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Growth-regulating factor (GRF) is a multigene family that plays a vital role in the growth and
development of plants. In the past, the GRF family of many plants has been studied.
However, there is not a report about identification and evolution of GRF in foxtail millet
(Setaria italia). Here, we identified 10 GRF genes in foxtail millet. Seven (70.00%) were
regulated by Sit-miR396, and there were 19 optimal codons in GRFs of foxtail millet.
Additionally, we found that WGD or segmental duplication have affected GRFs in foxtail
millet between 15.07 and 45.97 million years ago. Regarding the GRF gene family of land
plants, we identified a total of 157 GRF genes in 15 representative land plants. We found
that GRF gene family originated from Group E, and the GRF gene family in monocots was
gradually shrinking. Also, more loss resulted from the small number of GRF genes in lower
plants. Exploring the evolution of GRF and functional analysis in the foxtail millet help us to
understand GRF better and make a further study about the mechanism of GRF. These
results provide a basis for the genetic improvement of foxtail millet and indicate an
improvement of the yield.
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INTRODUCTION

Growth-regulating factor (GRF) is a plant-specific transcription factor that plays an important role in
plant growth and development. The first member of the identified GRF family is OsGRF1, which
plays a regulatory role in gibberellin (GA)-induced stem elongation (van der Knaap et al., 2000). GRF
transcription factor has two conserved domains in its N-terminal region: QLQ (Gln, Leu, and Gln)
and WRC (Trp, Arg, and Cys) (Rodriguez et al., 2016). The QLQ domain interacts with GRF
interacting factor (GIF), and the resulting complex acts as a transcriptional co-activator (Wang et al.,
2014). The WRC domain consists of a functional nuclear localization signal and a DNA binding
motif (zinc finger structure), which is mainly involved in DNA binding. The C-terminal of some GRF
proteins also consists of other domains, including TQL (Thr, Gln, and Leu), GGPL (Gly, Gly, Pro,
and Leu), and FFD (Phe, Phe, and Asp) (Cao et al., 2016).

The GRF gene family is a small family; therefore, the functions of each member of the GRF family
in the studied species can be studied more comprehensively. Studies have found that GRF genes are
often expressed strongly in actively growing and developing tissues, such as germinating seeds, ears,
shoots, flower buds, and young leaves (Kim et al., 2003; Choi et al., 2004; Zhang et al., 2008; Wang
et al., 2014; Zhang et al., 2017). In addition, studies have shown that most GRFs are regulated by
miRNA396. For example, in Arabidopsis, seven miRNA396 target genes were predicted, and
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six AtGRFs were confirmed in the experiment (Jones-Rhoades
and Bartel, 2004; Liu et al., 2009). With the completion of many
plant genome sequences, GRF family members of some plants
have been studied, such as Arabidopsis (Kim et al., 2003), rice
(Choi et al., 2004), maize (Zhang et al., 2008), Brachypodium
distachyon (Filiz et al., 2014), Brassica rapa (Wang et al., 2014),
Brassica napus (Ma et al., 2017), Solanu lycopersicum (Khatun
et al., 2017), Nicotiana tabacum (Zhang et al., 2017),
Cucurbitaceae (Baloglu, 2014), Manihot esculenta (Shang et al.,
2018), apple (Zheng et al., 2018), mulberry (Rukmangada et al.,
2018), and so on. However, studies on GRF genes in foxtail millet
and the evolutionary trajectory of GRF genes have not been
available.

Foxtail millet is one of the oldest food crops in many regions of
the world, especially in China and India, where it is still widely
cultivated as a staple food. Although the genome of foxtail millet
is small, it has a high inbreeding rate, strong C4 photosynthesis,
and high nutritional value, which is usually higher than other
grains, containing a large number of minerals, such as essential
amino acids, carbohydrates, and vitamins (Li and Brutnell, 2011;
Pandey et al., 2013; Jia et al., 2013; Ji et al., 2015; Li et al., 2018).
With the sequencing and continuous updating of the foxtail
millet genome, now the foxtail millet genome is about 515 Mb
(Bennetzen et al., 2012; Zhang et al., 2012; Han et al., 2014; Yang
et al., 2020). Together with other gramineous plants, foxtail millet
was affected by a whole-genome duplication or tetraploidy
approximately 100 million years ago (Wang et al., 2015). This
event resulted in thousands of duplicated genes in the existing
genome, providing evolutionary power for genetic and functional
innovation. Studying GRFs in foxtail millet helps to improve crop
genetics and contributes to in-depth study of GRF function and
food production. In this study, we conducted a series of
informatics analysis on the exploration and functional
prediction of GRF using a more comprehensive bioinformatics
method to lay the foundation for further study of GRF functions.

