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Abstract: Accumulating evidence has demonstrated that the pathogenesis of epilepsy is linked to
neuroinflammation and cerebrovascular dysfunction. Peripheral immune cell invasion into the brain,
along with these responses, is implicitly involved in epilepsy. This review explored the current
literature on the association between the peripheral and central nervous systems in the pathogenesis
of epilepsy, and highlights novel research directions for therapeutic interventions targeting these
reactions. Previous experimental and human studies have demonstrated the activation of the innate
and adaptive immune responses in the brain. The time required for monocytes (responsible for innate
immunity) and T cells (involved in acquired immunity) to invade the central nervous system after a
seizure varies. Moreover, the time between the leakage associated with blood–brain barrier (BBB)
failure and the infiltration of these cells varies. This suggests that cell infiltration is not merely a
secondary disruptive event associated with BBB failure, but also a non-disruptive event facilitated by
various mediators produced by the neurovascular unit consisting of neurons, perivascular astrocytes,
microglia, pericytes, and endothelial cells. Moreover, genetic manipulation has enabled the differ-
entiation between peripheral monocytes and resident microglia, which was previously considered
difficult. Thus, the evidence suggests that peripheral monocytes may contribute to the pathogenesis
of seizures.

Keywords: epilepsy; cytokine; monocytes; pericytes

1. Introduction

The World Health Organization estimates that at least 50 million individuals are
affected by epilepsy worldwide [1]. One-third of these patients develop drug-resistant
epilepsy (DRE), which is accompanied by a deterioration in the quality of life (associated
with epileptic seizures) and cognitive dysfunction [2]; these factors increase the risk of
suicide and sudden unexpected death in epilepsy (SUDEP). SUDEP is the most common
cause of epilepsy-related mortality, accounting for 7–17% of deaths in patients with epilepsy
and up to 50% in those with refractory epilepsy [3,4]. Epilepsy is among the diseases that
are most intractable to treatment, despite the availability of various treatment options.

Previous studies have provided evidence of the activation of the innate and adaptive
immune responses in brain tissues using experimental models and human patients with
temporal lobe epilepsy (TLE) [5–8]. Although surface markers can differentiate between
the CD4 and CD8 cells involved in the adaptive immune response, the monocytes and
microglia that contribute to innate immunity are not well differentiated [9,10]. Monocytes
can migrate to various tissues and differentiate into macrophages, and thus invade the brain,
where they can differentiate into “microglia-like cells” [9,10]. However, modern genetic
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manipulation procedures can apparently distinguish between the invading monocytes
and resident microglia; the evidence amassed suggests that the peripheral monocytes
infiltrating the brain contribute to the pathogenesis of seizures [11–14].

Current studies have demonstrated that T cells have also been detected in epilepto-
genic areas of the human brain, even in cases without evidence of an underlying infection
or immune disorder [15–18]. On the other hand, studies have reported that the T-cell
lineage is almost undetectable in recent mouse models [19], and that acquired immunity is
thought to vary for each species [20].

The evidence accumulated by various studies has proven that the pathogenesis of
epilepsy is linked to neuroinflammation and cerebrovascular dysfunction [21–23]. The
infiltration of the peripheral immune cells into the brain parenchyma was suggested to
occur after the disruption of the blood–brain barrier (BBB), which is a known feature of
epilepsy [24]. However, studies on experimental allergic encephalomyelitis (EAE) have
demonstrated that the destruction of the BBB and the infiltration of the immune cells are
two distinct events that occur several days apart [25]. Although BBB destruction leads to
plasma protein leakage and ion imbalance, it may not be adequate to induce the invasion of
immune cells into the central nervous system (CNS) [25–27]. Some of the studies analyzed
in this review reported on the existence of a temporal dissociation between BBB-induced
leakage and cell infiltration [11,12,14,19]; it is unlikely that cells simply infiltrate the brain
secondary to BBB disruption-induced leakage, although this phenomenon could facilitate
the release of chemoattractants into the circulation [20]. The series of reactions that lead
to the recruitment of peripheral cells and their infiltration into the brain are mediated
by various chemical mediators produced by the neurovascular unit (NVU), consisting of
neurons, perivascular astrocytes, microglia, pericytes, and endothelial cells. Studies have
observed the significant contributions of the C-C motif ligand 2 (CCL2) and interleukin
(IL)-1β to these responses [11,12]. The former affects monocyte migration, while the latter
possesses neurotoxic and pro-convulsant properties, and both cytokines are implicitly
involved in the pathogenesis of epilepsy [21,28].

