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Abstract

Background: The human plasma proteome is important for many biological processes and targets for diagnostics
and therapy. It is therefore of great interest to understand the interplay of genetic and environmental factors to
determine the specific protein levels in individuals and to gain a deeper insight of the importance of genetic
architecture related to the individual variability of plasma levels of proteins during adult life.

Methods: We have combined whole-genome sequencing, multiplex plasma protein profiling, and extensive clinical
phenotyping in a longitudinal 2-year wellness study of 101 healthy individuals with repeated sampling. Analyses of
genetic and non-genetic associations related to the variability of blood levels of proteins in these individuals were
performed.

Results: The analyses showed that each individual has a unique protein profile, and we report on the intra-
individual as well as inter-individual variation for 794 plasma proteins. A genome-wide association study (GWAS)
using 7.3 million genetic variants identified by whole-genome sequencing revealed 144 independent variants
across 107 proteins that showed strong association (P < 6 × 10−11) between genetics and the inter-individual
variability on protein levels. Many proteins not reported before were identified (67 out of 107) with individual
plasma level affected by genetics. Our longitudinal analysis further demonstrates that these levels are stable during
the 2-year study period. The variability of protein profiles as a consequence of environmental factors was also
analyzed with focus on the effects of weight loss and infections.

Conclusions: We show that the adult blood levels of many proteins are determined at birth by genetics, which is
important for efforts aimed to understand the relationship between plasma proteome profiles and human biology
and disease.
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Background
The levels of blood proteins are important as a measure of
human health and disease, and protein assays are therefore
used frequently in diagnostics. In the future, such assays
hold great promise for precision medicine efforts to detect
early signs of disease and to stratify and monitor patients.
An important issue linked to blood analysis is the under-
lying effect of genetics to determine stable differences in
protein levels between individuals. The levels of blood pro-
teins have previously been determined to be influenced
both by genetic and environmental factors, as studied by
mass spectrometry-based proteomics [1–4], nucleic-acid
based assays [5–8], and immuno-based assays [9–14]. Ef-
fects based on sex [15], specific diets [15], age [16], and in-
fections [17] have also been reported suggesting an
important role for quantitative blood protein assays for in-
dividualized diagnosis of health and disease.
Romanov et al. [15] showed that based on mass spec-

trometry analysis and genetic variability analysis, the
genetic and environmental effects of proteotypes of indi-
viduals could be disentangled. At most 13.5% of the ob-
served differences of protein levels could in this study be
explained by sex, genetics, and diet. Similarly, Wu et al.
[2] showed the genetic component of protein levels
using tag-based quantitative mass spectrometry from
lymphoblastic cell lines from individuals genotyped in
the HapMap project by identification of cis-acting pro-
tein quantitative trait loci (pQTLs). Furthermore, the
quantitative variability of 324 plasma proteins were ana-
lyzed by Liu et al. [3] in a human twin population and
showed different patterns of abundance variability with
genetics effecting the protein levels. Solomon et al. [4]
identified 109 independent associations (36 protein and
73 peptide) using whole-exome sequencing and mass
spectrometry in 165 participants of the Tromsø study.
Their data suggested that the plasma concentration of
clinical biomarkers needs to be calibrated against genetic
and temporal factors. These studies show that genetics is
an important factor for understanding individual vari-
ation of protein concentration levels in human blood.
To complement these studies based on mass spec-

trometry analysis, several genome association studies
have recently been conducted involving multiplex pro-
tein analysis using aptamer/SOMAmer reagents analysis
[5–8] or protein extension analysis (PEA) [9–12]. Sun
et al. [5] applied an integrative approach to link genetic
variation determined by an Affymetrix microarray plat-
form with protein levels determined with a SOMAmer
platform to determine genetic factors to diseases via pro-
tein levels, highlighting opportunities to match existing
drugs with disease indications. Similarly, Emilsson et al.
[6] measured the protein levels of individuals over 65
years of age using genotyping and a SOMAmer platform
and identified many pQTLs associated with complex

diseases. Carayol et al. [7] identified 55 BMI-associated
pQTLs using SOMAscan proteomic assay and genotyp-
ing in 494 obese subjects. Suhre et al. [8] analyzed the
associations between protein levels and gene variants in
a German cohort using SOMAscan platform and Affy-
metrix Array and identified 57 genetic risk loci for 42
disease end points. The PEA platform has also been used
for genetic association studies, such as the identification
of 16 pQTLs associated with known biomarkers [9], 79
loci for plasma protein biomarkers in cardiovascular dis-
ease [10], 8 cis-pQTL in the InCHIANTI study [11], 41
loci for the plasma levels of neurological proteins [12],
and 131 independent sequence variant associations of
the cardiometabolic proteome [13]. In addition, Yao
et al. [14] analyzed the association of protein levels and
genetic factors for 16,000 pQTL variants in more than
6000 individuals in the Framingham Heart Study using
Luminex multiplex immunoassays and identified 13 pro-
teins harboring pQTL variants that match coronary
disease-risk variants from GWAS.
Here, we have for the first time in a longitudinal study

combined whole-genome sequencing with multiplex pro-
tein analysis to investigate the effect on genetic variability
on protein levels in blood. A cohort of 101 healthy indi-
viduals between 50 and 65 years of age have been studied
longitudinally for 2 years with repeated analysis to identify
genetic associations with consequences for protein blood
levels. A large number of anthropometric and clinical vari-
ables based on classic clinical chemistry analysis have also
been assessed to probe the importance of environmental
factors to protein variability. The study has identified a set
of proteins in which the difference in concentration levels
between individuals is heavily influenced by the genetic
architecture of the individual. Most of these differences
are stable during the study period, suggesting that genetic
factors are important to define the levels of these proteins
in blood throughout adult life.