MATERIALS AND METHODS

Acquisition of Members of the GRF Gene
Family
We selected 20 plants (5 dicots, 7 monocots, 1 basal angiosperm, 1
Pteridophyta, 1 Bryophyta, and 5 green algae) for GRF evolution
analysis, in which the genome-wide of Aegilops tauschii was
obtained from the literature (Luo et al., 2017). The remaining
19 species were obtained from the JGI database (http://genome.
jgi.doe.gov/) [Arabidopsis thaliana Araport11, Carica papaya
ASGPBv0.4, Populus trichocarpa v3.1, Vitis vinifera v2.1,
Solanum lycopersicum ITAG3.2, Zea mays Ensembl-18,
Sorghum bicolor Rio v2.1, Setaria italica v2.2, Brachypodium
distachyon Bd21-3 v1.1, Hordeum vulgare r1, Oryza sativa v7.
0, Amborella trichopoda v1.0, Selaginella moellendorfii v1.0,
Physcomitrella patens v3.3, Chlamydomonas reinhardtii v5.6,
Volvox carteri v2.1, Coccomyxa subellipsoidea C-169 v2.0,
Micromonas sp. RCC299 v3.0, and Ostreococcus lucimarinus
v2.0]. We downloaded the WRC (PF08879) and QLQ
(PF08880) domains from the Pfam database (Bateman et al.,

2013). The HMMER (version 3.2.1) software (Mistry et al., 2013)
was used to identify GRF candidate members in 20 species. In
addition, we also used local BLAST to screen GRF family
members of all species again. Finally, we used Pfam (http://
pfam.xfam.org), CDD (https://www.ncbi.nlm.nih.gov/cdd), and
SMART databases (http://smart.embl-heidelberg.de/) to confirm
GRF members that contain WRC and QLQ domains.

Phylogenetic Analysis of GRF Family
Full-length amino acid sequences of GRF in all species were aligned
in MAFFT (version 7.037b) (Katoh and Standley, 2013) using auto
strategy and were then manually adjusted in BioEdit (Hall, 1999).
JTT + I + G + F model was determined to be the best model via
ProtTest (version 3.4.2) (Darriba et al., 2011). PhyML 3.1 was used to
construct ML trees with the above model and 1000 nonparametric
bootstrap replicates (Guindon et al., 2010).

The amino acid sequences of 10 GRFs of foxtail millet were
aligned by ClustalW (Thompson et al., 1994). We employed MEGA
7.0 to construct the phylogenetic trees of GRFs in foxtail millet by
using the NJ method with the following parameters: Pairwise
deletion and 1000 bootstrap replications (Kumar et al., 2016).

Characterization of GRFs in Foxtail Millet
The chromosome distribution ofGRFs in foxtail millet was drawn
by MapChart software (Voorrips, 2002). The online website
MEME (http://meme-suite.org/) was employed to analyze GRF
proteins in foxtail millet to identify as the conservative motifs
(Bailey et al., 2009). Themaximum number of motifs was set to be
5, and the remaining parameters were default. Isoelectric point
value and theoretical molecular weight of GRF proteins in foxtail
millet were calculated using the ProtParam tool of ExPaSy
(https://web.expasy.org/protparam/) (Gasteiger et al., 2005).
The subcellular localization of GRFs in foxtail millet was
predicted by Plant-mPLoc database (Chou and Shen, 2010).
Using the SOPMA website (https://npsa-prabi.ibcp.fr/cgi-bin/
npsa_automat.pl?page�npsa_sopma.html) to predict the
secondary structure of GRF proteins in foxtail millet, the
parameters were default. Using the Phyre2 website (http://
www.sbg.bio.ic.ac.uk/∼phyre2/html/page.cgi?id�index) to
predict the three-dimensional structure of GRF proteins, the
parameters were default. The gene structure of GRFs in foxtail
millet was analyzed and drawn using GSDS 2.0 (http://gsds.cbi.
pku.edu.cn/) (Hu et al., 2014) and CFVisual (version 2.1) (https://
github.com/ChenHuilong1223/CFVisual) (Chen et al., 2021).
Multiple sequence alignment of the amino acid sequences was
performed by ClustalX (Wilm et al., 2007) and conserved regions
were visualized using DNAMAN 8.0. In order to reduce errors,
nine coding sequences that meet requirements were screened,
based on literature criteria (Eyre-Walker, 1991). Afterward, the
codon bias analysis of these sequences was performed via
CodonW software (https://sourceforge.net/projects/codonw/).