However, the contribution of the relationship between the peripheral nervous system
and CNS to seizures and epilepsy-related pathologies is poorly understood. Therefore, this
narrative review sought to explore the current literature on the role of the link between
the peripheral nervous system and CNS in the pathogenesis of epilepsy, and highlight
novel directions for research into therapeutic interventions for epilepsy that target these
reactions.

2. Review
2.1. Innate Immunity
Microglia and Monocytes

Glial cells comprise more than 90% of the cellular component of the human brain and
can be categorized into two main populations: the macroglia (astrocytes and oligodendro-
cytes) and the microglia [29]. Microglial cells are known as the resident macrophages of
the CNS and are widely distributed throughout the brain and spinal cord [10]. Microglia
are observed before myelopoiesis during the fetal period [10]. The progenitor cells in the
yolk sac migrate to the brain via the circulatory system (formed at 8.5–10 days of fetal life)
at 7.5 days of fetal life and differentiate into microglia [30]. The microglia are then thought
to maintain their numbers, albeit slowly, through self-renewal [31,32]. On the other hand,
monocytes originate from the hematopoietic stem cells in the bone marrow, specifically
by the gradual and continuous proliferation of the progenitor cells [33]. The monocytes
can migrate to various tissues and differentiate into macrophages, which enables them to
infiltrate the brain and also differentiate into “microglia-like cells.” Therefore, differentia-
tion between these infiltrating “microglia-like cells” and the true resident microglia is a
difficult task [9,10]. Nevertheless, a recent microglial ablation study reported that mono-
cytes can imprint the CNS microenvironment, but remain transcriptionally, epigenetically,
and functionally distinct [34]. Studies have also reported that the activated resident mi-
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croglia and infiltrating monocytes exhibit different morphological and electrophysiological
characteristics [14].

Although it is extremely difficult to differentiate between resident microglia and
infiltrated monocytes, flow cytometry and genetic manipulation are two of the most
common methods that can apparently distinguish between the two cells.

2.2. Differentiation between Microglia and Monocytes
2.2.1. Markers of Monocytes

Monocytes can typically be identified based on the expression of CD14, CD16, CD64,
and the C-C chemokine receptor type 2 (CCR2) in humans [35,36], and Ly6C, CD43, CD11b,
and CCR2 in mice [37,38]. In addition to these markers, CD11b, CD14, CD16, and CD64 are
also known to be expressed in the microglia [39,40]. As human and mouse microglia are
highly homologous, these markers are expressed in both [41]. Some studies have indicated
that CD163 may be a specific marker for monocytes [19,42], although it is also expressed
by the microglia [43]. The genetic labeling method has recently become the mainstay for
labeling monocytes, although CD169 staining was considered to be a specific marker for
monocytes [44,45].

2.2.2. Genetic Modulation Methods

CCR2-red fluorescent protein (RFP) mice [11,12,14] have been used to investigate the
role of monocytes in epilepsy. Although CCR2 itself has been suggested to be expressed
in several cell types, including the astrocytes and microglia of the CNS [46,47], with the
exception of the microglia [48], CCR2-RFP labeling is thought to be specific for investigating
the role of monocytes in CNS pathologies [49]. The recent advances in genetic profiling
have identified the binding adaptor molecule 1 (IBA1) (a common marker), P2Y12 [45],
and transmembrane protein 119 (TMEM119) [50] as markers specific to microglia (Table 1).

