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ABSTRACT
Polygenic risk scores (PRSs) are a method to summarize the additive trait variance

captured by a set of SNPs, and can increase the power of set-based analyses by lever-

aging public genome-wide association study (GWAS) datasets. PRS aims to assess

the genetic liability to some phenotype on the basis of polygenic risk for the same or

different phenotype estimated from independent data. We propose the application of

PRSs as a set-based method with an additional component of adjustment for linkage

disequilibrium (LD), with potential extension of the PRS approach to analyze biolog-

ically meaningful SNP sets. We call this method POLARIS: POlygenic Ld-Adjusted

RIsk Score. POLARIS identifies the LD structure of SNPs using spectral decompo-

sition of the SNP correlation matrix and replaces the individuals' SNP allele counts

with LD-adjusted dosages. Using a raw genotype dataset together with SNP effect

sizes from a second independent dataset, POLARIS can be used for set-based anal-

ysis. MAGMA is an alternative set-based approach employing principal component

analysis to account for LD between markers in a raw genotype dataset. We used simu-

lations, both with simple constructed and real LD-structure, to compare the power of

these methods. POLARIS shows more power than MAGMA applied to the raw geno-

type dataset only, but less or comparable power to combined analysis of both datasets.

POLARIS has the advantages that it produces a risk score per person per set using all

available SNPs, and aims to increase power by leveraging the effect sizes from the

discovery set in a self-contained test of association in the test dataset.

K E Y W O R D S
genetics, GWAS, linkage disequilibrium, MAGMA, polygenic risk score

1 INTRODUCTION

Polygenic risk scores (PRSs) are now widely used for a vari-

ety of purposes in assessing the genetic liability to disorders or

more general phenotypes. These include sample stratification,

risk prediction, and the detection of relationships between

different subphenotypes (see, e.g., Allardyce et al., 2017;
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Escott-Price et al., 2015, and Foley et al., 2017, respectively).

The PRS method can also be adapted to partition the poly-

genic risk based on meaningful SNP sets, such as genes or

biological pathways, and to determine whether a set of SNPs,

weighted with their individual genetic risk effects, is associ-

ated at the whole-genome or set-specific levels. In contrast to

set analysis that aims to analyze the joint association of SNPs
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with a single phenotype, PRS aims to assess the genetic lia-

bility to some phenotype on the basis of the polygenic risk for

the same or a different phenotype estimated from independent

data.

Set-based analysis offers an attractive alternative to sin-

gle SNP analyses, because the combined effect of SNPs

within the set may be captured. Single SNP analyses are often

underpowered due to the small effect sizes of individual SNPs,

set-based analysis considers the combined effect of all SNPs

within the set, which may have a larger combined effect size

and hence higher power to detect association than any indi-

vidual SNP. In addition, gene-based analysis, a gene-centered

equivalent of set-based analysis, identifies genes associated

with disease rather than a single SNP as a proxy for the gene.

In gene-based analyses, genes are found to be fairly consis-

tently associated with disease across different populations.

In contrast, different SNPs in a set in linkage disequilibrium

(LD) may be found to be associated with a disease in different

samples. Gene-based analyses also directly provide informa-

tion for functional analysis (Li, Gui, Kwan, & Sham, 2011).

Set-based analysis can also be employed as a pathway anal-

ysis, and applied to sets of SNPs defined by epigenomics for

different tissue/cell types.

There are a number of methods to assess the set-based effect

by combining the effects of all SNPs within the set, including

Fisher's method (Elston, 1991) for combining P values assum-

ing independence between SNPs, Simes's method (Simes,

1986) for finding the smallest adjusted P-value, GATES

extended Simes (Li et al., 2011) that incorporates functional

information, rank/threshold truncated products of p meth-

ods (Dudbridge & Koeleman, 2003; Moskvina et al., 2009;

Zaykin, Zhivotovsky, Westfall, & Weir, 2002), set-based anal-

ysis as implemented in PLINK (Chang et al., 2015; Purcell

et al., 2007), Brown's method (Brown, 1975; Moskvina et al.,

2011) that adjusts for the LD structure between SNPs, a logis-

tic kernel-machine based test that accounts for nonlinear SNP

effects (Wu et al., 2010), MAGMA (de Leeuw, Mooij, Heskes,

& Posthuma, 2015) that uses a regression-based approach and

Pascal (Lamparter, Marbach, Rueedi, Kutalik, & Bergmann,

2016) that utilizes the sum and maximum of chi-squared

statistics to generate a set score. Each of these methods have

advantages and limitations, however, the above methods do

not incorporate the effect sizes from external data with indi-

vidual genotype data. Set-based methods using individual

SNP P values are also able to improve power by incorporat-

ing external data available from previous studies using meta-

analysis. In the present paper, we focus on methods which use

individual genotype data as this is a necessary requirement of

PRS.