Selection Pressure, Gene Duplication, and
Collinearity Analysis
The amino acid sequences of GRFs in foxtail millet were aligned
using MAFFT (version 7.037b), and the amino acid alignments
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were translated into coding sequence alignments via PAL2NAL
(http://www.bork.embl.de/pal2nal/) (Suyama et al., 2006). After
that, we employed the codeml program in PAML 4.9 h software
(Yang, 1997) to calculate the selection pressure of each branch of
the GRF phylogenetic tree. We chose the branch model to achieve
this (Yang et al., 1998), which was based on the free ratio model
and one ratio model (prob � 1.517e-04).

MCScanX software (Wang et al., 2012) was used to analyze the
duplications of the GRF family of foxtail millet, and 34,584
protein sequences from foxtail millet (Bennetzen et al., 2012)
were analyzed using all-vs-all BLAST search with e-value < 1e-05
(Camacho et al., 2009). The putative WGDs/segmental
duplications of GRF genes located on chromosomes of foxtail
millet are connected by red lines. Ks (synonymous substitution
rate) and Ka (nonsynonymous substitution rate) values of
WGDs/segmental duplications were calculated based on the
coding sequence alignments using the method of Nei and
Gojobori as implemented in KaKs_calculator 2.0 (Nei and
Gojobori, 1986; Wang et al., 2010). The Ks value was
translated into duplication time in millions of years based on

the rate of λ substitutions per synonymous site per year. The
duplication time of duplicated genes was calculated by T � Ks/2 λ
× 10–6 Mya (λ � 6.5 × 10–9 for grasses) (Lynch and Conery, 2000;
Mehanathan et al., 2014; Wang et al., 2015; Chai et al., 2018). To
reduce errors, we only analyzed the results for Ks < 1.

Orthologous pairs of GRF members among foxtail millet,
Arabidopsis, and rice were identified using OrthoFinder
software (version 2.2.6) (Emms and Kelly, 2015) and
OrthoMCL (version 2.0.9) (Li et al., 2003). The results were
visualized using Circos (version 0.69–6) (Krzywinski et al., 2009).

Expression and Regulation Analysis of
GRFs in Foxtail Millet
We obtained the sequence of foxtail millet miRNA396 from the
literature (Yadav et al., 2016), and then used psRNATargetsoftware
(http://plantgrn.noble.org/psRNATarget/) to predict the binding
site of miR396 in GRF genes of foxtail millet (Dai et al., 2018).
PlantCARE (http://bioinformatics.psb.ugent.be/webtools/
plantcare/html/) was used to analyze the 1 Kb sequence

FIGURE 1 | The number of GRF families in the collected species. The left of this figure shows the evolutionary relationships of the species; the right of this figure
shows the number detail of the GRF family of each species.
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upstream of GRF genes in foxtail millet (Lescot et al., 2002). We
utilized an in-house Python script to extract GRF TPM values of
foxtail millet from Illumina RNA-seq data reported previously
(Yang et al., 2020). The heatmap was drawn viaMorpheus software
(https://software.broadinstitute.org/morpheus/) based on the
transformed data of log2 (TPM+1) values. The String database
(version 11.0) (https://string-db.org/) was used to predict
interaction proteins of GRFs with the minimum required
interaction score set to be high confidence (0.700) (Szklarczyk

et al., 2015). The agriGOV2.0 was used for GO analysis of GRFs in
foxtail millet (Tian et al., 2017).