Table 1. Genetic marker of monocytes and microglia.

Monocytes Microglia

CCR2-red fluorescent protein (RFP) [11,12,14]
Identified the binding adaptor molecule 1

(IBA1) P2Y12 [45]
Transmembrane protein 119 (TMEM119) [50]

2.3. How Do Peripheral Monocytes Penetrate the Brain in the Pathogenesis of Epilepsy?

The infiltration of the brain parenchyma by peripheral immune cells may be consid-
ered to be a natural secondary sequela of BBB destruction [24]. Prolonged seizures are
known to be associated with increased BBB permeability, along with multiple changes in
BBB properties [51,52]. However, a time discrepancy exists between BBB disruption and
monocyte invasion. Monocyte infiltration is rarely observed until 24 h after the induction
of status epilepticus (SE) by kainic acid (KA) [11,12,14], while BBB permeability increases
rapidly within 6 h of KA administration, and the BBB is damaged within at least 24 h [52].
The infiltrating monocytes in the KA-induced seizure model were identified in the hip-
pocampal cornu ammonis 3 (CA3) and CA1 in severe seizures, and only in the CA1 in mild
seizures; the severity of seizures influences the region of monocytic infiltration [14], but is
not likely to influence the time interval between peripheral and central infiltration [14].

Pilocarpine is a cholinergic agonist used as a tool to induce seizures. The peak BBB
disruption also occurred at 5 h in the pilocarpine SE mouse model [53], and the period of
monocyte infiltration was similar to that reported for the KA-induced SE mouse model [11].
Moreover, the infiltration of the CNS was thought to occur simply due to an increase in the
peripheral blood cells induced by the systemic action of pilocarpine-induced SE, but it has
been confirmed that pilocarpine does not increase the peripheral blood cells [11].
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2.4. Disruptive and Non-Disruptive Changes in the BBB

The epileptic model has shown that BBB alterations consist of both disruptive changes,
i.e., BBB leakage, and nondisruptive changes at the molecular level [52].

2.4.1. Disruptive Changes in the BBB

The disruptive changes occur within minutes, as shown by Evans Blue staining, and
excessive activation causes NVU dysfunction, leading to rapid BBB leakage; these changes
include endothelial damage, structural changes in the astrocytes, the destruction of tight
junctions, increased vesicular traffic, and the breakdown of the glia limitans [52,54]. The
fluorescence method demonstrated that BBB disruption occurs within 5 min of convulsions
in rats [55] and 10 min in pigs [56]. However, monocytic infiltration was not observed at
this point not only in the epileptic model [11,12,14], but also in the other models [25,26].

The disruption of the BBB in EAE, the animal correlate of multiple sclerosis, was
the highest at day 11, as shown by gadolinium-diethylenetriamine pentaacetic acid en-
hancement; monocyte infiltration was detected at the peak of the disease between days
14 and 17 [25]. A traumatic brain injury model demonstrated that BBB damage was ob-
served between 2 and 12 h post-trauma, and monocytes were observed within the cortical
parenchyma at 24 h, which completely filled the cortical lesion site within 72 h of injury [26].
This time discrepancy between BBB disruption and monocytic invasion implies that the
rapid alteration of the BBB (mainly leakage) alone may not allow for monocyte infiltration.

2.4.2. Non-Disruptive Changes

The release of cytokines/chemokines and/or enzymes by the astrocytic endfeet, en-
dothelial cells, and pericytes are among the demonstrated non-disruptive changes in the
BBB [52]. The release of pro-inflammatory cytokines, such as IL-1β, and proteases, such as
matrix metalloproteases, by NVU cells, and the infiltration of leukocytes into the brain, can
subsequently lead to disruptive changes, such as the destruction of tight junctions and the
extracellular matrix [57,58]. Cellular stress stimulates the release of danger signals within
minutes to hours, which subsequently activates the Toll-like receptors on the glial cells,
which further activate the inflammatory genes and proteases, causing further BBB damage
within hours to days [54].

