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Abstract

In-silico prediction of repurposable drugs is an effective drug discovery strategy that supple-

ments de-nevo drug discovery from scratch. Reduced development time, less cost and

absence of severe side effects are significant advantages of using drug repositioning. Most

recent and most advanced artificial intelligence (AI) approaches have boosted drug repur-

posing in terms of throughput and accuracy enormously. However, with the growing number

of drugs, targets and their massive interactions produce imbalanced data which may not be

suitable as input to the classification model directly. Here, we have proposed DTI-SNNFRA,

a framework for predicting drug-target interaction (DTI), based on shared nearest neighbour

(SNN) and fuzzy-rough approximation (FRA). It uses sampling techniques to collectively

reduce the vast search space covering the available drugs, targets and millions of interac-

tions between them. DTI-SNNFRA operates in two stages: first, it uses SNN followed by a

partitioning clustering for sampling the search space. Next, it computes the degree of fuzzy-

rough approximations and proper degree threshold selection for the negative samples’

undersampling from all possible interaction pairs between drugs and targets obtained in the

first stage. Finally, classification is performed using the positive and selected negative sam-

ples. We have evaluated the efficacy of DTI-SNNFRA using AUC (Area under ROC Curve),

Geometric Mean, and F1 Score. The model performs exceptionally well with a high predic-

tion score of 0.95 for ROC-AUC. The predicted drug-target interactions are validated

through an existing drug-target database (Connectivity Map (Cmap)).

1 Introduction

Drug development strategies, also known as drug repositioning or drug repurposing or drug

reprofiling, predict the interaction among drugs and targets from the existing drug-target data-

bases [1]. There are two types of drug-target interaction: competitive inhibitors and allosteric

inhibitors. Competitive inhibitors adhere to the target’s active site to suppress reactions. Allo-

steric inhibitors bind to the target’s allosteric site, which in turn prevents reactions, correct
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metabolic imbalance, and kills pathogens to cure diseases. There exist several synthesized com-

pounds whose target profiles and effects are still unknown. The research and findings of com-

pounds’ properties, their reactions/responses to drugs, and targets have generated large,

complex databases that need efficient computational methods to analyze and predict drug-tar-

get interaction. New drug design requires more than 13.5 years and the cost exceeds 1.8 billion

dollars [2, 3]. Moreover, new drugs may have unwanted side effects on patients. Therefore,

due to known side effects and easier government approval, drug-repurposing facilitate phar-

maceutical companies to launch existing authorized drugs and compounds in the market for

new therapeutic purposes [4]. Drug repositioning usually reinvestigates existing drugs which

were denied approval due to new therapeutic indications.

Practical laboratory experiments to discover the interactions among the drugs and targets

are expensive, time-consuming and labour-intensive. Therefore, in-silico approaches are gain-

ing attention, in which virtual screening is initially accomplished, and then possible candidates

go through experimental verification. Docking simulations is a type of in-silico approach that

need 3D structure analysis of drugs and target molecules to determine the potential binding

sites. Despite the excellent accuracy of this process, unavailability of the proper 3D structure of

drugs and targets, and long processing time hinders the docking simulation. Chemogenomics

was introduced to tackle this problem in which the chemical space and genomic space are

mined together to find the potential compounds such as imaging probes and drug leads [4].

Plenty of machine learning techniques based on similarity computation, matrix factorization,

network models, features vectors, and deep learning models for DTIs prediction are prevalent

in the literature [1, 5]. Similarity-based approaches find how a new drug and target is similar

to known drug-target pairs based on the pharmacological similarities between drugs and the

genomic similarity of protein sequences. Here, similarity measures may be either chemical-

based, ligand-based, expression-based, side effect-based, or annotation-based [4]. But the dis-

advantage of this approach is that only a tiny proportion of drug-target interaction pairs are

known and available for comparison. There are many matrix factorization algorithms, in

which given an interaction matrix Xn×m, the main goal is to decompose it into two lower-order

matrices, Yn×k and Zm×k such that X = YZT with k< n,m [4]. The matrix completion technique

is then used to compute the missing data that help in the DTI prediction task. In feature-based

[4] methods, the drug and target vector are concatenated. A binary or real label is then

appended that denotes interaction outcome or affinity score for each drug-target pairs. Exam-

ples of features-based methods include the Bagging-based Ensemble method(BE-DTI) that

employs dimensionality reduction, and active learning [6]. In [7], first feature sub-spacing and

then three different dimensionality reduction techniques, namely Singular Value Decomposi-

tion(SVD), Partial Least Squares (PLS), and Laplacian Eigenmaps (LapEig) are used to prepare

training data. They have used decision tree and kernel ridge regression classifiers as base learn-

ers. Network-based models such as TL-HGBI, DrugNet utilizes heterogeneous networks not

only to predict the drug but also recommend the way of treatments [2, 4]. In [8], the matrix

inverse computation is used to compute relevance grade between two nodes in a weighted net-

work of drug-target interactions. Deep learning-based DTIs prediction utilizes the biological,

topological, and physicochemical information of the drugs and targets to compute feature vec-

tors/matrix [4, 9]. They can capture the inherent drug-target interactions over other state-of-

the-art feature computation methods and classifiers. Deep learning techniques sometimes can

not be applied due to the unavailability of sufficient data.