Methods
The Swedish SciLifeLab SCAPIS Wellness Profiling (S3WP)
study
The S3WP study is based on the Swedish CArdioPulmonary
bioImage Study (SCAPIS) with 30,154 individuals enrolled at
ages between 50 and 64 years recruited from random sam-
pling of the general Swedish population [18, 19]. A total of
101 healthy individuals were recruited in the S3WP study
and followed longitudinally for 2 years with repeated analyses
of molecular markers in blood and stool samples in combin-
ation with physical measurements. Examinations in SCAPIS
include imaging to assess coronary and carotid atheroscler-
osis, clinical chemistry, anthropometry, and extensive ques-
tionnaires, as previously described [18]. Thus, the subjects
had been extensively phenotyped before entering the S3WP
study. In SCAPIS, no exclusion criteria are applied except
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the inability to understand written and spoken Swedish for
informed consent. In the S3WP study, exclusion criteria in-
clude (1) previously received health care for myocardial in-
farction, stroke, peripheral artery disease, or diabetes; (2)
presence of any clinically significant disease which, in the
opinion of the investigator, may interfere with the results or
the subject’s ability to participate in the study; (3) any major
surgical procedure or trauma within 4weeks of the first
study visit; or (4) medication for hypertension or hyperlipid-
emia. The study is approved by the Ethical Review Board of
Göteborg, Sweden. All participants provided written in-
formed consent. The study protocol conforms to the ethical
guidelines of the 1975 Declaration of Helsinki.

Study design and sample collection
Subjects in the S3WP study were examined and sampled
every third month (± 2 weeks) in the first year and ap-
proximately a 6-month interval in the second year. All
subjects were fasting overnight (at least 8 h) before the
visits. Identical examinations were performed at each visit,
including anthropometric measurements, body fat using
bioimpedance and blood pressure. A selection of ques-
tions from the initial SCAPIS questionnaire was repeated
to note any changes in health and lifestyle factors between
each visit. Each visit also included collection of blood,
urine, and feces for subsequent clinical chemistry and
omics analyses. All samples were stored at − 80 °C until
use. From visit 2 and onward, subjects were wearing accel-
erometers (Polar A360) to measure physical activity.

Anthropometric measurements
Height was measured in indoor clothing to the nearest
centimeter without shoes. Weight was measured on a cali-
brated digital scale, with subjects dressed in light indoor
clothing without shoes. The body mass index (BMI) was
calculated by dividing the weight (kg) by the square of the
height (m). Waist circumference was measured midway
between the palpated iliac crest and the palpated lowest
rib margin in the left and right mid-axillary lines. Hip cir-
cumference was measured at the maximum circumference
over the buttocks. Bioimpedance was measured using
Tanita MC-780MA according to the manufacturer’s in-
structions. Systolic and diastolic pressure was registered in
supine position and after 5min of rest, using the auto-
matic Omron P10. The blood pressure was measured in
both arms at visit 1 and thereafter in the arm that showed
the highest blood pressure at visit 1.

Clinical chemistry
Clinical chemistry and hematology measurements included
plasma glucose, hemoglobin A1c (HbA1c), triglycerides
(TG), total cholesterol, low-density lipoprotein (LDL), high-
density lipoprotein (HDL), apolipoprotein A1 (ApoA1),
apolipoprotein B (ApoB), ApoA1/B ratio, creatinine, high

sensitive C-reactive protein (hsCRP), alanine aminotransfer-
ase (ALAT), gamma-glutamyltransferase (GGT), urate,
cystatin C, vitamin D, troponin T (TNT), N-terminal pro-
brain natriuretic peptide (NT-proBNP), hemoglobin (Hb),
and a complete blood count with differential. In total, a var-
iety of 30 clinical chemistry parameters were included in
the study; see for more details Additional file 1: Table S1.

Whole-genome sequencing
Genomic DNA was quantified using Qubit 2.0 Fluorometer
(Invitrogen), fragmented into average 350-bp fragments
using E220 focused-ultrasound sonicator (Covaris), and
1 μg of fragmented DNA was converted into sequencing
ready library using TruSeq DNA PCR-free HT Sample
preparation method (Illumina). The obtained library was
quantified using KAPA SYBR FAST qPCR (Kapa Biosys-
tems) and pair-end (2 × 150 bp) sequenced to average 30×
coverage on the HiSeq X system (Illumina) using v2 flow-
cells. Demultiplexing was done without allowing any mis-
matches in the index sequences. Bioinformatic analysis of
the sequence data was carried out using Mutation Identifi-
cation Pipeline (version 4.0.18) [20]. Briefly, alignment was
done using BWAmem using reference genome GRCh38.p7,
and single-nucleotide and insertion/deletion variants called
using GATK best practices pipeline (https://software.broad-
institute.org/gatk/best-practices, GATK v3.6). Structural
variants were called using Manta (v1.0.3) [21]. Variants in
the any of the 56 ACMG genes [22] were excluded from
further analysis in order to avoid secondary findings.
The VCF files were then converted to PLINK-format

with the PLINK software, version 19 [23]. Quality control
(QC) was conducted to avoid false findings. The exclusion
criteria for variants include (1) remove individuals with high
missing genotype rates (> 5%), (2) remove SNPs fail the
genotyping rate threshold 0.05, (3) remove SNPs with low
minor allele frequencies (MAF) (< 5%), and (4) remove
SNPs fail the Hardy-Weinberg equilibrium (HWE) test
(P < 0.001). In total, 7,275,131 high-quality variants were
identified in all samples from 101 individuals with a general
genotyping rate of 99.93%. The multidimensional scaling
(MDS) analyses of the pairwise identity-by-state (IBS) dis-
tance of the samples was conducted within PLINK.