MAGMA v1.06 (de Leeuw et al., 2015) is a recent approach

that has emerged as a widely used and computationally

efficient set-based method. This regression-based approach

accounts for LD between SNPs when individual genotype

data are available. The matrix of SNPs within the set is decom-

posed into principal components (PCs), and PCs with small

eigenvalues are removed. The remaining PCs are then used

as uncorrelated predictors in regression against the pheno-

type of interest and an F-test is used to determine the strength

of the association between the set and the phenotype, pro-

viding the MAGMA set-based P-value. The MAGMA pro-

gramme can be used on individual genotypes using the Princi-

pal Component Analysis (PCA) method and also on summary

statistics using Brown's method (Brown, 1975). It often hap-

pens that summary statistics are available from a large consor-

tium, while in-house studies with individual genotypes have

smaller sample sizes. In such situations, the options for using

MAGMA are either applying the PCA method to the in-house

genotype dataset, or to a meta-analysis of the summary statis-

tics for both datasets.

PRS analysis can be considered as set-based analysis when

a set includes all SNPs in the whole genome. PRSs provide a

method for combining information from individual SNPs into

a single measure of risk allele burden. In their most widely

used form, PRS's have been applied to genome-wide SNP

data where they can capture a useful fraction of genetic lia-

bility to polygenic traits. PRS's can also be used as genome-

wide predictors of affected status (Escott-Price et al., 2015;

Purcell et al., 2009; Ripke et al., 2014). We reasoned that

the basic principles of polygenic score analysis can also be

applied to individual genes, or to gene-set analyses. The moti-

vation for doing so is somewhat different than PRS analyses

of genome-wide data; rather than predict case–control sta-

tus or trait liability captured, our goal in applying the prin-

ciples of PRS to genes and gene sets is to detect association

to these potentially biologically informative features. As for

genome-wide analyses, genes or gene-set PRS could be used

to predict affected status, or to estimate the gene- or pathway-

specific SNP liability captured by GWAS. However, for poly-

genic disorders where risk is dispersed across hundreds of

genes and multiple gene sets, self-evidently, gene- or pathway-

specific SNP liability will be lower than the liability cap-

tured by genome-wide data, and accordingly, such tests will

afford less case-control discriminatory power. Risk scores for

each individual per set can be used to stratify individuals for

follow-up studies and prioritize genes for further functional

studies.

In this paper, we suggest a novel approach to a set-based

framework that combines advantages of MAGMA's PCA

method and PRS. The proposed POlygenic LD-Adjusted RIsk

Score (POLARIS) method aims to improve upon the standard

PRS method by correcting the inflated Type I error observed

both in standard PRS in the presence of LD (Chatterjee et al.,

2013), and also in set-based analyses as the number of SNPs in

the set grows (de Leeuw, Neale, Heskes, & Posthuma, 2016).

We use spectral decomposition of the SNP correlation matrix

to adjust the individuals' allele counts for LD structure. In
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this paper, POLARIS is presented as a self-contained set-

based approach in that it compares the test statistic for the set

with the null hypothesis, rather than a competitive approach

that accounts for the baseline level of association across the

genome. However, it can be turned into a competitive method

either by including a general PRS in the analysis, or compar-

ing the set-based PRS to those generated from random sets of

genes (matched for number of SNP-sets/set size/numbers of

SNPs).

POLARIS informs the analysis with previously reported

effect sizes of the SNPs' association with disease. An LD-

adjusted PRS is calculated per person per set, and the over-

all set effect is computed using regression. Because the score

is used as a predictor in a regression analysis, it is possi-

ble to include further population covariates or any other pos-

sible confounders. POLARIS uses all available information,

because all PCs are incorporated into a score, thus avoid-

ing overfitting that may result from only including the top

PCs. As in standard PRS analysis, only one independent vari-

able (apart from extra covariates) is present in the regression

model, rather than the number of predictors being equal to

the number of markers, or the number of chosen PCs. Like

the standard PRS approach, an advantage of our method is

that it performs a self-contained test of association in the test

dataset, leveraging the discovery set to increase the power of

this test. A significant test statistic implies significant associ-

ation specifically in the test sample, unlike a significant meta-

analysis result, where the association evidence could result

from other samples. This might be important if the test sam-

ple is of specific interest, for example, a different ethnicity, or

a different, but related, phenotype.

In the present paper, POLARIS is evaluated by comparing

the set-based results calculated using LD-adjusted PRS with

those found using MAGMA (de Leeuw et al., 2015) on sim-

ulated data, both with a simple constructed LD structure and

real data LD pattern.