In this article, a feature-based method, DTI-SNNFRA, is proposed. Here, we have repre-

sented each drug or target by a feature vector. Initially, all the approved drug-target pairs are

considered as a set of positive samples. The remaining unannotated and non-approved inter-

action pairs from which interaction may be predicted can be initially treated as a set of negative
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samples. Here, the drug-target interaction prediction task is a class imbalance problem, as

most interaction pairs are unannotated. Our proposed framework predicts DTI in two phases

that considerably reduce the unannotated drug-target pairs’ search space. In the first phase,

from each known drug-target interaction pair, the shared nearest-neighbours (SNN) of the

associated drug and target are computed using their feature vectors. Then, SNNs of the drug

are clustered, and each cluster’s centroid is taken as a representative. Representative targets are

also determined similarly. These representative drugs and targets are used to form drug-target

pairs that are fewer and are probable candidates for possible interactions. The pairs obtained

in this way are treated as negative interaction pairs.

Despite the reduction in search space, the obtained training set created in this way is highly

imbalanced. To encounter this problem, in the second phase, our prediction model computes

a fuzzy rough upper approximation score (grade membership degree) as the strength of the

interaction between a drug and target for each of the remaining unannotated pairs. Based on

this score’s different threshold cut-off values, we have initially divided all the unannotated

drug-target pairs into positive and negative classes. The size of the so obtained negative sam-

ples is dependent on the threshold cut-off, and if it is significantly larger than the size of the

positive samples, then the drug-target interaction training dataset remains imbalanced. On

the other hand, if the number of unannotated negative samples is considerably less than the

approved positive samples, oversampling is carried out by an Adaptive Synthetic Sampling

Method (ADASYN). It produces a reduced and balanced training set that can be used by any

general classifier. We have applied several state-of-the-art classifiers such as SVM, decision

tree, random forest, and RUSBoost to find predicted interactions’ correctness.

In section 2 of this article, the datasets utilized in this work along with method and algo-

rithms, is explained. In section 2.3, a brief description and definition of the fuzzy-rough set

based lower and upper approximation are outlined. In section 3, results and discussions are

presented and finally section 4 draws the conclusion.

2 Materials and methods

In this section, we describe the datasets used in this work, key ideas of our algorithms, and

some background of the fuzzy-rough set. The building block of the proposed DTI-SNNFRA

method is shown in Fig 1.

2.1 Dataset preparation

In this article, the drug-target interaction data is taken from the DrugBank database [10] (ver-

sion 4.3, released on 17 Nov. 2015) and from dataset mentioned in [11]. In dataset 1 [10], the

number of drugs is 5877, targets are 3348, and the number of interactions between the drugs

and targets is 12674. Here, a drug or a target is represented by its feature vector. The drug fea-

ture vector is computed by Rcpi [12] package, and the PROFEAT [13] web server. It is repre-

sented by constitutional, topological, and geometrical descriptors. The target feature vector is

computed using different types of compositions, such as amino acid, pseudo-amino acid, and

CTD (composition, transition, distribution) descriptors. The number of features for drug and

target of dataset 1 are 193 and 1290, respectively.

In dataset 2 [11], the number of drugs is 1862, targets are 1554, and the number of interac-

tions between the drugs and targets is 4809. Here, each drug is represented by a binary vector

known as PubChem fingerprint. Each element of this vector exhibits the existence and non-

existence of one of the 881 chemical substructures. Similarly, each target in the dataset 2 is

also represented as a fingerprint of an 876-dimensional binary vector. Here, each element of

this vector indicates the existence and non-existence of 876 different protein domains, as
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mentioned in the Pfam database [14]. The drug feature vector and target feature vector are

then concatenated to represent the drug- target pair feature vector and can be represented for

dataset 1 as:

fd1; d2; . . . ::; d193; t1; t2; . . . ::; t1290g

These drug-target pairs feature vectors are then normalized in the range [0, 1] by min-max

method for avoiding bias towards any feature.

2.2 Workflow of the proposed framework

In this section, the necessary steps of our proposed method are described.