Plasma protein profiling
We used a multiplex proximity extension assay (Olink
Bioscience, Uppsala Sweden) [24] to measure the relative
concentrations of plasma proteins in the study. Each kit
provides a microtiter plate for measuring 92 protein bio-
markers in all prepared samples. Each well contains 96
pairs of DNA-labeled antibody probes. Samples were in-
cubated in the presence of proximity antibody pairs
tagged as previously described. To minimize inter- and
intra-run variation, the samples were randomized across
plates and normalized using both an internal control
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(extension control) and an inter-plate control and then
transformed using a pre-determined correction factor.
The pre-processed data were provided in the arbitrary
unit Normalized Protein eXpression (NPX) on a log2
scale, and a high NPX presents high protein concentra-
tion. In this study, eleven Olink panels have been used
including Cardiometabolic, Cell Regulation, Cardiovas-
cular II (CVD II), Cardiovascular III (CVD III), Develop-
ment, Immune Response, Oncology II, Inflammation,
Metabolism, Neurology, and Organ Damage. Quality
control (QC) was performed at both sample and protein
levels. A sample will flag (not pass the QC) if incubation
control deviates more than a pre-determined value (±
0.3) from the median value of all samples on the plate
(www.olink.com). To reduce the batch effect between
samples run at different times, bridging reference sam-
ples from different visits were also run on plates from
the different batches. Reference sample normalization
based on bridging samples was conducted to minimize
technical variation between batches (www.olink.com).
Two strategies were used to assess the batch effect: (1)

the ratio of maximum and minimum interquartile range
(IQR) of protein concentrations across six visits and (2)
three-way analysis of variance (ANOVA) analysis of pro-
tein concentrations for factor batch number, factor visit,
and factor subject. Proteins with the ratio of maximum
and minimum IQR > 1.8 or coefficient of sampling date
from ANOVA > 10 were considered to have a problematic
batch effect and were removed from the dataset. Thirty-
nine replicated proteins from multiple panels were also re-
moved. The filtering process resulted in a total of 794
unique proteins for 90 subjects and 6 visits (540 samples)
in the analysis of the study (Additional file 1: Table S2).

Genome-wide association analysis
Baseline protein concentration level for each subject was
calculated as a median of NPX values across 6 visits. No
significant association between protein levels and ancestry
was observed by using mixed effect modeling in the study.
Therefore, no correction for ancestry was applied. Associ-
ation between each protein and genetic variant was per-
formed using a linear regression model adjusted for age
and gender at baseline using PLINK v1.9 [23]. Bonferroni-
adjusted P value < 6 × 10−11 (genome-wide threshold of
P = 5 × 10−8, 798 proteins tested) were considered to be
significant in the study. Functional annotation of variants
was performed using Ensembl Variant Effect Predictor
(VEP) v87 [25]. A cis-pQTL variant was defined as a SNP
residing within 1 megabase (Mb) upstream or downstream
of the transcription start site of the corresponding
protein-coding gene. A SNP located > 1Mb upstream or
downstream of the gene transcript or on a different
chromosome from its associated gene was categorized as a
trans-pQTL variant. Linkage disequilibrium (LD) was

computed as the square of Pearson’s correlation (r2) be-
tween genotype allele counts across 101 subjects. To iden-
tify independent pQTLs for a given protein, LD r2 > 0.1
with window size 1Mb was first used to exclude the cor-
related variants. For proteins with multiple pQTLs, a con-
ditional analysis was then carried out in which the genetic
associations were re-calculated using the sentinel SNP as
covariate. Only associations with conditional P value <
0.01 were considered to be independent pQTLs.

Replication of previous pQTLs associated with blood
proteins
Experimental Factor Ontology (EFO) term “blood protein
measurement” (EFO_0007937) was used for the search in
NHGRI-EBI GWAS Catalog (accessed February 2020)
with the exclusion of child trait datasets and non-
European studies. A total of six studies were identified, in-
cluding Yao et al. [14], Melzer et al. [11], Hillary et al.
[12], Suhre et al. [8], Emilsson et al. [6], and Sun et al. [5].
In addition, by using literature search for pQTL studies,
Enroth et al. [9], Folkersen et al. [10], Liu et al. [3], and
Johansson et al. [1] were also included in the analysis. In
total, 3751 pQTLs from 10 studies were included in the
analysis. The replication of pQTL was considered if SNP
had a correlation of r2 > 0.6 and associated with the same
protein in our study (Additional file 2: Table S4). Replica-
tion P values were calculated using weighted meta-
analysis implemented in METAL [26].

Overlap of cis-pQTL with cis-eQTL
Each independent cis-pQTL variant was queried against
publicly available eQTL association data using PhenoS-
canner [27]. Non-European studies and non-blood tis-
sues were excluded manually. For each eQTL, only the
entry with strongest association among the pQTL vari-
ants was present (Additional file 2: Table S5).

Disease associations
We examined whether the sentinel variants or their strong
proxies (LD r2 > 0.8) were associated with human diseases
using PhenoScanner [27] with default parameters. Non-
European studies and non-disease phenotypes such as an-
thropomorphic, molecular, and physiological traits were
excluded. For each disease, only the entry with strongest
association among the pQTL sentinel variants or their
proxies were reported (Additional file 2: Table S6).