IL-1β has been identified to be one of the most implicitly involved cytokines in the
pathogenesis of epilepsy; IL-1β directly excites neurons via N-methyl-D-aspartate receptor
activation [59]. This IL-1β-induced increase in neuronal excitability exacerbates neuronal
hyperactivity and excitotoxicity, resulting in severe hippocampal degeneration [12]. An
elevation in IL-1β mRNA, mainly in the glial cells of the hippocampus, was observed 2
h after SE induction with pilocarpine [60] and KA [61], and 1 to 2 h after heat-induced
convulsions in febrile SE models [62]. Tumor necrosis factor (TNF)-α, a well-known pro-
inflammatory pleiotropic cytokine also involved in the etiology of epilepsy [21,63], can
induce several responses, including proliferation, apoptosis, and inflammation [64]. TNF-α
mRNA decreased in the hippocampus 24 h after SE, and significantly increased 5 days after
SE, indicating a different behavior to IL-1β [60].

Both IL-1β and TNF-α promote the production of pro-inflammatory chemokines, such
as CCL2, CCL20, and the C-X-C motif ligand 2 [65,66], and the potent chemoattractant
intercellular adhesion molecule 1 (ICAM)-1 [67,68], which induce immune cell migration,
in addition to exacerbating BBB disruption and neuroinflammation. CCL2, which is an
especially potent chemoattractant for cells of monocytic lineage [69–71], is produced by
hyperactive neurons and microglia [12]. The following changes were observed in the
mouse model of pilocarpine-induced seizures: CCL2 was expressed at 2 h, peaked at 24 h,
and returned to baseline levels after 5 days [60]. The expression of CCL2 also increased 1–3
days after intrahippocampal KA injection [12,72–74]. Upregulated CCL2 was also detected
in the brain tissue of patients with epilepsy [75,76].
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2.5. Identification of Peripheral Monocytes in the Brain

The activation of CCL2 triggers the adhesion of monocytes to the inflamed endothe-
lium via β-integrin pathways, and subsequently, the invasion of the brain parenchyma [77].
Recent rigorous studies have highlighted that peripheral monocytes were identified in
the brain parenchyma 1 day after pilocarpine- or KA-induced seizures using the genetic
modulation method of CCR2-RFP [11,12,14]. Monocytic infiltration peaked 3 days after
KA administration in the CA3 region, and declined by the seventh day [11,14].

2.6. Potential for Therapy by Controlling Monocytes

Knocking out CCR2, a receptor for CCL2, can virtually abolish the KA-induced
upregulation of IL-1β [12]; the activated resident microglia and infiltrated macrophages
are both sources of upregulated IL-1β after KA-induced seizures, as evidenced by the
confirmation of IL-1β expression in the microglia and monocytes [78]. Another recent
study showed similar results concerning the role of invading myeloid cells (including
monocytes) after SE, wherein the myeloid cells exhibited higher levels of TNF-α and
IL-1β compared to those in the microglia [79]. However, Varvel et al. reported that
blocking the entry of monocytes using the CCR2 knockout model mouse did not change
the mRNA levels of iNOS, CCL2, TNF-α, or IL-6 in the hippocampal tissues, but reduced
IL-1β by 50% (Table 2). The invading monocytes showed a 200-fold elevation in IL-1β
mRNA compared to the control microglia; thus, the invading monocytes were found to
be the main source of IL-1β [11], although some studies suggest that neurons [12] and
astrocytes [80] are the sources of IL-1β. Although the activation of CCR2 induces signal
transducer and activator of transcription 3 (STAT3) phosphorylation and IL-1β production,
the suppression of STAT3 by WP1066 can inhibit the seizure-induced expression of IL-1β
and IBA-1, a microglial maker. However, the contribution of STAT3 to microglial activation
and monocyte infiltration could not be strictly distinguished [12]. Interestingly, our recent
studies indicated that brain pericytes activate the microglia by releasing IL-6 through the
JAK-STAT3 pathways, resulting in BBB breakdown [81,82]. IL-1β is also produced by
pericytes [83], and the principal cellular source of IL-1β is still being debated. The evidence
accumulated is suggestive of the critical role of STAT3 in CCL2/CCR2-mediated microglial
activation and IL-1β production, while the resident microglia, infiltrating monocytes, and
brain pericytes may be involved in the anticonvulsant effect of the STAT3 inhibitor.