2.2.1 Step 1: Finding positive and negative drug-target pairs. After the normalization,

only the drugs and targets which have known interactions in the interaction matrix are used to

form the positive samples for classifiers. But the number of unannotated and non-approved

interaction pairs derived from the interaction matrix is significantly greater than the number

of positive samples. Note that the high dimensionality and numerous samples may have

Fig 1. Building block of proposed DTI-SNNFRA method.

https://doi.org/10.1371/journal.pone.0246920.g001

PLOS ONE DTI-SNNFRA: Drug-target interaction prediction by shared nearest neighbors and fuzzy-rough approximation

PLOS ONE | https://doi.org/10.1371/journal.pone.0246920 February 19, 2021 4 / 19

https://doi.org/10.1371/journal.pone.0246920.g001
https://doi.org/10.1371/journal.pone.0246920


diverse effects in the prediction task. Finding characteristically similar drugs and targets using

the nearest-neighbour search facilitates new drug-target prediction. Determination of the

nearest-neighbours using similarity distance measures are sensitive to the dimensionality and

the distribution of the dataset. The popular similarity function L1 and L2 in Minkowski space

infers the fact that, for particular data distribution, if the dataset’s dimensionality is increased

then the relative difference of the distance of the closest and farthest data point of an indepen-

dently selected point goes to 0. For this reason, the primary distance functions like L1, L2, and

cosine, etc. are not suitable for high dimensional data. In this context, computing shared near-

est neighbours (SNN) using the primary distance functions instead of computing nearest

neighbours reduce the disadvantage of higher dimensions [15]. Assume the dataset S consist-

ing of n = |S| objects and k 2N+. For each individual drug (or target), letNNk(x)� S represents

k-nearest-neighbors of x 2 S. It is computed using L2 similarity measure. The overlap between

the computed k-nearest-neighbors sets of the objects x and y is represented as:

SNNkðx; yÞ ¼ jNNkðxÞ \ NNkðyÞj ð1Þ

The Algorithm 1, provides the procedure to compute shared nearest neighbours, and the

Algorithm 2.3, outlines how the training dataset is prepared for classifiers.

Suppose, the total number of drugs and targets areM and N. Assume drug di,i 2 M interacts

with target tj,j 2 N. Now for this di, the indices of all drugs in
S
SNNk(di, dr), 8r 2M and i 6¼ r

are identified and assigned to snnDi. Similarly, for the target tj, the indices of all targets in
S
SNNk(tj, tr), 8r 2 N and j 6¼ r are identified and assigned to snnTj. Then all the drugs and tar-

gets in snnDi and snnTj are clustered using the k-medoids clustering and centroids are selected

as a representatives of snnDi and snnTj. The Calinski-Harabasz criterion is used here to deter-

mine the correct number of clusters. These representatives drugs and targets from snnDi and

snnTj are used to construct cartesian product pairs. Subsequently, the corresponding drug vec-

tor and target vector are concatenated for each cartesian product pair, which are included in

the negative samples set. Forming negative samples by the above SNN approach followed by k-

medoids clustering reduces the inclusion of the irrelevant drug-target pairs. For example, in

dataset 1, the number of approved drug-target pairs is 12674, and the number of all possible

pairs from which interaction may be predicted is 19663522. The number of drug-target pairs

selected by the SNN followed by k-medoids clustering is 45933, which indicates 427 times

samples removal.

2.2.2 Step 2: Decision table preparation and average approximation degree computa-

tion. The positive and negative sets of samples obtained in 2.2.1 are divided intom and n
groups, respectively. Each group from the negative set, say, nj is takenm times withm group

from the positive set, andm number of the decision table is prepared. Each decision table is

used to compute the fuzzy rough upper approximation degree of each sample in the nj group.

Them number of upper approximation degree of each sample in the nj group are then taken

for average upper approximation degree computation. In Algorithm 3, We have mentioned

this average upper approximation degree computation.

2.2.3 Step 3: Under-sampling based on approximation degree. A fuzzy rough grade

membership is computed for every negative sample using all positive samples’ interactions via

Algorithm 3. This fuzzy-rough upper approximation degree possibly indicates the possible

interaction degree value between 0 to 1 scale. Now, one threshold value near 1 called th1 can

be assumed to select many samples whose fuzzy-rough upper approximation degree is smaller

than or equal to th1. Another one threshold value near 0 called th0 can be assumed to select

many samples whose fuzzy-rough upper approximation degree are less than or equal to th0.

This th0 and th1 based sample selection both under-samples the negative samples set.
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2.2.4 Step 4: Oversampling, if required. The datasets used here has several approved

drug-target pairs, which are treated as a set of positive samples. The remaining pairs that are

unannotated may or may not interact with each other. These unannotated (and also non-

approved) interaction pairs are enormous, from which interaction is predicted. For example,

in dataset 1, the number of approved drug-target pairs is 12674, and the number of remaining

unannotated pairs is 19663522. Initially, we have reduced the number of unannotated pairs

(i.e. initially treated as a set of negative samples), by using Shared Nearest Neighbor in Step

2.2.1. The number of unannotated negative samples, previously selected by SNN, remains

higher than positive samples. Our prediction model then computes a fuzzy rough upper

approximation score (grade membership degree) as the strength of the interaction between a

drug and target for each of the remaining unannotated pairs. Based on different threshold cut-

off values of this score, we have initially divided all the unannotated drug-target pairs into pos-

itive and negative classes. The size of the so obtained negative samples is dependent on the

threshold cut-off, and if it is significantly larger than the size of the positive samples, then the

drug-target interaction training dataset remains imbalanced. Therefore, we have selected one

threshold value of grade membership degree to under-sample the negative samples to get an

approximately equal number of negative and positive samples. In this case, no oversampling is

needed. However, if we select different threshold values where the number of negative samples

is less than the number of positive samples, the oversampling of negative samples is required

to balance negative and positive samples.