Hierarchical clustering and canonical correspondence
analysis
The hierarchical clustering results visualized in dendro-
grams are based on Pearson correlation and were cre-
ated by first calculating a correlation matrix of Pearson’s
ρ between all 540 samples. The correlation was con-
verted to a distance metric (1 – ρ) and was clustered
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using unsupervised top-down hierarchical clustering,
where at each stage the distances between clusters are
recomputed by the Lance-Williams dissimilarity update
formula according to average linkage. Canonical corres-
pondence analysis (CCA) was performed on the NPX
values for all 794 proteins in 540 samples with clinical
chemistry/anthropometric measurements as constraining
variables using the “vegan” package in R v3.5.3 [28].
CCA functions are based on Legendre & Legendre’s al-
gorithm [29]: in CCA, chi-square transformed data
matrix is subjected to weighted linear regression on con-
straining variables, and the fitted values are submitted to
correspondence analysis performed via singular value
decomposition (SVD).

Statistical analysis
Mixed-effect modeling was performed using the lme4
package [30], and Kenward-Roger approximation [31]
was used to calculate p values which were subsequently
adjusted for multiple testing using Benjamini-Hochberg
method [32]. p values were considered significant if less
than 0.01. Variance analysis of the protein levels was
conducted using multiple linear regression model with
all protein significantly associated pQTLs, clinical chem-
istry/anthropometric parameters, sex, and visit as vari-
ables in the model. The fraction of explained variability
was measured as the Sum of Squares Explained (SSE)
and was determined using ANOVA. All of the data ana-
lysis was performed using the R project [33].

Results
The study cohort and clinical chemistry
A total of 101 individuals were recruited from the SCA-
PIS study [18], including 48 males and 53 females be-
tween 50 and 65 years of age (Fig. 1a). Among them, 92
(91%) individuals were of European descent, while a few
were of South American or Asian origin. Extensive
phenotype characterization of the subjects was con-
ducted before the study to establish the inclusion and
exclusion criteria for the definition of “healthy” subjects.
The sample collection in combination with clinical
chemistry analysis of 30 parameters and as well as an-
thropometric measurements was conducted every
3 months in the first year and at approximately a 6-
month interval in the second year (Fig. 1b). The
complete list of assessed clinical variables is available in
Additional file 1: Table S1. Among the 101 subjects, 94
completed the full 2-year study including six visits.

Whole-genome sequencing
DNA from whole blood of each individual was isolated
at the first visit and the whole genome was determined
using next-generation sequencing. All 101 individuals
passed the quality control. In total, 7.3 million variants

were identified with a general genotyping rate of 99.93%.
A MDS analysis was performed based on the genome-
wide IBS pairwise distances of the total set of variants
from the 101 individuals (Fig. 1c). Distinct subsets of in-
dividuals revealed the relationship of geographic origin
of the parents.

Plasma protein profiling
The protein levels of plasma samples from the subjects
were analyzed using PEA as described previously [24].
All samples were analyzed with eleven panels as outlined
in Fig. 1b covering plasma proteins of interest for car-
diovascular and neurological disease, inflammation, can-
cer, metabolism, organ damage, development, and cell
regulation. Bridging reference samples were used for
inter-plate normalization (Additional file 1: Fig. S1A),
and the comparison of reference samples run on differ-
ent plates showed a strong correlation among different
replicates (Additional file 1: Fig. S1B). Reference sample
normalization was conducted to reduce the batch effect
(Additional file 1: Fig. S1C-D, see more details in the
“Methods” section). Proteins run in multiple panels were also
analyzed and found to correlate well with an average Pearson
correlation between panels of 0.86 (Additional file 1: Fig. S2A),
as exemplified by the interleukin-6 protein which was run in
four different panels (Additional file 1: Fig. S2B). In total, the
relative protein concentration levels of 794 unique protein tar-
gets for 90 subjects with six visits were generated. Among them,
80 proteins are found in the list of drug targets for FDA ap-
proved drugs [34] (Fig. 2a, Additional file 1: Table S2).
To assess the variability of protein concentration, we

compared the IQR of the fold change of protein concen-
tration levels from their median abundance level (Fig. 2a,
Additional file 1: Table S2). The most variable protein in
the study was kallikrein-related peptidase 12 (KLK12)
which is involved in angiogenesis. Spondin 2 (SPON2), a
cell adhesion protein that promotes adhesion and out-
growth of hippocampal embryonic neurons, on the other
hand, was the most stable protein with a median fold
change of 1 and IQR of 0.01. Extreme outliers were also
observed, suggesting the discrepancy in protein concen-
tration levels among individuals. The inter-individual
variation (calculated as average coefficient of variation
(CV)) and the intra-individual variation of each protein
for each individual across the six visits were also deter-
mined (Table S2). Figure 2b shows that the majority of
all proteins have higher variation between individuals ra-
ther than within individuals. Growth hormone 2 (GH2)
and RAS p21 protein activator 1 (RASA1) are the most
dispersed proteins on inter-individual level. The over-
view of the concentration levels across six visits for these
two proteins is visualized in Fig. 2c and d respectively.
The concentration of both proteins was relatively stable
across the six visits for each individual, and distinct

Zhong et al. Genome Medicine           (2020) 12:53 Page 5 of 16



groups of individuals with elevated concentration levels
can be identified based on the longitudinal protein con-
centration profiles.