The POLARIS set-based analysis tool is available to down-

load from github.com/BakerEA/POLARIS. The tool is writ-

ten in Python and will operate on any computing platform.

2 METHODS

2.1 POLARIS rationale and derivation
For 𝑀 SNPs in a set, the standard PRS combines single-SNP

genotypes 𝑔𝑖 (𝑖 = 1,… ,𝑀) into a single regression predictor

using single-SNP effect sizes (log(OR𝑖) = 𝛽𝑖) taken from a

previous study as coefficients,

𝑃𝑅𝑆 =
𝑀∑
𝑖=1

𝛽𝑖𝑔𝑖 = 𝛽𝑇 𝑔. (1)

This method implements a two-stage approach, where inde-

pendent discovery and test sets are available. The effect sizes

𝛽 are determined from the discovery set and vector of the num-

ber of risk alleles 𝑔 is obtained from the test set. The underly-

ing assumption is that individual genotypes are available for

the test set, but only summary data (effect sizes 𝛽) for the dis-

covery set are available.

The standard PRS method does not adjust for LD between

markers and thus requires LD pruning (Chatterjee et al.,

2013). If markers are in LD, the simple weighted sum

(Equation 1) may give them undue weight; indeed, if they are

in positive LD, they are likely to have a similar single-SNP

effect size and act together, thus giving a larger contribution

to the PRS than a single or uncorrelated marker.

We correct for this imbalance due to LD by replacing the

vector 𝑔 of genotypes with a vector �̃� of adjusted dosages.

Consider the spectral decomposition of the 𝑀 ×𝑀 marker–

marker correlation matrix 𝐶 ,

𝐶 =
𝑀∑
𝑘=1

𝜆𝑘 𝑥𝑘 𝑥
𝑇
𝑘

with eigenvalues 𝜆𝑘 satisfying
∑𝑀

𝑘=1 𝜆𝑘 = tr 𝐶 = 𝑀 and

orthonormal (column) eigenvectors 𝑥𝑘. The correlation

matrix is the covariance matrix of the joint distribution of

individual genotypes after standardization of each SNP. Its

eigenvectors indicate the directions of the principal axes of

this standardized distribution, and the corresponding eigen-

values give the variances of the distribution in the correspond-

ing directions. In the absence of LD, these variances will be

equal to 1, and the distribution will be isotropic. However, if

there is LD, then these variances will in general be different,

and the standardized distribution will be more elongated in

some principal directions and flattened in others.

This anisotropy can be removed by scaling the standard-

ized joint distribution in the direction of each principal axis

with the inverse square root of the eigenvalue in this direction.

However, adjusting the standardized distribution in this way

will not only remove LD, but also equalize the single marker

variances, thus discarding information such as the minor allele

frequencies. As our aim is to adjust for LD only, but not for

single-SNP variances, we therefore have chosen to apply the

same scaling transformation to the original, unstandardized

joint distribution instead.

More specifically, due to the orthonormality of the eigen-

vectors, the PRS can be expressed in a spectral decomposition

𝑃𝑅𝑆 = 𝛽𝑇 𝑔 =
𝑀∑
𝑘=1

𝛽𝑇 𝑥𝑘 𝑥
𝑇
𝑘
𝑔.

The component 𝑥𝑘 𝑥
𝑇
𝑘
𝑔, which is the part of 𝑔 along the 𝑘th

principal axis, has correlation matrix eigenvalue 𝜆𝑘 and there-

fore contributes a disproportionate amount of variance to PRS
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unless 𝜆𝑘 ≈ 1. For an uncorrelated marker, one spectral com-

ponent will be concentrated on this marker, and the corre-

sponding eigenvalue 𝜆𝑘 ≈ 1.

For our adjustment, we rescale the coordinate of 𝑔 in the

direction of the 𝑘th principal axis, 𝑥𝑇
𝑘
𝑔, with the inverse

square root of the correlation eigenvalue, giving an adjusted

coordinate
1√
𝜆𝑘

𝑥𝑇
𝑘
𝑔, and hence the rescaled spectral compo-

nent
1√
𝜆𝑘

𝑥𝑘 𝑥
𝑇
𝑘
𝑔.

Applying this adjustment to each principal axis will result

in an isotropic distribution in which the correlation has mostly

been removed, for the adjusted dosage vectors

�̃� =
𝑀∑
𝑘=1

1√
𝜆𝑘

(𝑥𝑇
𝑘
𝑔) = 𝐶

−1
2 𝑔.