2.2.5 Step 5: Interaction prediction. As obtained in section 2.2.4, the dataset is then used

to predict the negative set’s drug-target interaction pairs.

2.3 Fuzzy rough set

Assume that the drug-target pairs obtained by the given interaction matrix and SNN-based

initial filtering constitute a decision table called IT. In this table, every row is denoted bym
numbers of features i.e. C = {fi: 1� i�m} and one decision attribute D = {d}. In this IT, how

two objects are indiscernible is determined by calculating fuzzy indiscernibility relation (FIR).

Subsequently, this indiscernibility relation is taken to determine fuzzy-rough lower and upper

approximation. The fuzzy lower and upper approximations using fuzzy similarity relation

(either fuzzy equivalence or tolerance relation), in pursuance of Radzikowska’s model, to

approximate a concept Y are defined as [16]:

mRPYðxÞ ¼ inf
y2IT

IðmRPðx; yÞ; mYðyÞÞ ð2Þ

mRP YðxÞ ¼ sup
y2IT

TðmRPðx; yÞ; mYðyÞÞ ð3Þ

Here, in Eqs 2 and 3, I indicates a fuzzy implicator, T denotes a t-norm and RP is the fuzzy sim-

ilarity relation computed by the features subset P� C. To calculate the fuzzy similarity relation

RP, which is used in fuzzy lower and upper approximations as mentioned in the Eqs 2 and 3,

for the features subset P� C the following equation may be taken.

mRPðx; yÞ ¼
\

f2P

fmRf ðx; yÞg ð4Þ

Here, mRf ðx; yÞ denotes the similarity degree between object x and y with respect to feature f.
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Some examples of fuzzy similarity relations are given below:

mRf ðx; yÞ ¼ 1 �
jf ðxÞ � f ðyÞj
jfmax � fminj

ð5Þ

mRf ðx; yÞ ¼ expð�
ðf ðxÞ � f ðyÞÞ2

2s2
Þ ð6Þ

mRf ðx; yÞ

¼ maxðmin
ðf ðyÞ � ðf ðxÞ � sf ÞÞ
ðf ðxÞ � ðf ðxÞ � sf ÞÞ

;
ðf ðxÞ þ sf Þ � f ðyÞÞ
ðf ðxÞ þ sf Þ � f ðxÞÞ

 !

; 0Þ ð7Þ

where σ2 stands for the variance of feature f.
Upper approximation degree computation. In Fig 1, the fuzzy rough upper approxima-

tion degree is computed as follows:

1. Computing fuzzy indiscernibility relation of conditional attributes using the Lukasiewicz t-

norm and tolerance relation, as mentioned in section 2.3.

2. Computing fuzzy indiscernibility relation of decision attribute using its crisp relation.

3. Computing fuzzy upper approximation using the Lukasiewicz t-norm as per the Eq 3.

This fuzzy upper approximation degree can be used to select the samples from the negative

samples set.

Data preprocessing for upper approximation degree computation. To reduce the

dimension of feature vectors of the two datasets, we have utilized a dimensionality reduction

method called incremental PCA. The feature dimension of a drug, target, and drug-target pair

is 193, 1290, and 1483 for dataset1 and 881, 876, and 1757 for dataset2. To reduce the high

computational cost of the fuzzy similarity computation (see Eq 4), we used incremental PCA

to reduce feature dimension. This fuzzy similarity relation is further used to compute the

upper or lower approximation. The computational complexity to compute the upper/lower

approximation is O(|N|2 × |D|) where |N| is the size of the Universe and |D| is the number of

the decision classes. The computational complexity of the fuzzy similarity relation is O(|N|2 ×
|C|) where |C| is the number of attributes. For one single attribute, the similarity relation’s

computational complexity isO(|N|2 × 1). For the attribute set C, there exist |C| number of simi-

larity relations in memory which incurs high computational cost. The situation goes, even

more, worse for a high-dimensional dataset. To tackle this issue, we use incremental PCA

which process the whole data by splitting it into mini-batches. Each batch can easily fit into the

memory and is given as input to the incremental PCA at a time. Please note that the classical

PCA and its variation (sparse-PCA, kernel-PCA) may also be applicable here, but this will

results high computational cost, particularly for high dimensional data the algorithm may not

be feasible in reality.