Clustering analysis of the protein profiles
Unsupervised clustering analysis was performed based
on the Pearson correlation of the global protein concen-
tration profiles based on six samples for each of the 90
individuals. The hierarchical tree shows that the majority
of samples from the same individual cluster together, in-
dicating that the intra-individual variation is smaller
than the inter-individual variation in normal healthy

individuals (Fig. 2e, Additional file 1: Fig. S3). The com-
parison of the distribution of intra-individual and inter-
individual correlations also demonstrates a similar
conclusion with a median intra-individual correlation of
0.99 and median inter-individual correlation of 0.96
(Fig. 2f). The effect of the inter-individual variation,
visits, and residuals for each of the 794 proteins was
assessed using two-factor ANOVA, and the proportion
of variance explanation is visualized as a ternary plot
(Fig. 2g). The plot demonstrates that most variability can
be observed between individuals (inter-individual) with
relatively low contribution by the visits factor. Folate

Fig. 1 Overview of the study. a In total, 101 subjects were included in the study. The upper part shows the number of individuals that came to
each of the six visits (red, blue, green, purple, orange, and gray). The lower part shows the distribution of each visit for the subjects that
completed the program across 2 years. b The rectangular plot shows the types of data that is collected in the study; see more details in Table S2.
c The MDS plot shows the pairwise genetic distances between 101 subjects based on the whole genome sequencing. The color code indicates
the origin of the parents of each individual (upwards triangle, mother; inverted triangle, father)
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Fig. 2 (See legend on next page.)
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receptor 3 (FOLR3) shows the largest inter-individual
differences with 99.4% variance explained by subjects,
0.1% by visits, and 0.5% by residuals.
A small number of individuals (n = 10) showed a

higher variability between some of the visits, and these
can be seen as outliers in the hierarchical tree (Fig. 2e
and Additional file 1: Fig. S3), as one or more visits are
not clustering with the others from the same individual. Pair-
wise comparisons of the protein levels across six visits of the
10 individuals were shown in Additional file 1: Fig. S4. Inter-
estingly, one of the individuals (W0010) started a dietary
change after visit two and thus lost weight between visit
three (120.5 kg) and visit four (104.7 kg) (Additional file 1:
Fig. S5A). For another individual (W0022), the clinical chem-
istry result reveals elevated C-reactive protein (CRP) levels
(79mg/L) at visit two due to an infection (Additional file 1:
Fig. S5B). An analysis of the protein profiles of these two in-
dividuals will be described more in depth below.

Genome-wide association analysis of the blood protein
profiles
To investigate the genetic influences on inter-individual dif-
ferences in blood protein concentration, a genome-wide as-
sociation analysis based on 7.3 million variants identified by
whole-genome sequencing and 794 plasma protein profiles
was performed. A total of 2936 associations reached a given
statistical significance level (P < 6 × 10−11) (Additional file 1:
Fig. S6). Among them, 144 significant associations between
107 proteins and 143 independent genetic variants (LD
r2 < 0.1, conditional P < 0.01) were identified (Fig. 3a), in-
cluding 67 cis-pQTL variants for 67 proteins and 77 trans-
pQTL variants for 40 proteins (Fig. 3b). Among them, 74%
of the pQTLs including the proxy of the pQTLs (LD r2 >
0.6) have not been reported before. All but 13 of the pQTLs
replicated at nominal significance (P < 0.001) in previous
studies (see more details in methods and Additional file 2:
Table S4). Most of the cis-pQTLs and trans-pQTLs were
found in intronic, intergenic, or other untranslated regions
(Fig. 3c). The association between cis- or trans-pQTL with
genomic regions was further examined by using Fisher’s
exact test. We found that cis-pQTL variants were higher
enriched in coding regions (P < 0.1) and untranslated re-
gions (P < 0.01), while trans-pQTL variants were higher

enriched in intergenic regions (P < 0.001). In addition, 45%
(n = 30) of the cis-pQTLs also had an eQTL for the same
protein in blood (Additional file 2: Table S5), suggesting
that the genetic effect on plasma protein levels is mainly on
transcription level. Sentinel pQTL variant was determined
as the variant with lowest P value at each pQTL locus and
visualized in Fig. 3d. The variants are relatively equally dis-
tributed between the chromosomes for both cis- and trans-
pQTLs. To investigate the associations between pQTLs
and human diseases, we also examined whether the sentinel
variants or variants in LD r2 > 0.8 were identified in disease-
GWAS studies. In total, 16 pQTLs were associated with 21
diseases (Additional file 2: Table S6). For example,
rs6727306 was identified as an atopic dermatitis risk loci in
a multi-ancestry GWAS study [35]. Here, we also show the
association of rs6727306 between interleukin 18 receptor 1
(IL18R1) which contributes to IL18-induced cytokine pro-
duction [36].
In Fig. 4, the three proteins with strongest associations

between blood protein levels and genetic variants are an-
alyzed in more depth. The genetic variants associated
with the concentration levels of the FOLR3 protein
(Fig. 4a) are all found at chromosome 11 (cytoband
q13.4) in close proximity to the gene coding for FOLR3.
The highest association is found for variant rs71891516,
which is a stop gain variant in the coding region of
FOLR3. FOLR3 is a secreted plasma protein [37] that
can bind to folate and reduce folic acid derivatives and
mediate delivery of 5-methyltetrahydrofolate to the in-
terior of cells [38]. Interestingly, individuals that carry
the variant thus will have a premature termination
codon which signals the end of translation. This inter-
ruption causes the protein to be abnormally shortened.
A more detailed analysis of the two chromosomes of the
individuals reveals that the protein levels are high for
both the homozygote and heterozygotes for the stop-
gain variant (Fig. 4b). The longitudinal analysis during
the six visits for the 90 individuals (Fig. 4c) demonstrates
that the individual protein levels were remarkably stable
during the 2-year period. The reason behind the differ-
ence in levels is not known at present, but it is tempting
to speculate that the shorter version has longer blood
half-life and thus yields higher concentration levels in