Table 2. Immune profiles in representative mouse models.

Mouse Model Genetic Mouse Model mRNA Upregulation
in Hippocampus Significant Points

Varvel et al.,
2016 [11]

Pilocarpine
Kainic acid CCR2 RFP/+ IL-1β, IL-6 TNF-α, CCL2,

iNOS

Blocking monocyte entry using the CCR2 KO
model mouse did not alter iNOS, CCL2,

TNF-α, or IL-6 mRNA levels in hippocampal
tissues, but reduced IL-1β by 50%.

Tian et al.
2017 [12] Kainic acid CX3CR1 GFP/+:CCR2 RFP/+ IL-1 a, IL-1β, IL-1RA, CCL2,

CCL3, CCL5, CCL12, CXCL10
Knocking out CCR2R can virtually abolish

KA-induced IL-1β upregulation

IL: interleukin, TNF-α: tumor necrosis factor-α, CCL: C-C motif ligand, iNOS: inducible nitric oxide synthase, RA: receptor antagonist
CXCL1: C-X-C motif chemokine ligand.

2.7. Association between the Clinical Picture and the Monocytes or Microglia

From the clinical perspective, our recent flow cytometry analysis of pediatric patients
with DRE demonstrated higher levels of intracellular cytokines, such as IL-1β, in the
peripheral monocytes compared to the controls, which was correlated with the frequency
of seizures [84]. The examination of other cells, including T cells, and natural killer and
natural killer T cells, and plasma cytokines levels, including CCL2, TNF-α, and IL-6, did
not yield such results [84]. Moreover, the analysis of the brain tissue of pediatric patients
with DRE revealed that the seizure frequency was correlated with the number of infiltrating
peripherally monocytes, but not that of the microglia [16].
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Contrary to these results, other studies have found a positive correlation between
the degree of microgliosis and the severity of neuronal death and seizures [14,85], which
suggests that the resident microglia are primarily responsible for the pathogenesis of
epilepsy, instead of the peripheral monocytes. Monocytes contribute to the inflammatory
milieu in the brain simply by virtue of their infiltration, even in the absence of proinflam-
matory cytokine induction, whereas the induced expression of cytokines contributes to
neuroinflammation in the microglia [11]. However, the current study demonstrated that
non-inflammatory changes in the microglia disrupted the homeostasis of the CNS, and
caused a prominent decrease in synaptic density, while the microglia themselves infiltrated
the hippocampal pyramidal layer. These series of reactions lead to neuronal degeneration
and massive astrocytic proliferation, resulting in the development of severe early onset
spontaneous recurrent seizures in mice [86]. Although research has yet to clarify whether
the peripheral monocytes or resident microglia are the main triggers of epilepsy, the results
of our review suggest that the resident microglia and peripheral monocytes may be closely
involved in the pathogenesis of refractory epilepsy in children.