Quantitative Real-Time PCR Analysis
The total RNA was extracted using RNAprep Pure Plant Plus
Kit (TIANGEN) from three tissues: imbibed 3-day seed, 2-
week-old seedling, and 2-week-old seedling root. First-strand
cDNA was synthesized using Fastking RT Kit (with gDNase)
(TIANGEN). The SuperReal PreMix Plus (SYBR Green)

FIGURE 2 | Phylogenetic trees ofGRF genes. Phylogenetic analysis of plantGRF proteins using PhyML 3.1 under JTT + I + G + F model with 1000 nonparametric
bootstrap replicates.
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(TIANGEN) was used for real-time-qPCR analysis with
7900HT Fast Real-Time PCR System (American Applied
Biosystems). The Primers were designed by Primer
Premier6.0 and synthesized by GENEWIZ Biotechnology Co.,
Ltd. (Supplementary Table S1). EF-1α was the reference gene
(Kumar et al., 2013).

RESULTS

Genome-wide Identification and
Classification of GRF Genes in Plants
We identified a total of 157 GRF genes in 20 species (Figure 1,
Supplementary Table S2). NoGRF gene has been identified in green
algae (C.reinhardtii, V. carteri, C. subellipsoidea C-169, M. sp.
RCC299, and O. lucimarinus). In land plants, the least GRF genes
(two) have been identified in P. patens, four GRF genes have been
identified in S. moellendorfii, and six GRF genes have been identified
in A. trichopoda. The number of GRFs in monocots (Z.mays, S.
bicolor, S. italica,B. distachyon,H. vulgare, andO. sativa) ranges from
10 to 16, while the number of GRFs in dicots (A.thaliana, C. papaya,
P. trichocarpa, V. vinifera, and S. lycopersicum) ranges from 7 to 19.

According to previous research and the phylogenetic tree
topology (Song et al., 2018), phylogenetic analysis showed that

157 GRF genes could be clustered into five categories: A, B, C, D,
and E (Figure 2). A class is subdivided into A1 and A2 subclass,
and B class is subdivided into B1 and B2 subclass. C class is
subdivided into C1 and C2 subclass, and D class is subdivided
into D1, D2, and D3 subclass. According to statistics, the genes of
the A1 subclass are dicots GRFs. The genes of the A2 subclass and
B1 subclass are monocots GRFs. The genes of the B2 subclass and
D3 subclass contain some dicots GRFs and one basal angiosperm
GRF. The genes of the C2 subclass and D1 subclass contain some
monocots GRFs and one basal angiosperm GRF. In addition, the
genes of ancient E class are GRFs of all ancient species (P. patens
and S. moellendorfii) (Figure 1).

Gain and Loss of GRF Genes in Plants
Based on the comparison between the species tree and the plant
GRF gene tree, we used Notung software to analyze the gain and
loss of GRF genes. The results show that the ancestors of land
plants contained 11 GRF genes (Figure 3). The loss is more
serious in lower plants. Among them, 10 GRF genes of P. patens
and S. moellendorfii have been lost, and 1 GRF gene and 3 GRF
genes have been obtained, respectively. The ancestor of
angiosperms contains 15 GRF genes with 9 GRF genes being
lost and 0 GRF genes being gained. This results in 6 existing GRF
genes in A. trichopoda. There are 17 GRF genes in common

FIGURE 3 | Schematic diagram of gain and loss of GRF gene family in plants. The numbers in the hexagons and circles represent the number of GRF genes in
ancestors and existing species, and the + and − signs represent the gain and loss of genes, respectively.
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ancestors of dicots and monocots. After 12 GRF genes were
gained and 4 GRF genes were lost, 25 GRF genes exist in
dicots ancestor species, after 20 GRF genes were gained and
10 GRF genes were lost, 25 GRF genes exist in monocots ancestor
species. This indicates that the GRF gene family in the ancestor
species of angiosperms has expanded after the divergence of
monocots and dicots. After comparing the gain and loss of
dicots with that of monocots, we found that the GRF gene
family in monocots was gradually shrinking. For example, the
ancestor of foxtail millet, sorghum, and maize has undergone 14
losses and 7 gains, which result in the reduction from 27 GRF
genes to 20 GRF genes. Although the number of existing species
of dicots is less than that of ancestors, it does not show a gradual
shrinking phenomenon. For example, the ancestor of V. vinifera,
P. pilosa, A. thaliana, and C. papaya has undergone 2 losses and 4
gains, but the number of GRF genes of the ancestor increased
from 25 to 27.