(See figure on previous page.)
Fig. 2 Longitudinal plasma protein profiling. a The distribution of the Log2 fold change of protein concentration per sample versus the average
protein concentration level with FDA approved drug targets highlighted. b The inter-individual and intra-individual variation of protein levels
calculated as the coefficient of variation (CV) for each protein within each visit and across all analyzed individuals (n = 90), and as the mean CV for
each protein within each individual across all visits (n = 6), respectively, colored by the median concentration level of protein. The protein
concentration variation across visits one to six, with each individual connected with a dotted line for c growth hormone 2 (GH2) and d RAS p21
protein activator 1 (RASA1). The color code indicates females and males. e Hierarchical clustering based on pairwise Pearson correlation distance
of the protein concentration in all 540 samples is shown with labels color coded by individual (see more details in Fig.S3). f Violin plot showing
the distribution of inter- and intra-individual Pearson correlation for all samples. g Ternary plot based on two-factor ANOVA for all proteins,
assessing the relative effect of the inter-individual variation, visits, and residuals. The color code indicates the median concentration level
of protein
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blood. In this context, it is important to note that the
truncated variant of FOLR3 might have an altered anti-
body binding, and therefore, the apparent change in con-
centration is instead due to altered epitope binding. This
needs to be ruled out by more in-depth analysis using
antibody-independent analysis.
For the protein platelet-derived growth factor receptor

beta (PDGFRB), the genetic variants (Fig. 4d) are located
to chromosome 5 (cytoband q32), which is the location
of the protein-coding gene. The highest association is
found for variant rs3816018, which has been previously
reported in Garrigos et al. [39] and Benson et al. [40].
Interestingly, the chromosomal analysis shows that het-
erozygote individuals for the protein variant have inter-
mediate levels of blood protein levels (Fig. 4e) compared
to the homozygotes. Similarly, to FOLR3, most of the
relative levels of the individuals were stable during the
2-year study period (Fig. 4f). For the protein meprin A
subunit beta (MEP1B), the genetic variants (Fig. 4g) are
located to chromosome 18 (cytoband q12.1), which
again is the location of the protein-coding gene. The
highest association is found for variant rs620982, located
downstream of the MEP1B gene. Again, the heterozy-
gote individuals have intermediate levels of the protein

(Fig. 4h), and these levels are stable during the 2-year
study period (Fig. 4i).

Integrative multivariate data analysis
To get a comprehensive quantification of the effects of
genetic and non-genetic factors on the variation of pro-
tein concentration during the longitudinal study period,
we established a linear-regression model for each protein
that included all genome-wide significant variants, an-
thropometrics, the 30 clinical chemistry parameters, sex,
and visit. In the analysis, the genetic variants were com-
bined as “genetic component” and all the anthropomet-
ric and clinical chemistry variables were combined as
“environmental component.” A summary of the analysis
across all 794 analyzed plasma proteins (Fig. 5a) shows
that the influence of genetics and environment on blood
protein level variability varies considerably. Limited lon-
gitudinal effects were found in the variability of proteins
with genetic associations with an average contribution of
2%, suggesting that the protein levels associated with
genetics are relatively stable throughout the 2-year study
period. Out of the 107 proteins with significant pQTL
associations, 56 proteins have at least a 50% contribution
from genetics (Fig. 5b). The FOLR3 protein is the most

Fig. 3 Global analysis of the genetic regulation of the proteome. a Chord diagram showing the distributions of cis- and trans-pQTLs in 23
chromosomes. Each link represents cis- or trans-pQTLs in a chromosome, respectively, with the ribbon width reflecting the number of pQTLs. b
Genomic locations of the pQTL variants and the associated proteins, colored by cis- and trans-pQTLs. c The fractions of cis- and trans- pQTLs in
different types of genomic regions. d Manhattan plot of the sentinel pQTL per protein. The color code indicates the cis- and trans-pQTLs for the
107 proteins with significant associations, and the gray dots represent the none significant associations

Zhong et al. Genome Medicine           (2020) 12:53 Page 9 of 16



affected protein with 98% of the blood protein level vari-
ance explained by genetics. Membrane metalloendopep-
tidase (MME), which is involved in the destruction of
opioid peptides by cleavage of a Gly-Phe bond [41], is an
example of a protein with the concentration levels in
blood strongly associated with both genetic and environ-
mental components, mainly due to the liver marker
GGT (Additional file 1: Fig. S7A). Another example is
protein carbonic anhydrase 5A (CA5A), which is a liver
enriched gene [36], with the concentration levels mainly
affected from genetics (60%) but also from ALAT (7%)
(Additional file 1: Fig.S7B). The results demonstrate the

importance of determining the underlying genetic make-
up when analyzing individual differences in blood pro-
tein levels.
One hundred eighty-six proteins have at least a 10% con-

tribution from a certain environmental component to the
variability of the blood concentration levels (Additional file 1:
Table S3). Among them, 63 proteins are associated with kid-
ney function, 33 proteins are associated with lipid profile, 32
proteins are associated with body composition, 21 proteins
are associated with leukocytes, and 42 proteins are associated
with other clinical parameters. The top 30 most significant
proteins associated with environmental components and