Note this adjustment of multivariate data by correlation is

analogous to the calculation of the Mahalanobis distance

for mean zero data 𝑥, 𝑥𝑇𝑆−1𝑥 = ‖𝑆−1
2 𝑥‖2, where 𝑆 is the

covariance matrix (Mahalanobis, 1936, see also Hotelling,

1931), except that here we use the correlation matrix instead

of the covariance matrix in order to avoid adjusting for single-

marker variance.

Using the adjusted dosages �̃� instead of the original geno-

type vectors 𝑔, we obtain an LD-adjusted PRS

𝑀∑
𝑖=1

𝛽𝑖𝑔𝑖 = 𝛽𝑇 �̃� = 𝛽𝑇 𝐶
−1

2 𝑔

=
𝑀∑
𝑖=1

𝛽𝑖

(
𝑀∑
𝑘=1

1√
𝜆𝑘

𝑥𝑘(𝑖)
𝑀∑
𝑗=1

𝑥𝑘(𝑗) 𝑔𝑗

)
.

In the sum over the spectral components, indexed by 𝑘, the

terms with 𝜆𝑘 = 0, corresponding to principal directions with

no variance, are to be omitted, resulting effectively in a pseu-

doinverse of the square root of 𝐶 . In cases of extreme LD,

where 𝜆𝑘 ≈ 0, this formula will apply a large correction fac-

tor to the corresponding component, thus possibly amplify-

ing small deviations due to, for example, genotyping error. In

order to avoid this instability, we introduce a ridge parame-

ter 𝜆0, for which we suggest the choice 𝜆0 =
√

1
𝑁

, where 𝑁

is the number of individuals in the test data, and modify the

adjustment to mitigate the effect of small 𝜆𝑘. This gives rise

to the POLARIS risk score,

POLARIS = 𝛽𝑇
√
1 + 𝜆0

(
𝐶 + 𝜆0𝐼

)−1
2 𝑔 (2)

=
𝑀∑
𝑖=1

𝛽𝑖

⎛⎜⎜⎝
𝑀∑
𝑘=1

√
1 + 𝜆0
𝜆𝑘 + 𝜆0

𝑥𝑘(𝑖)
𝑀∑
𝑗=1

𝑥𝑘(𝑗)𝑔𝑗
⎞⎟⎟⎠ = 𝛽𝑇 �̃�, (3)

where now �̃� =
√
1 + 𝜆0(𝐶 + 𝜆0𝐼)

− 1
2 𝑔 =

∑𝑀

𝑘=1

√
1+𝜆0
𝜆𝑘+𝜆0

𝑥𝑘

𝑥𝑇
𝑘
𝑔, and 𝐼 is the 𝑀 ×𝑀 unit matrix. Note that if all markers

are uncorrelated, then 𝜆𝑘 ≈ 1 for all 𝑘, which makes �̃� ≈ 𝑔,

and consequently POLARIS ≈ 𝑃𝑅𝑆.

We remark further that we applied the adjustment �̃� =
𝐶

−1
2 𝑔 (or the extension with a ridge parameter) directly to

the vector of genotypes. More precisely, an adjustment of the

variance only will be achieved by removing the sample mean

vector �̂� before the adjustment, giving

�̃� = �̂� + 𝐶
−1

2 (𝑔 − �̂�) = 𝐶
−1

2 𝑔 +
(
𝐼 − 𝐶

−1
2
)
�̂�;

however, this only amounts to shifting the POLARIS score

by a constant 𝛽𝑇 (𝐼 − 𝐶
−1

2 )�̂�, which is irrelevant in the subse-

quent regression analysis.

2.2 POLARIS: Set-based analysis applied to
simulated data
To understand detailed differences and similarities between

MAGMA (de Leeuw et al., 2015) and POLARIS, we tested

both methods on simulated data, both with a simple extreme

LD pattern and a real-data LD pattern between SNPs. We

tested Type I and II errors by simulating null effects and

introducing some association to the SNPs, respectively. We

ran a set of experiments to compare the proposed POLARIS

method to MAGMA.

To generate summary statistic data and genotype data, a

simulated dataset was randomly split into discovery and test

sets. The summary statistics for each SNP in the discovery set

were computed. The following different scenarios were simu-

lated.

• Scenario A (“One LD Block”): 10 SNPs in an LD Block

with (i) 𝑟2 = 0.2 and (ii) 𝑟2 = 0.8 between consecutive

SNPs. The “causal” SNP is associated with disease with

OR=1.1 and the remaining nine SNPs have an OR closer to

the null value of 1. An additional 90 independent unasso-

ciated SNPs are also present in the set, see supplementary

Figure S1 for LD structure.