Strong Collinearity Between Foxtail Millet
GRFs and Related Species and Weaker
Positive Selection
Combining with the results of internal collinearity in foxtail
millet, we found that 6 pairs of GRF genes (seven genes,
accounting for 70.00%) are in the collinearity block. Estimates
of divergence time indicate that the divergence time of fragment
duplication ranges from 15.07 Mya to 45.97 Mya, and GRFs are
subject to purification options (Supplementary Table S3).
Unfortunately, we did not find a tandem repeat gene pair.

In addition, we used a self-made Python script (https://github.
com/ChenHuilong1223) to draw the GRF collinearity
relationship between foxtail millet and other closely related
species. We identified 15 pairs of collinearity genes in the
collinearity region of the genome of foxtail millet and rice.
Chromosome 1 of foxtail millet has the most collinearity GRF
gene pairs (40.00%) with rice. Among them, there are collinearity
GRF genes with chromosome 2, 4, and 6 of rice, respectively
(Figure 4A). Similarly, 15 collinearity gene pairs (33.33%) were
identified in foxtail millet and sorghum. Chromosome 1 of foxtail
millet has the most collinearity GRF gene pairs with sorghum.
Among them, there are collinearity GRF genes with chromosome
4, 6, and 10 of sorghum (Figure 4B). An abundance of
collinearity gene pairs indicate that GRF of foxtail millet has
strong collinearity with closely related species.

The GRF phylogeny tree of foxtail millet shows that these
10 GRF genes can be assigned to A, B, C, and D class in the
phylogenetic tree (Figure 5A). After selection pressure analysis,
two (11.76%) of the 17 branches in the GRF gene tree of foxtail
millet were detected to be positively selected. Therefore, this
indicates that the GRF of foxtail millet has received weaker
positive selection during the evolution process.

Characterization and Structure of GRFs in
Foxtail Millet
We have identified 10GRF genes in the foxtail millet genome. The
amino acid lengths of GRFs in foxtail millet are between 232 and
590 amino acids. The molecular weights (MW) are between

FIGURE 4 | Collinearity analysis of foxtail millet GRF and related species. (A) The green rectangular color block represents the foxtail millet chromosome. Si
represents foxtail millet. The number represents the chromosome number. The blue rectangular color block represents the rice chromosome. Os represents rice. The
number represents the chromosome number. (B) The green rectangular color block represents the foxtail millet chromosome. Si represents foxtail millet. The number
represents the chromosome number. The yellow rectangle represents the sorghum chromosome. Sb represents sorghum. The number represents the
chromosome number.
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34,981.10 and 61,607.68 Da. The predicted isoelectric point (PI)
values are between 4.95 and 9.54. Prediction of subcellular
location indicates that all 10 GRFs may be located in the
nucleus (Supplementary Table S4).

The chromosome location shows that there is no GRF gene on
chromosomes 3, 5, and 6 of the foxtail millet, no clustering
phenomenon and scattered distribution on those chromosomes
(Figure 5B). The remaining chromosomes have one to three GRF
genes with the most being on chromosome 1.

Regarding the composition of the secondary structure of
GRF in foxtail millet, a random coil occupies the largest
proportion (49.63–67.83%). Alpha helix occupies the second
largest proportion (18.26–36.57%), and extended strand
occupies the third largest proportion (4.56–12.03%). Beta

turn makes up the smallest proportion (3.04–6.08%)
(Supplementary Table S5). In addition, we predicted the
three-dimensional structure of the GRFs in foxtail millet. The
results showed that the three-dimensional structure of the GRFs
in foxtail millet is simple with no complicated spiral folding
structures. The three-dimensional structure of the 10 GRFs is
very similar (Figure 6).

The results of the amino acid sequence alignment of GRFs in
foxtail millet indicate that all GRFs in foxtail millet contain QLQ
and WRC (Figure 7C). The WRC domain contains a C3H motif
spanning three cysteines and one histidine. The motif is
CX9CX10CX2H, and the motif of the QLQ domain is
QX3LX2Q. We also found that five GRF proteins contain FFD
and TQL domains and are highly conserved (Figure 7D).