Algorithm 1: sharedNN
Input: D = feature matrix for the drug

T = feature matrix for the target
Output: shared nearest neighbors represented by feature vectors
k  Neighborhood size
X  D or T
n  sampleSize(X)
distances = pairWiseDistance(X)
sorted, indexes = sort(distances, ascendOrder)
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for i  1 to n do
sharedNN = []
for j  1 to n do
C = intersect(indexes(i, 2:k + 1),
indexes(j, 2:k + 1))
sharedNN = sharedNN

S
X(C)

Algorithm 2: Dataset Preparation
Input: DT = drug-target interaction matrix

D = feature matrix for the drug
T = feature matrix for the target

Output: labeled TrainingDataSet
P  {} % P = positive samples set
N  {} % N = negative samples set
for i  1 to m do
for j  1 n do
if DT(i, j) = 1 then

P  P [ concat(drugVeci, targetVecj)
/� drugVeci: ith drug vector, targetVecj: jth target vector �/
tempDi  sharedNN(drugVeci)
snnDi  optimalKmedoidsCentroids(tempDi)
tempTj  sharedNN(targetVecj)
snnTj  optimalKmedoidsCentroids(tempTj)
N  N [ cartesianProductPairConcat(snnDi, snnTj)

TrainingDataset  P [ N

Algorithm 3: Average FRUA degree computation and sampling.
Data: Imbalanced TrainingDataset I with M samples {xi, yi} where i = 1
to M and xi is an d-dimensional vector in drug-target pair feature
space and yi 2 {0, 1}. Assume Mp and Mq represent number of minority
and majority class samples respectively, such that Mp � Mq and Mp+ Mq =
M
Result: BalancedTraingDataset
Begin
function upperAproxCalc(decisionTable)
begin
uDegree ! {} /� upper approximation degree vector �/

objCount ! sizeof(decisionTable) /� No. of object in decision table �/
for k  1 to objCount do
uDegreeðkÞ  mRC YðdecisionTablekÞ

here C: conditional attributesp set as per Eq 3
end
/� Split Mp and Mqinto m and n groups respectively �/
split(Mp) ! m groups
split(Mq) ! n groups

totalNoGroupPair  m × n /� total no. of group pairs between m and n �/
allGroupPairIndices  cartesianProduct(seq(1: m), seq(1: n)) /� It

holds 1 to m × n indices where ith index holds ith pair �/
for i  1 to totalNoGroupPair do
allGroupPairIndices(i)!(groupIndexOfm, groupIndexOfn) /�

groupIndexOfm, groupIndexOfn: mth and nth group index no. from m and n
groups respectively �/ decisionTablei ! ðPgroupIndexOf with positive labelÞ [
ðNgroupIndexOf with negative labelÞ /�

PgroupIndexOf : set of positive samples taken from groupIndexOfm, NgroupIndexOf :
set of negative samples taken from groupIndexOfn �/ Ui  upperAprox-
Calc(decisionTablei) Ui holds upper approx. degree of all samples in
PgroupIndexOf and upper approx. degree of all samples in NgroupIndexOf �/

FRUA: ð1

m

X
ðupperApproxDegreeof NgroupIndexOf j
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for each groupIndexOfn 2 seq(1:n) and 8 groupIndexOfm))
Sampling:
tp and tq are the thresolds for Mp and Mq
Z ! ;
for x 2 Mq do
if FRUA(x) � tp then
Mp  Mp [ x

if FRUA(x) � tq then
Z  Z [ x

BalancedTraingDataset = ADASYN(Mp [ Z)
End

3 Results and discussions

3.1 Performance metrics

This section explains the experimental results by using three metrics referred to as ROC-AUC

scores, F1 scores, and Geometric Mean scores [17]. The ROC-AUC provides a single score

used to compare the models. It ranges from 0 to 1 where 1 indicates the perfect model and 0.5

represents a model having no prediction skill and the values less than 0.5 indicate that the pre-

diction skill is worse than no skill. The ROC-AUC performance evaluation is insensitive to

highly imbalanced datasets. How well a model predicts the positive class and the negative class

are represented by the sensitivity and specificity. The sensitivity and specificity together can be

integrated into a single score called geometric mean is represented by sqrt(Sensitivity � Specific-
ity) where the Sensitivity = TruePositive / (TruePositive + FalseNegative) and Specificity = True-
Negative / (FalsePositive + TrueNegative).

The F1-score can be used to achieve a balance between Precision and Recall. It is also used

where the class imbalance is present. All three scores are calculated using 5-fold cross-valida-

tion, and the average AUC, F1-score and G-mean score is computed. Note that the datasets 1

and 2 as mentioned in section 2 are used for prediction.

3.2 Proposed method vs some state-of-the-art sampling techniques

The proposed method deals with imbalance classification problems for drug-target interaction

prediction. We have compared it with the five state-of-the-art sampling techniques known as

RUS, SMOTE, ADASYN, SMOTEENN, and SMOTETomek to deal with the imbalanced data-

set. Four classifiers, namely, decision tree(DT), random forest (RF), SVM, and RUSBoost are

used to evaluate our proposed method’s performance. The ROC-AUC, F1, sand G-Mean scores

of the proposed method, in Fig 2, are better than all the sampling methods. The RUS and

SMOTE are performing poorly here for high-dimensional training data specified in [18]. ADA-

SYN pays much attention to those samples of the minority class that are harder to learn. As our

proposed method initially uses SNN, there may not be many samples that are harder to learn or

the outliers. For this reason, directly using ADASYN, unlike our proposed method, is not pro-

ducing satisfactory results here. The Tomek’s link in SMOTETomek and edited nearest-neigh-

bours in SMOTEENN is used to clean the noisy samples or marginal outliers in training data.

