
hNav1.5/β1. Such difference may be attributed to tissue-specific
cardiac sodium channel isoforms or differences in the stoichiom-
etry of auxiliary subunits (Burashnikov and Antzelevitch, 2008,
2009, 2010).

Our study was limited to the effects of ranolazine on extra-
cellular changes in pH. Ischemia results a priori in intracel-
lular pH changes. Although intracellular protons are extruded
by the sodium/hydrogen exchanger, NHE1, low intracellular pH
also affects myocardial contractility and may alter the biophys-
ical properties of ion channels, including Nav1.5 (Clanachan,
2006). Nevertheless, intracellular proton buffering mechanisms
may limit the effects of low pHi, relative to those of extracellu-
lar protons, on ion channel function, and extracellular pH has

been shown to change to a greater extent than intracellular pH
(Crampin et al., 2006).

In conclusion, our results demonstrate that ranolazine induces
a slow inactivation-like state in hNav1.5/β1 leading to reduction
of late and window Na+ currents. The drug is especially effec-
tive at acidic extracellular pH where native slow inactivation is
impaired. At pH 6.0 significant effects of the drug on kinetics and
voltage-dependence of the drug-induced state can be observed
at therapeutically relevant concentrations (10 μM), whereas open
state and fast inactivation are not appreciably affected.
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APPENDIX

Table A1 | Conductance.

pH 7.4 Control pH 7.4 (10 µM)

Ranolazine

pH 7.4 (100 µM)

Ranolazine

pH 6.0 Control pH 6.0 (10 µM) Ranolazine pH 6.0 (100 µM) Ranolazine

V1/2 −44.6 ± 0.4# −41.9 ± 0.4* −40.9 ± 0.3* −37.2 ± 0.3*# −38.5 ± 0.3 −36.9 ± 0.3

z 8.4 ± 0.4 8.0 ± 0.4 7.4 ± 0.3 7.1 ± 0.3 7.1 ± 0.2 7.3 ± 0.3

n 13 4 6 20 8 13

*Statistically different from control (p < 0.05).
#Statistically different between non-drug pH conditions (p < 0.05).

Table A2 | Time constants of fast inactivation.

pH 7.4 Control pH 7.4 (100 µM) Ranolazine pH 6.0 Control pH 6.0 (100 µM) Ranolazine

τ−20 mV 0.82 ± 0.04# 0.89 ± 0.06 1.52 ± 0.07# 1.73 ± 0.12

τ−10 mV 0.57 ± 0.03# 0.65 ± 0.05 1.05 ± 0.06# 1.11 ± 0.06

τ0mV 0.50 ± 0.03# 0.47 ± 0.04 0.77 ± 0.03# 0.79 ± 0.05

τ+10 mV 0.40 ± 0.03# 0.39 ± 0.03 0.61 ± 0.02# 0.57 ± 0.02

N 13 9 21 10

#Statistically different between pH conditions (p < 0.05).

Table A3 | Steady state fast inactivation.

pH 7.4 Control pH 7.4 (100 µM) Ranolazine pH 6.0 Control pH 6.0 (100 µM) Ranolazine

V1/2 −96.8 ± 0.3# −96.8 ± 0.5 −86.9 ± 0.2# −84.8 ± 0.2

z 7.9 ± 0.3 7.9 ± 0.4 7.6 ± 0.2 7.4 ± 0.3

n 16 10 8 9

#Statistically different between pH conditions (p < 0.05).

Table A4 | Recovery from fast inactivation.

pH 7.4 Control pH 7.4 (10 µM)

Ranolazine

pH 7.4 (100 µM)

Ranolazine

pH 6.0 Control pH 6.0 (10 µM) Ranolazine pH 6.0 (100 µM) Ranolazine

τ1, ms 8.7 ± 0.9# 8.4 ± 0.7# 8.3 ± 0.5# 4.0 ± 0.4# 5.4 ± 0.5# 3.4 ± 0.03#

A1 0.61 ± 0.03 0.76 ± 0.03 0.51 ± 0.01 0.57 ± 0.02 0.71 ± 0.02 0.62 ± 0.02

τ2, ms 130 ± 20 200 ± 60 420 ± 50* 120 ± 20 140 ± 30 110 ± 20

A2 0.35 ± 0.03 0.24 ± 0.03 0.49 ± 0.02* 0.41 ± 0.02 0.27 ± 0.02 0.37 ± 0.02

n 4 4 9 6 5 8

*Statistically different from control (p < 0.05).
#Statistically different between pH conditions (p < 0.05).
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Table A5 | Use dependence 10 and 25 Hz.

pH 7.4 Control pH 7.4 (10 µM)

Ranolazine

pH 7.4 (100 µM)

Ranolazine

pH 6.0 Control pH 6.0 (10 µM)

Ranolazine

pH 6.0 (100 µM) Ranolazine

10 Hz, τ1, pulses 13.6 ± 0.2# 64 ± 3#

10 Hz, 100th pulse 0.91 ± 0.03 0.85 ± 0.03 0.33 ± 0.01*# 0.90 ± 0.02 0.89 ± 0.01 0.70 ± 0.01*#

10 Hz, n 5 6 6 7 6 9

25 Hz, τ2, ms 15.3 ± 0.2# 67 ± 4#

25 Hz, 100th pulse 0.85 ± 0.02 0.79 ± 0.04 0.26 ± 0.03*# 0.90 ± 0.02 0.90 ± 0.01 0.71 ± 0.01*#

25 Hz, n 6 5 6 6 6 6

*Statistically different from control (p < 0.05).
#Statistically different between pH conditions (p < 0.05).