Fig. 4 Examples of three proteins with the top most significant pQTLs. a Manhattan plot of protein FOLR3 shows the genome locations of all
associated pQTLs. b Bee-swarm and box plot of protein FOLR3 shows the association between genotype of rs71891516 with median
concentration of FOLR3. c The longitudinal protein concentration across visits one to six with each individual connected with a dotted line for
FOLR3. d Manhattan plot for protein PDGFR3. e Bee-swarm and box plot showing the associations between genotype of rs3816018 with median
concentration of PDGFRB. f Longitudinal protein concentration levels of PDGFR3. g Manhattan plot for protein MEP1B. h Bee-swarm and box plot
showing the associations between genotype of rs3816018 with median concentration of MEP1B. i Longitudinal protein concentration levels of
MEP1B. The color indicates the genotypes of rs71891516, rs3816018 and rs620982, respectively
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Fig. 5 (See legend on next page.)
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with no genetic component are highlighted in Fig. 5c. A
CCA [42] was also performed to investigate the associations
of protein profiles with anthropometric and clinical chemis-
try variables. Associations of all analyzed samples (n= 540),
together with proteins and clinical or anthropometric vari-
ables, were presented in the triplot (Fig. 5d). The CCA
(Fig. 5d) predicts the effects of the plasma protein data and
clinical parameters on sample levels and highlights that LEP
is highly positively correlated with body fat and negatively
correlated with bone mass and muscle mass. As an example,
N-terminal pro-brain natriuretic peptide (NT-proBNP) and
natriuretic peptide (BNP) were highly correlated with the
NTproBNP levels in clinical chemistry, consistent with linear
regression analysis result in Fig. 5b. Sex differences can be
also observed, for example with higher skeletal muscle
mass and Hb levels in males and higher body fat mass and
HDL levels in females. Glycoprotein hormones, alpha
polypeptide (CGA) which is a placenta-enriched protein,
showed the largest sex difference with high levels of con-
centration in female samples. Prokineticin 1 (PROK1), on
the other hand, showed higher concentration levels in
male samples. The majority of proteins with significant
pQTL variants were as expected shown not significantly
associated with clinical or anthropometric variables but
are located in the center of the plot.

Changes due to environmental factors
To investigate the effect of life style changes and in par-
ticular weight changes on the proteome, we focused on
the mixed effect modeling results for weight-related an-
thropometrics (weight, waist, BMI, and bioimpedance
fat) and obtained a list of the top 50 most significant
proteins. The resulting connections between proteins
and weight-related parameters are visualized as a chord
diagram plot (Fig. 6a), and the protein profiling data was
used to perform hierarchical clustering of the 50 pro-
teins based on their concentration levels across the six
visits (Additional file 1: Fig. S8A). We assessed the
changes in plasma protein profiles before and after
weight loss, exemplified by the participant W0010 who
showed a large weight loss between visit three (120.5 kg)
and visit four (104.7 kg), but started a change in lifestyle
already after visit two. The protein levels in each of the
six visits are visualized for all proteins with positive (n =
37) (Fig. 6b) or negative (n = 13) (Additional file 1: Fig.
S8B) correlations with weight-related anthropometrics,

respectively, highlighting the large changes between
visits three and four for many of these proteins. We also
compared the ratio of the complete set of plasma protein
profiles between visits two and four (Additional file 1:
Fig. S8C) to highlight the most altered proteins for this
individual, and here, we see that the growth hormone
protein (GH) had the largest change over all.
Finally, to get a comprehensive mapping of the prote-

ome changes during an infection, we focused the multi-
variate analysis on the plasma protein profiles and their
relationship with the CRP (Fig. 6c). Based on linear
mixed effect modeling results, the top 50 most highly as-
sociated proteins with CRP are visualized in Fig. 6c, and
the circular dendrogram (Additional file 1: Fig. S8D)
shows the relationship based on correlation of protein
profiles between these mainly inflammatory and
immunity-related proteins. An analysis of the same pro-
teins in the individual with a serious infection at visit
two shows an increase of a whole cascade of
inflammatory-related proteins upon infection with the
positively correlated proteins (n = 44) in Fig. 6d, with the
largest change of many of the proteins in visit two. The
small number of negatively correlated proteins (n = 6) is
shown for the same individual in Additional file 1: Fig.
S8E. The top driving proteins mainly include cytokines
IL1RL1, IL1RN, IL27, IL12, IL6, and IL10; chemokines CCL3,
CCL4, CCL7, CCL20, CXCL9, and CXCL10; also tumor ne-
crosis factor TNFRSF6B, DLL1, and XCL1; a peptidase
MMP12; and the growth factor TGFA. Additional file 1: Fig.
S8F shows the log2-ratio between visit two and visit one for
all proteins in the same individual, which clearly shows that
IL17C, GCG, and REG1A have the largest increase in concen-
tration and at the other end, ALDH3A1 decreased the most.

Discussion
Here, we have combined whole-genome sequencing, multi-
plex protein profiling, and extensive clinical phenotyping to
determine genetic associations related to the variability of
blood levels of proteins based on a longitudinal wellness study
of healthy individuals with repeated sampling. We present, for
the first time, a longitudinal study in which a quantitative and
sensitive protein extension assay has been combined with
whole-genome sequencing. By combining eleven protein assay
panels covering inflammation, cardiovascular disease, neuro-
logical disease, organ damage, and cancer, close to 800 pro-
teins were studied with multiple sampling of all individuals.

(See figure on previous page.)
Fig. 5 Influence of genetic and environmental factors on the blood protein level variability. a Barplot of variance explanation fraction of each
component for 794 proteins (green: Genetics; purple: Environmental; gray: Sex; red: Visit) determined by a linear mixed model. b Barplot of
variance explanation fraction of each component for 107 proteins, color coded by different variables. b Barplot of the top 30 proteins most
strongly associated with environmental components, with the most significant variables labeled and using the color code in (b). c Canonical
correspondence analysis (CCA) triplot showing correlations between protein levels and the clinical or anthropometric variables, as well as all
individual samples
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Most of the proteins were stable over time with
limited effect of longitudinal variation, with larger
inter-individual variation as compared to the intra-
individual variation. The use of whole genome se-
quencing allowed us to identify many more genetic
variants influencing blood protein levels, and

approximately half of the pQTLs found have not been
reported earlier. The study confirms that the human
blood level of many proteins during adult life is de-
termined by genetics and that in clinically healthy
study participants, these levels were stable during the
2-year study period.