The SMOTEENN and SMOTETomek are not performing well because there are no noisy sam-

ples or marginal outliers (due to shared nearest neighbours computation) in the training data.

3.3 Comparisons with state-of-the-art methods

We have compared the proposed method with five state-of-the-art methods, DeepPurpose

[19], RLS-avg (Regularized Least Squares-Average) [20] and RLS-kron (Regularized Least
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Squares-Kronecker product) [21], EnsemDT [7], and EnsemKRR [7]. The DeepPurpose [19]

is a deep learning-based method for drug-target interaction prediction. It is an encoder-

decoder framework that uses eight encoders for a compound (drug) and seven encoders for an

amino acid sequence (target). For this encoding, it uses deep neural networks, 1D convolu-

tional neural networks, recurrent neural networks, transformer encoders, and message-passing

neural networks. The drug-target pairs, along with their fuzzy-rough upper approximation

scores of our method, are compatible with the input data of the DeepPurpose model. The

results in Table 1, show that the proposed method performs better than the DeepPurpose for

ROC-AUC score with the same data. For each of the remaining methods, we have utilized

three different dimensionality reduction techniques, namely Singular Value Decomposition

(SVD), Partial Least Squares (PLS), and Laplacian Eigenmaps (LapEig) for the preparation

of training data. The results in Table 1, show that our proposed method has satisfactory

Fig 2. Fig (A) and (B) represents the performance on two datasets. The AUC, F1 and G-mean scores under the

classification models of decision tree, random forest and support vector machine, respectively are demonstrated using

various sampling methods.

https://doi.org/10.1371/journal.pone.0246920.g002
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ROC-AUC results (0.955, 0.961, 0.951, 0.947 for dataset-1 and 0.930, 0.943, 0.970 and 0.912 for

dataset 2 using DT, RF, SVM and RUSBoost classifier respectively.

We have only provided the ROC-AUC scores of all these competing methods due to

unavailability of the F1 and G-Mean scores in [7]. The parameters of RLS-avg, RLS-kron,

EnsemDT, and EnsemKRR are set to the default values as specified in [7, 20, 21].

3.4 Tuning of hyperparameters

The proposed method performs grid search-based hyperparameter tuning for computing

ROC-AUC, F1, and G-Mean scores. For the DT classifier, we have observed that the best

ROC-AUC, F1, and G-Mean scores are obtained using the hyperparameters combination is

criterion: gini, maxDepth: 9, minSamplesLeaf: 1, minSamplesSplit: 6 for dataset 1. For dataset 2,

the best ROC-AUC, F1, and G-Mean scores have been achieved by criterion: gini, maxDepth:
9, minSamplesLeaf: 1, minSamplesSplit: 4. In the case of RF classifier, for dataset 1 and dataset

2, the best hyperparameters combination is determined as criterion: gini, maxDepth: 20, min-
SamplesLeaf: 3, minSamplesSplit: 8, nEstimators: 200 for ROC-AUC scores of 0.961 and 0.943,

respectively. Fig 3(A) and 3(B) demonstrate the variation of the AUC score of the decision tree

with respect to only two hyperparameters called tree_depth and max_feature. In Fig 3(C), a

heatmap is shown only for hyperparameters (n_estimators, max_depths) for the random forest

model. The maximum depth of the tree is decided as nodes are expanded until all leaves are

pure or until all leaves contain less thanminSamplesSplit samples. The number of features for

both the RF and DT is equal to maxFeatures = sqrt(nFeatures). The best hyperparameters

combinations in SVM for dataset 1 are determined as kernel: RBF, C: 10.0, gamma: 0.1. As for

dataset 2, the best ROC-AUC, F1, and G-Mean scores are 0.97, 0.93, and 0.929 achieved using

kernel: RBF, C: 1.0, gamma: 0.1. Fig 3(D) represents the ROC-AUC scores with two hyper-

parameters (C, gamma) for dataset 2.

To prepare negative drug-target pairs, the number of nearest neighbours is 11, which is

later used to compute the shared nearest neighbours. We observed that for 11 nearest

Table 1. Comparisons with the five state-of-the-arts methods.