FIGURE 5 | Phylogenetic tree and chromosome location of the GRF family of foxtail millet. (A) Phylogenetic analysis of foxtail millet GRF proteins usingMEGA 7.0 via
the neighbor-joining (NJ) method with 1000 bootstrap replicates. Bold branches suggest that they may be positively selected. (B) Chromosomal distribution and gene
duplications of foxtail millet GRF genes. Green bars represent chromosomes of foxtail millet. The putative whole genome duplication (WGD) or segmental duplication
genes are linked by a red line.
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We used MEME software to predict the GRF motifs in foxtail
millet (Figure 7B). The results indicated that the conservative
motifs 1 through 4 correspond to the corresponding domains. For
example, motif 1 corresponds to QLQ, andmotif 2 corresponds to
WRC. In addition, we predicted that motif 5 exists in most
members (seven) of the GRF family in foxtail millet.

In the structure of GRFs in foxtail millet, each GRF has two to
four coding sequences (Figure 7A). The number of introns varies
from one to four. It is noteworthy that SitGRF08 has no UTR, and
the 3′ UTR of SitGRF01 is particularly long. However, SitGRF03
has the shortest length of the gene structure.

We also conducted the analysis of codon preference, and the
results showed that the GRF gene family of foxtail millet is biased
toward the use of G or C nucleotides. The ENC value is between
32.68 and 61.00, and 35.00 is the strength of codon preference.
The closer to 61.00, the weaker the codon preference is, and vice
versa. It shows that the overall preference of GRFs in foxtail millet
is relatively weak (Supplementary Table S6). We also identified
19 optimal codons: UUU, UUG, AUU, GUA, UCU, CCG, ACG,
GCA, UAA, CAU, CAG, AAU, AAG, GAU, GAA, UGC, CGC,
AGU, and GGG (Supplementary Table S7). These results are
helpful in the application of transgenic technology on foxtail
millet.

cis-acting Elements and miRNA
We predicted cis-acting elements of the putative promoter region
(upstream 1000 bp) of each GRF in foxtail millet (Figures 8A,B,
Supplementary Table S8). We found that all gene promoters
contained hormone-related cis-acting elements, and only four
gene promoters were predicted to contain stress-related cis-acting
elements. Seven hormone-related cis-acting elements were
identified in the promoter region of GRFs in foxtail millet.
These seven hormone-related cis-acting elements are ABRE

(cis-acting element involved in abscisic acid responsiveness)
(Hobo et al., 1999), CGTCA/TGACG-motif (cis-acting element
involved in MeJA-responsiveness) (Rouster et al., 1997), GARE-
motif/P-box (gibberellin-responsive cis-acting element) (Gubler
and Jacobsen, 1992), TCA-element (cis-acting element involved
in salicylic acid responsiveness) (Shah and Klessig, 1996), and
TGA-element (auxin-responsive cis-acting element) (Khan et al.,
2012). Three stress-related cis-acting elements were identified in
the promoter region of GRFs in foxtail millet. The three stress-
related cis-acting elements are ARE (cis-acting element essential
for anaerobic induction), LTR (cis-acting element involved in
low-temperature responsiveness), and MBS (MYB binding site
involved in drought-inducibility) (Yoshida et al., 1998).

According to previous studies, most GRFs are regulated by
miR396 (Jones-Rhoades and Bartel, 2004; Liu et al., 2009; Zheng
et al., 2018). Therefore, we predicted the GRF target gene of Sit-
miR396 (Figure 7A, Supplementary Table S9). The results show
that seven GRF target genes are predicted, and they all have a
cleavage effect on each GRF gene.