Fig. 6 Dynamic molecular profiling changes and impact on weight loss and infection. a Chord diagram of the 50 most significant proteins
related to body composition (bioimpedance fat, bioimpedance muscle, bioimpedance bone, weight, waist and BMI). The size of the link is
defined as the absolute value of coefficient of the corresponding effect, and proteins are sorted based on the coefficient calculated using mixed-
effect modeling. b A radar plot showing the protein profiles of the 37 most significant proteins positively related to body composition for the
subject W0010 who had a 15.4 kg weight loss in 3 months between 3 and 4 and a total weight loss of 16.6 kg during the 2 years. c Chord
diagram of the 50 most significant proteins related to CRP and including top six other parameters with significant effect to the same proteins.
The size of the link is defined as the absolute value of coefficient of the corresponding effect and proteins are sorted based on the coefficient
calculated using mixed-effect modeling. d Radar plots of the positively correlated proteins (n = 44) showing the relative abundance level in
subject W0022 who had an increased CRP of 79 between visit 1 and 2
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The protein profile variability as a consequence of en-
vironmental factors was also analyzed. An interesting
finding is the sex differences in both proteome and clin-
ical chemistry, which is important for our understanding
of both health and disease to avoid sex biased interpreta-
tions. In total, 186 proteins have at least a 10% contribu-
tion to the variability of the blood concentration levels
from a certain environmental component measured in
the study. Leptin (LEP), a key player in the regulation of
energy balance and body weight control, is the most signifi-
cant protein associated with known environmental factors,
with more than 75% of the variance explained by the body
composition. Another well-known example is low-density
lipoprotein receptor (LDLR), the major cholesterol-carrying
lipoprotein of plasma, which showed high associations with
lipid profiles. Several immune-related molecules were also
identified with high correlations with acute phase or leuko-
cytes, including oncostatin M (OSM), interleukin 6 (IL6),
interleukin 1 receptor antagonist (IL1RN), and matrix
metallopeptidase 9 (MMP9), which is in line with the previ-
ous report that variation in the human immune system is
largely associated with non-heritable factors [43].
The analysis of the individual molecular profiles re-

vealed large effects on several proteins as a consequence
of weight loss and infection. This analysis shows that
weight loss resulted in a remodeling of many proteins,
primarily involved in energy balance, insulin sensitivity,
and adiposity-related processes with the main proteins
driving this effect being LEP, LDLR, FURIN, and carbox-
ylesterase 1 (CES1). Note that the changed blood levels
for these proteins remain also during visit 5 and 6. The
data confirms that leptin levels are associated with an-
thropometrics and ApoB/ApoA1 ratio and thus serves as
a key metabolic marker [44]. The IGF binding proteins 1
and 2 are also among the most co-varying proteins, and
these proteins are known to be associated with obesity
and weight disorders [45]. The PON3 protein belongs to
the paraoxonase family and is known to bind with HDL
having antioxidant properties by rapidly hydrolyzing lac-
tones to prevent LDL oxidation [46]. Our study also
shows that weight loss results in a distinct molecular re-
sponse of the PON3 protein.
The correlation analysis related to infection revealed

the relationship between CRP-proteins and a number of
other parameters, such as the biomarkers of kidney
function cystatin C as well as the total leukocyte particle
concentration (LPC). The elevated kidney biomarkers
could reflect a transient reduction in kidney function
often seen during infection. A whole cascade of inflam-
matory related proteins was shown to be affected to trig-
ger and maintain the inflammatory and immunological
responses related to infection. Interestingly, our data
confirmed the relationship between CRP and IL-6, but
the results also give a broader view of the cytokines

landscape that are significantly connected with CRP.
This may lead to a better stratified molecular under-
standing of the biological mechanisms underlying CRP
effects in inflammation and related diseases.
Several important conclusions can be drawn with rele-

vance for precision medicine efforts. First, the study sug-
gests that protein levels throughout adult life are
affected by precise genetic variants for more than 100
proteins analyzed here. Genetics should therefore be
considered when assessing an individual’s protein levels.
As an example, the FOLR3 protein, with a remarkable
98% contribution to plasma levels from genetics, has
higher plasma levels for both the homozygote and het-
erozygote variants of the corresponding gene. In con-
trast, the heterozygote individuals for the gene coding
for PDGFRB has intermediate protein levels for the het-
erozygote variant as compared to the two homozygote
individuals. Second, the protein levels determined by
genetics are stable throughout the study period suggest-
ing that these blood levels are indeed stable throughout
adult life. Third, several proteins with strong association
with known clinical parameters have been identified,
opening up for validation studies in large cohort to es-
tablish if these protein markers can be used as comple-
ment to the assays already used in the clinic. Fourth, the
profound changes by environmental factors are also
demonstrated, here exemplified by the dramatic changes
in global protein profiles upon weight loss and infection,
and thus, we have identified proteins to be targeted for
dedicated studies involving larger cohorts to validate
their clinical usefulness.

Conclusions
In summary, we show that the human blood level of many
proteins during adult life is to a large extent affected by
genetics, which is important for precision medicine efforts
aimed to understand the individual differences of protein
levels and the relationship between plasma proteome pro-
files and human biology and disease.
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