2.8. Adaptive Immunity
2.8.1. Experimental Evidence of the Invasion of Peripherally Adapted Immune Cells into
the Brain

There also exists mounting experimental evidence of the involvement of the adaptive
immune response in epilepsy and seizure disorders [5,7,15,58,79,87–89]. Unbiased quanti-
tative analysis revealed a gradual accumulation of CD3-positive, mainly CD8-positive T
cells (60–75%) in KA-treated mice, which attained peak levels 2 weeks after injection and
persisted at 4 weeks. Initially, the CD3-positive T cells were detected within the blood ves-
sels but were found mainly within the neuropils at 2–4 weeks [7]. In the case of electrically
induced seizures, CD4-positive and CD8-positive T cells, as well as CD45R-positive B cells,
appeared in brain parenchyma 24 h after a maximal seizure and reached peak levels at 48 h,
but were no longer detected at 7 days. The CD4-positive T cells and CD45R-positive B cells
were preferentially found in the neocortex compared to the hippocampus, whereas the
CD8-positive T cells were preferentially found in the hippocampus 24 h after a maximal
seizure [8]. Another recent study reported that CD4-positive cells were observed 96 h
after SE [79]. Thus, the timing of T-cell infiltration varies widely according to different
studies. These discrepancies may be attributed to the experimental method and type
of mice used, partially due to the fact that CD8- and CD4-positive T cells infiltrate the
brain parenchyma via different mechanisms [90,91]. However, a recent study analyzed
the pilocarpine-induced SE model and demonstrated that CD3-positive cells could not
be detected at any time-point during epileptogenesis in experimental epileptic mouse
models [19].

2.8.2. Association between the Clinical Picture and Cells of the T Lineage

The data accumulated by studies on CD8 infiltration into the brain tissue of human
patients with TLE are incontrovertible [7,15,58,88,89,92]. The infiltration of acquired im-
mune system cells, including CD8-positive or regulator T (T reg) cells, has also been found
in the tissues of patients with focal cortical dysplasia [16,93]. Although some studies also
demonstrated the infiltration of CD4-positive T cells [15,94], their evidence was limited.

The greater infiltration of CD8-positive cytotoxic T lymphocytes (CTLs) than that of
the CD4-positive or CD68-positive microglia/macrophages in certain CA1 regions of the
hippocampus showed a greater positive correlation with neuronal loss [15]. Besides the role
of CD68-positive microglia/macrophages, this finding is consistent with the conclusion
of previous studies that neuronal loss was significantly greater in the CA1 region than in
the other sub-hippocampal regions in hippocampal sclerosis [95], and that CD8-positive
CTL infiltration was the main causative factor [7,15,58,88,89,92]. While a recent study
demonstrated that IL-17-producing γδ T lymphocytes are concentrated in the epileptogenic
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zone, and their numbers were positively correlated with seizure severity, the number of
brain-infiltrating T reg cells was inversely correlated with disease severity [16].

Neurodegeneration and spontaneous recurrent seizures were markedly exacerbated
after KA treatment in recombinant activating gene 1 (RAG1) knockout mice that lacked
T and B cells [7]. Both γδ T cell- and IL-17RA-deficient mice and recipients of T reg cells
have suppressed seizure activity, whereas inactivating/depleting the T reg cells with either
anti-CD25 antibodies [96,97] or thymidine injection [98] exacerbates seizure severity. The
innate immune system responds more rapidly to seizure events compared to the acquired
immune system, and some researchers argue that the former plays a prominent role in the
development of epilepsy [88,92]. Although the activation of the adaptive immune response
may depend on the type of epilepsy, animal model, species, or neuropathology [19], these
findings indicate that the acquired immune system is also involved in the pathogenesis of
epilepsy.