Tissue Expression Analysis of GRF Genes in
Foxtail Millet at Different Periods
By analyzing the expression pattern of GRF genes in foxtail millet
in different tissues (Figure 9, Supplementary Table S10), the
results showed that the expression of GRFs in foxtail millet was
the strongest in seed, panicle, and stem tissues. The weakest
expression patterns of GRF genes in foxtail millet were in
different periods and were found during the third day of
imbibed seeds. Some genes displayed higher expression, such
as SitGRF06 (68.12 TPM) and SitGRF10 (29.86 TPM), followed
by SitGRF08 (16.66 TPM). In the seedling stage on the 14th day,
the expression of seven GRF genes (70.00%) all increased, while

FIGURE 6 | Three-dimensional structures of GRF proteins in foxtail millet.
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SitGRF06, SitGRF10, and SitGRF07 decreased. When the top
first leaf of a 2-week-old seedling is fully extended, the gene
expression changed little while the expression of SitGRF01,
SitGRF09, SitGRF08, and SitGRF10 increased. In immature
panicles, SitGRF02, SitGRF03, SitGRF04, SitGRF05, and
SitGRF06 were significantly increased. The overall
performance of the GRF family decreased gradually in the
panicle at the pollination stage and at the grain-filling stage.

However, SitGRF03 and SitGRF10 increased in the panicle at the
grain-filling stage. In the flag leaf and the fourth leaf, the
expression of seven GRF genes was extremely low while
SitGRF07, SitGRF08, and SitGRF10 had higher expression.
Additionally, the overall expression of the GRF family was
extremely low and nine GRF genes (except SitGRF07) had
high expression values in the stem tissue. Through
observation, we found that SitGRF08 and SitGRF10

FIGURE 7 | Characterization of foxtail millet GRFs. (A) Exon-intron organization and miR396 binding information of foxtail millet GRF family. (B) Distributions of
conserved motifs in foxtail millet GRF genes. Five putative motifs are indicated in different colored boxes. (C) Comparison of the amino acid sequences of foxtail millet
GRF QLQ and WRC domains. (D) Multiple sequence alignment of the amino acid sequences of foxtail millet GRF other domains.
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maintained high expression in the organization of each period,
and SitGRF07 expressed lower in the organization of each
period.

In order to definitely test the tissue expression patterns of
SitGRF genes, qRT-PCR was used to detect the relative
expression level of five SitGRF genes (SitGRF02, SitGRF06,
SitGRF08, SitGRF09, and SitGRF10) in imbibed 3-day seed, 2-
week-old seedling, and the root of 2-week-old seedling. The other
five SitGRF genes were not detected due to the lack of screening
specific primers across the introns. The results of qRT-PCR showed
that among 15 pairs of comparison (five genes and three tissues),
the expression trend of 13 pairs (86.67%) was consistent with the
transcriptome data (Figure 10). For example, among the three
tissues, SitGRF08 and SitGRF09 expressed the highest in the
seedling and the lowest in the root, SitGRF10 expressed the
highest in the germinated seed and the lowest in the seedling,
In the meanwhile, both SitGRF02 and SitGRF06 expressed higher
in the seedling than in the germinated seed. Only the expression
pattern in the root of SitGRF02 and SitGRF06 was inconsistent. In
qRT-PCR, SitGRF02 and SitGRF06 expressed the highest in the
root, while in transcriptome, they were the lowest in the root.

Protein Interaction Analysis
In order to further explore the mechanism of action of proteins
expressed by the GRF genes of foxtail millet, we looked for an
interaction protein for eachGRF in the String database (Figure 11).
Under high confidence (0.7) conditions, GRFs in foxtail millet have

FIGURE 8 | Promoter analysis of foxtail milletGRF genes. (A)Distribution of four kinds of cis-regulatory elements in the promoter of foxtail milletGRF genes. (B) The
1 Kb promoter sequences of corresponding GRF genes were used to analyze hormone-related cis-elements and stress-related elements. Rectangle indicates stress-
related elements, and the inverted triangle indicates hormone-related elements. Different cis-elements were indicated by different colored symbols and placed in their
relative position on the promoter.

FIGURE 9 | Expression of foxtail milletGRF genes in the different organs
and periods. The shade of the color corresponds to the expression value (log2
(TPM+1)). Seed represents 3 days imbibed seeds; seedling represents 2-
week-old whole seedling. Leaf 1 represents the top first fully extended
leaf of a 2-week-old seedling. Leaf 2 represents the top second leaf of 30-day-
old plants. Panicle 1 represents an immature panicle. Panicle 2 represents a
panicle at the pollination stage. Panicle 3 represents a panicleat at the grain-
filling stage. Leaf 3 represents a flag leaf. Leaf 4 represents the fourth leaf. Root
represents the root. Stem represents the stem.
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interaction proteins, except SitGRF04. Among them, SitGRF10 had
the most interaction proteins. Each of SitGRF06 and SitGRF07 has
only one interaction protein. These interaction proteins provide

clues to the function and mechanism of each GRF. For example,
both SitGRF01 and SitGRF08 could interact with auxin response
factors, implying that they may participate in the network