• Scenario B (“Real Data LD”): 115 SNPs from real genetic

and environmental risk in Alzheimer's disease (GERAD)

data (Harold et al., 2009), see the next section for a detailed

description of the data and supplementary Figure S2 for LD

structure. For an SNP in a block of strong LD, a number

of controls who were homozygous for the risk allele were

set to cases, and an equal number of cases homozygous for

the protective allele were set to controls, thus producing an

association with disease.

For these scenarios, the sample size of the discovery

dataset was varied in order to determine the influence of the
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discovery set sample size on the POLARIS method. For Sce-

nario A, simulations were run creating data with N = 20,000

and 60,000 individuals, these were split equally to result in

a test and discovery set each with N = 10,000 and 30,000

subjects, respectively. Additionally, the larger set with 60,000

individuals was split such that the test set had N = 10,000 and

the discovery set had N = 50,000 individuals. Scenario B has

13,164 subjects for the combined discovery and test sets; we

divided these data 50/50 and 25/75. In both the discovery and

test datasets, 30% of the sample size were cases.

A total of 1,000 simulations were performed for each sce-

nario. The power to detect the association between the set and

disease is calculated as the proportion of P values from the

1,000 simulations that were below a given P-value threshold;

the P-value thresholds used were P = 0.05, 0.01, and 0.001.

Ten thousand simulations were used for the real data simula-

tions, thus enabling a more stringent threshold of 0.0001 to

be considered. The power of the POLARIS method, applied

to the test dataset and informed by the discovery dataset, was

compared to the power of MAGMA both applied to the test

dataset only and to the total unsplit data samples.

2.3 POLARIS: Gene-based analysis applied
to real data
Both POLARIS and MAGMA were applied to genotyped AD

data to determine gene-wide P values. The GERAD (Harold

et al., 2009) genome-wide association study (GWAS) data

(3,332 cases, 9,832 controls) were used as the test dataset.

International Genomics of Alzheimer's Project (IGAP) (Lam-

bert et al., 2013) data (17,008 cases, 37,154 controls) exclud-

ing GERAD subjects (IGAP-noGERAD) were used as the

discovery data in order to inform POLARIS with association

effect sizes.

International Genomics of Alzheimer's Project (IGAP)

is a large study that used genotyped and imputed data on

7,055,881 single nucleotide polymorphisms (SNPs) to meta-

analyze four previously published GWAS datasets consisting

of 17,008 AD cases and 37,154 controls (The Genetic and

Environmental Risk in AD consortium-GERAD, The Euro-

pean Alzheimer's disease Initiative-EADI, the Alzheimer Dis-

ease Genetics Consortium-ADGC, and The Cohorts for Heart

and Aging Research in Genomic Epidemiology consortium-

CHARGE).

For this study, we used only directly genotyped SNPs from

the GERAD data (cf. Escott-Price et al., 2014, where however,

imputed genotype data were used for IGAP summary statis-

tics analysis). The GERAD and IGAP-noGERAD datasets

have 419,048 SNPs in common. It was necessary to ensure

that SNP alleles were coded in the same direction across both

the discovery (IGAP-noGERAD) and test (GERAD) datasets.

If alleles in IGAP-noGERAD were coded in the opposite

direction to those in GERAD, the summary effect size for

the SNP was inverted. SNPs with alleles AT, TA, CG, or

GC were excluded because the direction of the effect could

not always be determined when combining two studies. Of

the SNPs in IGAP-noGERAD, 103,356 matched those in

GERAD, the remaining had effect sizes inverted and no SNPs

were excluded due to ambiguity. An MAF filter of 0.01 was

applied to the data.

The missing genotypes in real data were imputed as in

PLINK (Chang et al., 2015; Purcell et al., 2007), where miss-

ing genotypes are substituted by 2 ×𝑀𝐴𝐹 for each SNP. In

the GERAD data, 0.0514% of genotypes required imputation.

SNPs were assigned to genes using GENCODE (v19) gene

models (Harrow et al., 2012). Only genes with known gene

status and those marked as protein coding were used. No win-

dow was used around the gene, only SNPs within the start

and end position of the gene were included. SNPs that belong

to multiple genes were assigned to all those genes. A total of

202,504 SNPs were assigned to 14,620 distinct genes with a

maximum of 1,342 SNPs in a gene.

The results of gene-based analyses for Alzheimer's dis-

ease (AD) data using POLARIS were compared to those from

the MAGMA-PCA approach in GERAD genotype data and

also the MAGMA-SUMMARY approach in IGAP data (not

MAGMA-PCA, as the individual genotypes for the whole

IGAP data were not available to us). For the latter, we only

consider SNPs present in both IGAP and GERAD. Prior to

the gene-set analysis, SNP summary statistics for the whole

IGAP data were adjusted for the genomic control parameter,

𝜆=1.087, as reported in Escott-Price et al. (2014).