2.9. Role of Pericytes in the Link between Peripheral Immune Cells and the Brain

Pericytes provide physical support to the BBB and play an integral role in CNS home-
ostasis and BBB function [99]. They can regulate the migration of leukocytes across the
brain microvascular endothelial cell barrier [100–102]. Pericytes can secrete chemokines,
including CCL2, and help recruit peripheral immune cells, including monocytes, B and T
cells, and neutrophils to the CNS parenchyma via the upregulation of ICAM-1 and vascular
cell adhesion molecule 1 on the endothelium [103–107]. Recent studies conducted by us
and other researchers have demonstrated that brain pericytes respond to inflammatory
signals, such as circulating cytokines, IL-1β, and TNF-α, and convey this information to
the surrounding cells through chemokine and cytokine secretions [83,105–109]. Moreover,
our recent studies found that pericytes may act as sensors for the inflammatory response in
the CNS, as they react more intensely to TNF-a and proinflammatory cytokines than other
cell types (e.g., brain endothelial cells or microglia), and release MMP-9 (impairing BBB
function) and IL-6 (activating microglia) [81,106,110,111]. Recent experiences highlight the
substantive role of pericytes in the pathogenesis of epilepsy [23,112–116]. Cerebrovascular
pericytes undergo redistribution and remodeling, potentially contributing to BBB perme-
ability, and inflammatory cytokines including IL-1β, TNFα, and IL-6 are deeply involved
in the pathogenesis of pericyte-mediated epilepsy [117].

In addition, it was demonstrated that, apart from IL-6, these inflammatory cytokines
induced IL-8 and MMP-9 release from brain pericytes, and then reduced neutrophil ad-
hesion to brain pericytes and facilitated neutrophil transmigration across the BBB [118].
Based on these data, the possibility that brain pericytes act as sensors of inflammatory
stimuli and effectors of inflammatory stimuli through MMP-9 and IL-8 release, and there-
fore have a role in peripheral immune cell transmigration to the brain parenchyma and
seizure development, should be considered. In fact, pericyte regulation leads to seizure
suppression, as demonstrated in vivo [115] and in vitro [116].

Pericyte regulation leads to the suppression of seizures, as demonstrated in vivo [116]
and in vitro [115]. These results underline the potential use of pericytes as a therapeutic tar-
get for seizure disorders. The role of pericytes in maintaining BBB integrity and recruiting
leukocytes suggests that they may be involved in the pathogenesis of peripheral immune
cells in epilepsy, but so far, there is no evidence to confirm this hypothesis. In the pathogen-
esis of epilepsy, pericytes take on a phenotype that is neither pro- nor anti-inflammatory
only [118]. Pericyte suppression may not be sufficient to improve the treatment of epilepsy,
and may need to be combined with various therapies for a tailored treatment for affected
children.

Prolonged seizures can cause disruptive changes in the BBB; leakage can occur within
minutes (5 min of convulsions in rats [55] and 10 min in pigs [56]) and can result in the ex-
posure of brain tissue to proteins from the blood vessels. This is followed by non-disruptive
changes in the BBB with the release of cytokines and other substances. The upregulation of
IL-1β, mainly in the glial cells of the hippocampus, was detected about 2 h after SE [60,61].
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IL-1β stimulates the production of CCL2 [66] and the potent chemoattractant ICAM-1 [68]
by the microglia, vascular endothelial cells, pericytes and neurons; the activation of CCL2
triggers the adhesion of monocytes to the inflamed endothelium, followed by infiltra-
tion into the brain parenchyma [77]. Peripheral monocytes are identified in the brain
parenchyma 1 day after the seizure, peaking 3 days later, and decrease by the seventh
day [11,12,14].

The components of adaptive immunity, i.e., the CD4+ and CD8+ T cells, appear in
brain tissue 24–48 h after convulsions and disappear after 7 days [8]. However, some
studies have reported that CD4 cells were observed 96 h after SE [79], and that the T-cell
lineage was not identified in the brain tissue after seizures [19].

BBB: blood–brain barrier; CCL2: chemokines chemokine C-C motif ligand 2; SE: status
epilepticus; ICAM-1 intercellular adhesion molecule 1.