FIGURE 10 | Tissue specific expression analysis of SitGRF genes in germinated seed, 2-week-old seedling, and root. The bars represent the mean values of three
replicates ± s.d. Significant differences in means are indicated by a, b, c, p < 0.01, according to one-way ANOVA test. a represents the comparation between germinated
seed and seedling. b represents the comparation between seedling and root. c represents the comparation between germinated seed and root.

FIGURE 11 | Protein interaction analysis of foxtail millet GRFs. The same protein is connected by a dotted line. The unannotated protein indicates uncharacterized
protein in the String database.
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regulation mechanism of auxin response factors. We also found
that SitGRF01, SitGRF02, SitGRF05, SitGRF07, SitGRF08, and
SitGRF09 can interact with Si037326m.

Identification of Orthologs with Model
Plants and Functional Annotation of GO
The identification of orthologous genes with GRF genes in model
plants is helpful for the function prediction of GRF genes in foxtail
millet. Through the identification of orthologous gene pairs ofGRF

with rice and Arabidopsis, it is found that the GRF gene family of
foxtail millet and rice can form 10 pairs of orthologous genes. the
GRF gene family of foxtail millet and rice have eight orthologous
gene pairs. In addition, there are 10 orthologous gene pairs of the
GRF gene family between Arabidopsis and rice (Figure 12).

We performed GO function annotations and the results reported
that all 10 GRFs of foxtail millet can participate in biological
pathways, molecular functions, and cellular components
(Supplementary Table S11). A total of 75 GO numbers could be
annotated. The most annotated entries are in biological pathways

FIGURE 12 | Orthologs of GRF genes between foxtail millet and model plants. The orthologous GRF gene pairs between different species are linked by different
colors.
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(64.00%), such as developmental process, regulation of cellular
biosynthetic process, regulation of cellular metabolic process, etc.
Molecular functions (ATP binding, purine ribonucleoside
triphosphate binding, purine nucleoside binding, etc.) accounted
for 24.00%. The cellular component (nucleus, intracellular
membrane-bounded organelle, membrane-bounded organelle,
etc.) was 12.00%. Overall, GO function annotations found that
GRF mainly functions in molecular pathways.

DISCUSSION

In our research, the ancestors of land plants contain at least 11 GRF
genes, which are not much different from the number of existing
plants. This indicates that GRF genes have not expanded on a large
scale. The GRF content of ancient species is very small, and it can
always cluster in the ancient E branch in the phylogenetic tree. Thus,
the GRF gene family of land plants originated from the E class. The
number of GRF in higher plants is significantly elevated than that of
ancient species (lower plants), meanwhile, the number of monocots
is relatively stable and the number of dicots is more divergent. We
found that the ancestors of angiosperms have experienced more
gains and the family has expanded. However, theGRF gene family of
monocots has been shrinking in the course of evolution, while the
GRF gene family of dicots has not shown a gradual shrinking
phenomenon. This points to the different evolutionary processes
of monocots and dicots. Combining the results of identification and
classification, we found that the low number of GRF in lower plants
should be caused by excessive loss, rather than a small amount at the
beginning.

Our research also showed that GRF in foxtail millet is
affected by WGD or segmental duplication between
15.07 Mya and 45.97 Mya. The GRFs of foxtail millet and
other closely related species have strong collinearity and

homology. They were mainly subjected to purification
selection in the past. These evolutionary phenomena
indicate that the evolution of GRF is a conservative
evolutionary model.

Comparing the qRT-PCR results with transcriptome data
showed that 86.67% of the expression trend was consistent.
Only 13.33% was inconsistent. This inconsistency has been
reported in many literatures (Everaert et al., 2017). Celine
Everaert et al. reported that about 85% of the genes showed
consistent results between RNA-sequencing and qRT-PCR data.
Our result was consistent with that reported. These results
indicated that the transcriptome data was reliable.
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