3 RESULTS

3.1 Set-based analysis: Applied to simulated
data
3.1.1 Type I error
We investigated the Type I error rates in simulations where

none of the SNPs have an association to disease (i.e., OR =
1) in either the discovery or test sets, for Scenarios A (one

LD block) and B (real data LD), termed A(null) and B(null),

respectively. Type I error is deemed acceptable if the nominal

value is included in the 95% CI for estimated Type I error rate.

The expected Type I error is displayed on the Type I error plots

(gray dashed line).

Figure 1 shows Scenario A(null). The LD structure for

Scenario A can be seen in supplementary Figure S1. Type I

error for POLARIS is shown by the blue bars (POLARIS),

the red bars (MAGMA D&T Geno) display the Type I error

for the MAGMA method in the combined discovery and test

individual genotype data and green bars (MAGMA T Geno)

show the Type I error for MAGMA in test set genotype data

only. In supplementary Figure S3, we additionally show the



BAKER ET AL. 371

F I G U R E 1 Type I error comparison of set-based methods at different P-value thresholds; scenario A(null)—simulation of 10 SNPs in LD and

90 independent SNPs

Notes: POLARIS with no associated SNPs in both test and discovery sets (blue), MAGMA in the test set only (green), and MAGMA in combined test

and discovery sets (red). Expected Type I error is shown by the gray dashed line.

Type I error rate for summary statistics based analysis using

MAGMA (MAGMA D&T Summ).

The Type I error rate is reasonable in the majority of cases;

the nominal value is included in the 95% CI. MAGMA in the

combined data has slightly inflated Type I error at a P-value

threshold of 0.001 when the test and discovery set have N =
10000 and 𝑟2 = 0.2.

The Type I error for scenario B(null), with the case-control

status randomly permuted in order to remove the effect size of

any SNPs, is shown in Figure 2 and supplementary Figure S4.

The LD structure for this scenario can be observed in supple-

mentary Figure S2. The Type I error rate is within 95% CIs of

expected values for most cases, but is somewhat inflated for

the summary statistic based analysis using MAGMA.

3.1.2 Power
The power of the POLARIS method (blue bars, POLARIS),

MAGMA in the test set only (green bars, MAGMA T Geno)

and MAGMA in the combined discovery and test sets (red

bars, MAGMA D&T Geno) are displayed for each simulated

scenario. The power graphs for Scenario A are shown in

Figure 3. The 10 SNPs that are in LD are associated with dis-

ease with OR = 1.1.

POLARIS has equivalent power compared with MAGMA

in the combined discovery and test sets in all cases. In the

most likely realistic situation, the discovery set is larger than

the test set, but only summary statistics are available for the

discovery set. MAGMA on the combined dataset has higher

power where the test N = 10,000 and discovery N = 50,000,

but here MAGMA is applied to the individual genotypes of

the discovery and test sets combined (N = 60,000), so the

sample used to estimate LD and perform the statistical test

is very large, whereas POLARIS uses the discovery set N =
50,000 for effect size estimation and only N = 10,000 for LD

estimation, and importantly, for statistical testing. In all cases,

POLARIS has higher power than MAGMA in the test set only,

as is expected, because POLARIS increases power by incor-

porating information from the discovery set. The power for

POLARIS increases when the size of the test set increases, as

this improves the estimate of LD between markers.

Figure 4 shows the power graph for Scenario B. The power

of the POLARIS method lies generally between the power

of MAGMA applied to the test set only and MAGMA in the

combined test and discovery sets. One can see that by using

the information from the discovery set, POLARIS increases

the power compared to using the test set only, but, as is to be

expected, not as much as using the individual genotypes from

the discovery set as well as the test set.

These power results were also compared with the power

of the summary statistics based approach implemented in

MAGMA, see supplementary Figures S5 and S6. Note that the

power of the summary statistics based approach (MAGMA
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F I G U R E 2 Type I error comparison of set-based methods; scenario B(null)—simulation of 115 SNPs from real data, with permuted phenotypes

to remove effect sizes

Notes: POLARIS with no associated SNPs in either test or discovery sets (blue), MAGMA in test set only (green), and MAGMA in combined test and

discovery sets (red) are compared. Expected Type I error is shown by the gray dashed line.

F I G U R E 3 Power comparison of set-based methods at different P-value thresholds; scenario A—simulation of 10 SNPs in LD with OR=1.1

and 90 independent, unassociated SNPs

Notes: POLARIS (blue), MAGMA in the test set only (green), and MAGMA in combined test and discovery sets (red) are compared.
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F I G U R E 4 Power comparison of set-based methods; scenario B—simulation of 115 SNPs, with a proportion of phenotypes permuted to main-

tain effect sizes

Notes: POLARIS (blue), MAGMA in the test set only (green) and MAGMA in combined test and discovery sets (red) are compared.