Table A6 | Use-dependence 1 Hz.

pH 7.4 Control pH 7.4 (10 µM)

Ranolazine

pH 7.4 (100 µM)

Ranolazine

pH 6.0 Control pH 6.0 (10 µM) Ranolazine pH 6.0 (100 µM) Ranolazine

τ1, pulses 4.3 ± 0.1# 25 ± 2#

τ2, pulses 530 ± 40# 320 ± 20#

500th pulse 0.82 ± 0.02 0.86 ± 0.03 0.49 ± 0.04* 0.84 ± 0.03 0.79 ± 0.03 0.50 ± 0.04*

n 7 6 9 3 7 4

*Statistically different from control (p < 0.05).
#Statistically different between pH conditions (p<0.05).

Table A7 | Slow inactivation onset.

pH 7.4 Control pH 7.4 (10 µM)

Ranolazine

pH 7.4 (100 µM)

Ranolazine

pH 6.0 Control pH 6.0 (10 µM)

Ranolazine

pH 6.0 (100 µM) Ranolazine

Rec 100 ms, τ1, s 7.0 ± 0.5# 7.0# 7.0# 11.2 ± 0.5# 11.2# 11.2#

Rec 100 ms, A1 0.76 ± 0.02 0.75 ± 0.03 0.09 ± 0.03 0.65 ± 0.01 0.53 ± 0.07 0.63 ± 0.07

Rec 100 ms, τ2, s N/A 0.61 ± 0.71 2.5 ± 0.2 N/A 3.9 ± 1.1 3.2 ± 1.0

Rec 100 ms, A2 N/A 0.11 ± 0.09 0.57 ± 0.03 N/A 0.22 ± 0.06 0.22 ± 0.06

Rec 100 ms, asymptote 0.18 ± 0.2 0.16 ± 0.1 0.01 ± 0.01*# 0.32 ± 0.01 0.20 ± 0.01* 0.09 ± 0.01*#

Rec 2s, τ1, s 13.4 ± 1.5# 13.4# 13.4# 18 ± 1# 18# 18#

Rec 2s, A1 0.37 ± 0.01 0.39 ± 0.01 0.15 ± 0.03 0.22 ± 0.01 0.22 ± 0.01 0.20 ± 0.01

Rec 2s, τ2, s N/A 1.8 ± 0.7 3.0 ± 0.3# N/A 22 ± 4 18 ± 2#

Rec 2s, A2 N/A 0.07 ± 0.01 0.45 ± 0.02 N/A 0.20 ± 0.01 0.50 ± 0.02

Rec 2s, asymptote 0.63 ± 0.01 0.56 ± 0.01 0.32 ± 0.01* 0.80 ± 0.01 0.57 ± 0.01* 0.27 ± 0.02*

n 6 9 4 6 7 5

*Statistically different from control (p < 0.05).
#Statistically different between pH conditions (p < 0.05).
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Table A8 | Slow inactivation recovery.

pH 7.4 Control pH 7.4 (10 µM)

Ranolazine

pH 7.4 (100 µM)

Ranolazine

pH 6.0 Control pH 6.0 (10 µM)

Ranolazine

pH 6.0 (100 µM) Ranolazine

Onset 8s, τ1, s 0.13 ± 0.03 0.12 ± 0.03 0.7 ± 0.2* 0.12 ± 0.01 0.14 ± 0.03 0.20 ± 0.07

Onset 8s, A1 0.31 ± 0.04 0.29 ± 0.03 0.23 ± 0.04 0.40 ± 0.02 0.45 ± 0.04 0.42 ± 0.04

Onset 8s, τ2, s 2.1 ± 0.4 2.9 ± 0.4 6.5 ± 0.5*# 1.8 ± 0.5 3.3 ± 0.9 18 ± 9*#

Onset 8s, A2 0.37 ± 0.04 0.42 ± 0.03 0.73 ± 0.04 0.15 ± 0.02 0.27 ± 0.04 0.27 ± 0.05

Onset 32s, τ1, s 0.45 ± 0.09# 0.4 ± 0.1 2.3 ± 0.5* 0.15 ± 0.03# 0.37 ± 0.09 0.4 ± 0.1*#

Onset 32s, A1 0.33 ± 0.05 0.33 ± 0.05 0.30 ± 0.09 0.43 ± 0.05 0.50 ± 0.06 0.32 ± 0.04

Onset 32s, τ2, s 5 ± 1 5.2 ± 0.8 7.4 ± 0.6# 2.1 ± 0.04 9 ± 3 33 ± 9*#

Onset 32s, A2 0.41 ± 0.06 0.54 ± 0.05 0.70 ± 0.09 0.36 ± 0.04 0.37 ± 0.05 0.62 ± 0.09

Onset 32s, n 6 8 4 6 6 5

*Statistically different from control (p < 0.05).
#Statistically different between pH conditions (p < 0.05).

Table A9 | Steady state slow inactivation.

pH 7.4 Control pH 7.4 (10 µM)

Ranolazine

pH 7.4 (100 µM)

Ranolazine

pH 6.0 Control pH 6.0 (10 µM) Ranolazine pH 6.0 (100 µM) Ranolazine

V1/2 −89 ± 3# −95 ± 3 −113 ± 1*# −71 ± 1# −87 ± 2* −104 ± 4*#

z 21 ± 3 17 ± 2 13.3 ± 0.2*# 16.6 ± 0.4 20 ± 2 25 ± 3*#

n 13 9 7 13 9 8

*Statistically different from control (p < 0.05).
#Statistically different between pH conditions (p < 0.05).
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