Methods Dataset 1 Dataset 2

AUC AUC

RLS-avg, SVD 0.912 0.899

RLS-avg, PLS 0.915 0.918

RLS-avg, LapEig 0.909 0.916

RLS-kron, SVD 0.889 0.873

RLS-kron, PLS 0.899 0.913

RLS-kron, LapEig 0.889 0.874

EnsemDT, SVD 0.899 0.914

EnsemDT, PLS 0.902 0.898

EnsemDT, LapEig 0.901 0.914

EnsemKRR, SVD 0.942 0.931

EnsemKRR, PLS 0.941 0.930

EnsemKRR, LapEig 0.941 0.930

DeepPurpose 0.938 0.911

Proposed DT 0.955 0.930

RF 0.961 0.943

SVM 0.951 0.970

RUSBoost 0.947 0.912

https://doi.org/10.1371/journal.pone.0246920.t001
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neighbours, the shared nearest neighbours computation step determines the number of drugs

and targets that have a good balance between the number of samples and feature dimension.

3.5 Feature selection and comparisons

In Fig 4(A) and 4(B), the prediction scores in terms of ROC-AUC values have been shown for

both datasets considering feature selection and no feature selection. In our method, after SNN

computation followed by k-medoids clustering, we have computed a fuzzy rough upper

approximation score (grade membership degree) as the strength of the interaction between a

drug and a target for each of the unannotated pairs. Based on different threshold cut-off values

of this score, we divided all the unannotated drug-target pairs into positive and negative clas-

ses. Negative samples detected from the unannotated pairs via fuzzy rough upper approxima-

tion score and the initially obtained annotated positive samples constitute the input data for

RUSBoostClassifier. For different threshold cut-off values of fuzzy rough upper approximation

Fig 3. Fig (A) and (B) represent the hyperparameters of decision tree called max feature and tree depth vs AUC graph for dataset 1,

respectively. In (C), the hyperparameters of random forest along with the AUC scores are shown in the heatmap. Fig. (D) represents one

heatmap for AUC scores of SVM for two hyperparameters called C and gamma.

https://doi.org/10.1371/journal.pone.0246920.g003
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scores, the RUSBoostClassifier produces the Fig 4(A) and 4(B). In these experiments, we used

the holdout strategy for training with the training and testing ratio of 70:30. Table 1, the

ROC-AUC scores of RUSBoostClassifier for one threshold cut-off value, for dataset 1 and

dataset 2, are obtained by executing hyperparameters tuning using grid search. The best hyper-

parameters are determined as nEstimators: 500, learningRate: 1.0 which produces 0.9477 and

0.912 for ROC-AUC for dataset 1 and dataset 2. The RUSBoostClassifier is used here because

it mitigates the class imbalance problem during learning by the random under-sampling of the

Fig 4. Fig (A) and (B) represent Threshold vs AUC graph for dataset 1 and dataset 2 using feature selection and without

feature selection respectively. (C) and (D) represent M vs Sensitivity plots for both datasets using five thresholds. (E) and (F)

represent classification errors for both dataset 1 and dataset 2, respectively using one threshold.

https://doi.org/10.1371/journal.pone.0246920.g004
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samples at each iteration of boosting. For feature selection, the features importance scores

have been computed using XGBoost and random forest. These two feature importance com-

putation methods split the positive and negative samples into many groups, where the number

of positive and, negative samples in each group is approximately equal. All the positive and

negative group pairs were individually taken by the XGBoost and random forest classifiers for

computing the feature importance. Finally, average feature importance scores are computed

and top 100 features are taken for prediction. The average execution time, without feature

selection, over 50 thresholds for dataset 1 and dataset 2 are 617.66 sec., and 232.07 sec., respec-

tively. When feature selection is considered, the average execution time, over 50 thresholds,

for dataset 1 and dataset 2 are 232.07 sec., and 77.61 sec., respectively.

3.6 Sensitivity vs number of base learners and classification errors

In Fig 4(C) and 4(D), two plots represent the M vs Sensitivity graph for both datasets where M

represents the number of base learner that is ranging from 1 to 50. This experiment is carried

out for a few threshold values. For each threshold, the variation of the ROC-AUC is minimal.

The classification error indicates the proportion of samples that the classifier misclassified are

also reported in Fig 4(E) and 4(F).

3.7 Drug-target interaction of the proposed method

In Table 2, some existing and predicted drug-target interactions have been provided. To test

the efficacy of the proposed method, we have omitted several known interactions from train-

ing data. Then, we have trained our model with the remaining data and verified our prediction

Table 2. Drug target interaction verification and new interaction by the proposed method.