T A B L E 1 Comparison of the number and proportion of independent genes below a P-value threshold for POLARIS, MAGMA-PCA in GERAD

data and MAGMA-SUMMARY in IGAP data

POLARIS MAGMA-PCA in GERAD MAGMA-SUMMARY in IGAP

P-value threshold
Number
of genes

Proportion of
genes

Number
of genes

Proportion of
genes

number of
genes

proportion of
genes

1* 563 581 560

0.05 302 0.5364 283 0.4871 255 0.4554

0.01 116 0.2060 98 0.1687 114 0.2036

0.001 19 0.0337 12 0.0207 31 0.0554

0.0001 7 0.0124 4 0.0069 12 0.0214

0.00001 3 0.0053 2 0.0034 9 0.0161

0.000001 2 0.0036 1 0.0017 5 0.0089

*Note that the total number of genes (P-value threshold equal to 1) differs, this is due to some gene exclusions made by MAGMA software.

D&T Summ) exceeds the power of MAGMA PCA (MAGMA

D&T Geno) on the same combined dataset.

3.2 Gene-based analysis: Application to real
data
Table 1 demonstrates the number and proportion of

genes below a particular P-value threshold for POLARIS,

MAGMA-PCA in GERAD genotype data and MAGMA-

SUMMARY in IGAP summary statistic data. Statistically

independent associations in some instances implicate over-

lapping regions. To define genes as physically independent,

we have annealed associated genes that were not separated

by at least 250 kb in each analysis separately. In the APOE

region, significant genes on chromosome 19 between 44.4

and 46.5 Mb were counted as one. We also present the results

for all genes in supplementary Table S1.

The number of independent significant genes for all P-

value thresholds is higher or equal for POLARIS com-

pared to the MAGMA-PCA approach in GERAD data.

This is expected as POLARIS uses both GERAD and

IGAP-noGERAD data, while MAGMA-PCA uses GERAD

genotypes only. The results for the summary statistic approach

show higher numbers of significant genes for higher sig-

nificance thresholds. The five gene-wide significant genes

found by the summary statistics approach are: TOMM40,

CLU, BIN1, MS4A4E, and CR1, which have all been pre-

viously reported as being associated with AD from single
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SNP analyses (Harold et al., 2009 and Lambert et al., 2013).

For these five genes, POLARIS also finds an association, but

does not always reach gene-wide significance (𝑃 = 6.33 ×
10−24, 𝑃 = 7.17 × 10−6, 0.00112, 0.00108, and 0.00065,

respectively).

The issue of bias in the estimation of set-based P values

caused by gene size is insufficiently tackled by most available

methods (de Leeuw et al., 2016; Ruderfer, 2013). Larger genes

harbor a larger number of SNPs, and if each SNP has a small

inflation in P-value due to, for example, unaccounted stratifi-

cation, then these large genes will show greater accumulated

inflation. To assess whether this is an issue in POLARIS, the

phenotypes in GERAD data were permuted to create 1,000

simulations, and for each gene, the empirical P-value (the pro-

portion of P values less than 0.05) was computed. The correla-

tion between the number of SNPs per gene and the empirical

P value of each gene in AD data was then determined. We

found no evidence (r = 0.0009, P = 0.9096) of a correlation

between the number of SNPs in a gene and the gene P-value

for the POLARIS method. Therefore, associations with dis-

ease observed in larger genes is not simply due to a greater

number of SNPs in the gene. Similarly, we observed no evi-

dence (r= –0.00321, P= 0.6977) of an inflation in P-value for

increasing gene size using MAGMA-PCA on GERAD data.

When considering the correlation between the IGAP gene-

based P-value and set size, we observe a statistically signifi-

cant negative correlation (r = –0.083, P< 2.2 × 10−16) when

MAGMA-SUMMARY is used on summary data, indicating

that the higher the number of SNPs, the lower the set-based

P-value.

4 DISCUSSION

In this paper, we present a method for accounting for LD

in the calculation of a PRS. The resulting individual LD-

adjusted PRS can also be used for analyzing whether a set

of SNPs is associated with disease. This method combines

the advantages of PRS and spectral analysis of the genetic

data. The latter suggests a mathematically sound adjustment

for LD and includes a stabilization parameter (similar to ridge

regression) to cope with cases of extreme LD. It adjusts for

LD between SNPs and informs the analysis with previously

reported effect sizes of a SNP's association with disease. In

the present study, we have chosen to do this adjustment using

the SNP-SNP correlation matrix; however, one could alterna-

tively use the SNP-SNP covariance matrix. For all examples

above, this gives very similar results. Partitioning the over-

all polygenic risk based on meaningful SNP sets, the method

allows both to test for significance of association of these

sets (set-based analysis) and to provide individual set-specific

risk scores for subjects, which can further be used for risk

prediction of subphenotypes with respect to the SNP sets.