3. Conclusions

In this review, we found evidence that the peripheral immune cells, especially mono-
cytes, may be involved in the pathogenesis of epilepsy via invasion of the CNS. Genetic
manipulation has enabled the differentiation between peripheral monocytes and resident
microglia, which was historically the greatest obstacle in examining the mechanism by
which the peripheral monocytes invade the CNS and participate in the pathogenesis of
epilepsy [11,14,78]. However, the issue of monocyte infiltration remains challenging be-
cause this method cannot be used in humans. With respect to the time course of innate
immune responses in mouse models of epilepsy, recent reports have consistently shown a
relatively acute innate immune response (1–3 days) that disappears in 7–14 days [11,12,14].
As for the examination of acquired immunity, CD8 seems to play a major role in hu-
mans [7,15,58,88,89,92], but not in mice, with a wide infiltration time scale [7,8,19,79]
(Figure 1, Table 3). Despite the general unfeasibility of comparisons between mouse and
human studies, there is no denying that peripheral immune cells are involved in the
pathogenesis of epilepsy.
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Table 3. Time course of innate and adaptive immune responses in experimental models of epilepsy.

Monocytes CD4+ CD8+

Kainic acid-treated mice Appears from day 1, peaks in
3 days, disappears in
7–14 days [11,12,14]

Initially appears within blood
vessels but mainly within the

neuropils at 2–4 weeks [7]

Appears, peaks 2 weeks after
injection and persists at

4 weeks [7]

Pilocarpine-treated Appears after 96 h [79] Not described

Electrical stimulation Not described
Appears after 24–48 h and disappears after 7 days [8]

Not identified [19]

Notably, the peripheral monocytes and resident microglia were also found to differ
considerably with respect to their morphological, dynamic, and electrophysiological prop-
erties [14]: the invading monocytes have distinctly higher levels of IL-1β mRNA compared
to the microglia [11]. Interestingly, one study has also suggested that monocytic infiltration
triggers the activation of endogenous microglia after seizure induction [12], and that sup-
pressing monocytic infiltration may facilitate the regulation of the resident microglia. In
either case, seizures are suppressed by inhibiting the entry of monocytes into the brain by
CCR2 knockout [11,69] and CCR2 antagonists [119,120], while the neuroprotective effects of
monocytes have also been postulated [121,122]. Moreover, the knockout of T and B cells [7]
or the suppression of T reg cells leads to a decline in seizure activity [96–98]. Long-term
evaluations, including those of cognitive function, of the effects of suppressing the invasion
of the immune system into the brain are essential in future experimental models.

Currently, the use of natalizumab (Tysabri) [123] and fingolimod (Gilenya) [124],
FDA-approved drugs that prevent the migration of white blood cells into the brain, are
recommended for the treatment of relapsing remitting multiple sclerosis (MS). The ap-
plication to epilepsy treatment is still in its experimental stages, but there are potential
natalizumab [125,126] and fingolimod [127,128] treatments. Natalizumab, a humanized
monoclonal antibody, is an α4 integrin antagonist of an agents class known as selective
adhesion-molecule inhibitors [129] that acts by inhibiting immune cell migration across
the BBB [130]. Progressive multifocal leukoencephalopathy (PML) develops as an adverse
effect [131], while intractable epilepsy associated with PML has also been reported [132].
Fingolimod is a substrate of sphingosine kinases that binds to sphingosine-1-phosphate
receptors [133] and leads to immunomodulation by lymphocyte sequestration, reducing
the numbers of T and B cells in circulation [134]. This agent is well tolerated, but may cause
hepatic damage, infection, bradycardia, and rarely, leukoencephalopathy [135].

Another alternative could be the use of stem cell therapies. Human pluripotent stem
cells, derived from brain pericyte-like cells, can result in the strengthening of the BBB and
the reduction of transcytosis [136]. All of the above methods could be applied to develop
new strategies to selectively and specifically target pericytes in epilepsy.

Given the scarcity of knowledge on the role of the link between the peripheral nervous
system and CNS in seizures and epilepsy-related pathologies, further studies are warranted
to investigate these reactions as potential therapeutic targets for epilepsy.
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