Correct prediction of existing interactions Novel Predicted interactions

Target name: Serine hydroxymethyl transferase,

cytosolic

Drugs Mimosine Pyridostigmine

Pyridoxal phosphate Willardiine

Glycine acetamides

tetrahydrofolic acids Betamipron

N-Pyridoxyl-Glycine-5-Monophosphate Tyrosine

Target name: Monoamine oxidase Drugs Amphetamine Diethylpropion

Phentermine Ethinamate

Tranylcypromine Alprenolol

Phenelzine Phenylephrine

Selegiline Probenecid

Drug name: alpha-D- glucose 6-phosphate Targets Glucose-6-phosphateisomerase Peptide deformylase

Glycogen phosphorylase, muscle form Adenylate kinase isoenzyme 1

Aldose reductase Adenosylhomocysteinase

Glutamine–fructose-6-phosphate aminotransferase

[isomerizing]

Phosphoheptose isomerase

Hexokinase-1 Low molecular weight2 tyrosine protein

phosphatase

Drug name: Adenosine-5- Diphospho- ribose Targets MutT/nudix family protein Enoyl-[acyl-carrierprotein] reductase [NADH]

FabI

p-hydroxy-benzoate hydroxylase GDP-mannose6-dehydrogenase

Glyceraldehyde-3-phosphate dehydrogenase RNA-directed

RNA polymerase

Lactaldehyde reductase Serine hydroxymethyl-transferase

Elongation factor 2 Bifunctional protein BirA

https://doi.org/10.1371/journal.pone.0246920.t002

PLOS ONE DTI-SNNFRA: Drug-target interaction prediction by shared nearest neighbors and fuzzy-rough approximation

PLOS ONE | https://doi.org/10.1371/journal.pone.0246920 February 19, 2021 14 / 19

https://doi.org/10.1371/journal.pone.0246920.t002
https://doi.org/10.1371/journal.pone.0246920


results. We have observed that our prediction model has even successfully recovered (pre-

dicted) those omitted known interactions. Seven drugs for the target Serine hydroxymethyl-

transferase, cytosolic are predicted correctly, and among them, five are listed in Table 2. For

the same target, we predicted five additional interactions with drugs. Similarly, we have dis-

played results of some correctly predicted and novel drug-target interactions in this table. In

Fig 5, some drug-target interactions have been shown, along with some interactions between

the treatment areas and drugs.

3.8 Drug-target interaction validation

To verify our drug-target interaction prediction results, we have used the Connectivity Map

(Cmap) [22] prediction results provided by the Broad Institute. The drug name and target

name in the Drugbank dataset have different representations in Cmap. Therefore, we have per-

formed the conversion between Drugbank ID and Cmap using the webchem R package [23].

This R package retrieves the chemical information from the web using a suite of 14 web

services.

Our prediction results of drug-target pairs for Drugbank dataset are utilized in the web-

chem packages, which only fetches information from the Wikidata. Due to lack of information

in the suite of web services, except the Wikidata, as provided by webchem R package, we have

not obtained complete matching between our prediction and Cmap predictions. In Table 3, a

list of 50 drug-target interaction pairs is shown that has been predicted by our method. Thirty-

four interaction pairs which are also available in the Cmap predicted database is marked in

bold face.

We have also observed that most of predicted drug-target interaction pairs e.g. (DB01248,

P07437), (DB04846, P07550), (DB00839, Q09428), (DB00450, P35462), (DB00776, Q9Y5Y9),

(DB00776, P35498) shown in Table 3, are also reported in [24–28].

4 Conclusion

In this article, a novel computational approach for drug-target interaction prediction is pre-

sented utilizing existing drug-target data. There are two critical issues in this domain: a mas-

sive amount of drugs and targets creating a vast search space and highly imbalanced drug-

target interactions dataset as there is a tiny number of drug-target interactions unveiled so far.

Thus, the size of the negative samples is much larger than the size of the positive samples.

Here, we have used shared nearest neighbours rather than taking a fixed number of nearest

neighbours as it is more effective in the higher dimensional dataset. The reason behind this is,

typically, the size of the overlapped items within the neighbourhoods of a pair of drugs (or tar-

gets) inside the same cluster is substantially larger than the neighbourhoods of a pair of drugs

(or targets) belonging to different clusters. Moreover, to tackle the curse of the imbalanced

dataset, these shared nearest neighbours are further grouped by k-medoids. The representative

centroids of k-medoids for the drug and target are then considered new possible drug-target

interaction pairs for each known drug-target pair. Additionally, to deal with imbalanced data-

set further, we have computed the degree of fuzzy-rough upper approximation of all the possi-

ble interaction pairs in the negative samples to perform undersampling. After that, selecting a

threshold of the computed degrees, the size of the negative and positive samples sets are bal-

anced. This upper approximation degree-based undersampling of the negative samples causes

improvement in the prediction scores. Computation of degree in the fuzzy-rough upper

approximation is challenging as interaction pairs’ dimension is exceptionally high. The execu-

tion time of this fuzzy-rough upper approximation degree is directly proportional to the num-

ber of features. Therefore, further investigation on fuzzy-rough set based feature selection
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Fig 5. Some drug-target interactions with treatment areas of the drugs.

https://doi.org/10.1371/journal.pone.0246920.g005
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followed by fuzzy-rough upper approximation computation may improve the prediction

score. Instead of using a single threshold for undersampling, multiple threshold-based under-

sampling may be investigated for tackling the curse of imbalanced datasets. Moreover, the pos-

itive samples’ oversampling to balance with the number of negative samples may be explored

to improve the prediction score. We believe that DTI-SNNFRA may be a promising frame-

work for drug-target interaction prediction.
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