To assess the quality of the proposed approach, we compare

its use for set-based analysis with the widely used MAGMA

software. We show that POLARIS gives the correct Type I

error and its power lies between that of MAGMA applied to

the test dataset only and MAGMA applied to the combined

test and discovery datasets. In practice, researchers would use

all the available genotype data, and would use PRS-based

methods only if effect sizes only are known for an additional

dataset.

POLARIS has four main advantages. (1) It produces a

risk score per person per set, unlike other set-based methods

which only provide a P-value for the strength of association

between the set and disease. This set risk score can be used

to stratify individuals for follow up studies (e.g., clinical tri-

als) and also prioritize genes for further functional studies

(e.g., animal models), supporting the development of preci-

sion medicines. (2) POLARIS can increase power by lever-

aging the discovery set to perform a self-contained test of

association in the test dataset. Another way to incorporate

the discovery set would be to use meta-analysis, however,

this detects an association in the combined set rather than the

test set only. This may be important when the test data dif-

fers in some way from the discovery data, for example differ-

ent ethnicity, or different phenotype. A good example might

be where the test sample uses different diagnostic criteria to

measure the same phenotype (e.g., self-report questionnaire

for depression) and one wishes to validate these criteria by

showing that they show association to the same genes as those

implicated by the standard diagnosis. (3) POLARIS is not

inflated by set size. This is an issue previously reported in

summary statistic based approaches (Chatterjee et al., 2013;

Ruderfer, 2013) and is shown to be the case using MAGMA

on the IGAP summary statistic data. (4) The overall set asso-

ciation can easily be adjusted by population or any other

covariates.

For set-based analyses, in situations where only summary

statistics are available for part of the data, we suggest to use

the POLARIS method which unites advantages of the PRS

approach and the PCA-based set-based method, while taking

into account the LD structure for the genetic region of interest.

POLARIS can be used for any set of SNPs, for example,

the whole genome, genes, or pathways. Therefore, it has the

potential of data-driven discovery of pathways.

POLARIS can also be utilized in a number of cross-

disorder analyses to determine commonality between disor-

ders at a gene-based or pathway-based level. There are a num-

ber of common disorders for which the GWAS summary data

are publically available (e.g., Psychiatric Genomics Consor-

tium). The GWAS data for one disorder can be used to gener-

ate scores per person per gene in another disorder or subphe-

notype of interest, and thus test for overlap between disorders

at a gene-based level.
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The POLARIS method can be extended to add addi-

tional information into the score, such as rare variants from

exome sequencing studies. The POLARIS set-based method

is implemented into a freely accessible platform independent

software. Large sets have a high computational burden due to

the spectral decomposition of large correlation matrices; rec-

ommendations on maximum set size and the corresponding

required computational resource are included with the soft-

ware.

In this study, POLARIS was applied to test binary traits.

However, the POLARIS score can also be used as a variable

(along with other covariates) in regression models for quanti-

tative traits.

A limitation of the POLARIS implementation is that cur-

rently it is only available as a self-contained set-based method.

However, POLARIS can in principle be used as a competitive

set analysis, adjusting for the baseline level of association in

the data either by including a general PRS in the analysis or

comparing the set-based PRS to those generated from random

sets of genes (matched for number of genes/gene size/numbers

of SNPs) or random sets of SNPs (matched for LD, MAF, and

SNP density).

Another limitation of PRS-type approaches is the imper-

fect tagging of the underlying causal variants by SNPs and

imperfect effect size estimates. The challenge of selecting the

true set of susceptibility SNPs for PRS modeling to capture

heritability has been pointed out (Chatterjee, Shi, & Garcia-

Closas, 2016). Our approach can use all SNPs in a set of inter-

est, even when in LD, and therefore any causal genotyped

SNPs will be included. If the causal SNPs are not present in

the sample, then the tagging SNPs only are used. The effect

sizes of all SNPs in LD will be adjusted according to the LD

structure, not according to the causal/noncausal nature of the

SNP.

POLARIS is a valuable extension to standard PRS by

adjusting for LD between markers and removing the neces-

sity to LD prune data prior to analysis. POLARIS provides a

test of the set's association with disease while also producing

subject specific risk scores.
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