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Abstract: The aim of the present work was the application of hair biomonitoring to investigate
exposure to pesticides in children and their parents residing in a vineyard area. Thirty-three children
and 16 parents were involved in the study. Hair samples were self-collected before and after the
application season (PRE- and POST-EXP samples). Information on study subjects and the use of
pesticides in the area were obtained. Thirty-nine pesticides were analyzed by liquid chromatography
tandem mass spectrometry, and thirty-one pesticides were quantifiable in at least one hair sample.
Most frequently detected pesticides were chlorpyrifos, cycloxidim, dimethomorph, metalaxyl, spirox-
amine, and tetraconazole. From PRE-EXP to POST-EXP the percentage of quantification and/or the
concentration of pesticides increased; the concentration was typically in the low pg/mg hair range
with comparable levels in children and parents. An inverse correlation was found between the total
exposure to pesticides in POST-EXP hair samples and the distance between home and the treated
fields (Spearman ρ = −0.380, p = 0.01). The results of this study show that the majority of the study
pesticides were measured in the hair of subjects living in the close proximity of treated vineyards,
supporting the determination of pesticides in hair for the purpose of biomonitoring cumulative
exposure in the general population.

Keywords: pesticides; hair; biomonitoring; vineyards; child

1. Introduction

A pesticide consists of several different components that prevents, destroys, or con-
trols a harmful organism (“pest”) or disease, or protects plants or plant products during
production, storage, and transport [1]. Before a pesticide can be commercialized on the
European market, its active substance needs to be approved according with the Regulation
No 1107/2009 on Plant Protection Products, the Regulation No 396/2005 on maximum
residue levels in food (MRL), and the Directive 2009/128/EC on sustainable use of pesti-
cides [1–3]. The whole process is set to ensure safe use of pesticides in the EU regarding
human health and environmental sustainability.

Nevertheless, the large amount of these chemicals voluntarily spread in the environ-
ment, the past use of unsafe and/or persistent pesticides, and the recent controversies
between public bodies has cast doubt on the integrity of the authorization process in public
opinion. Recently, European citizens have asked for the process of authorization to be
rethought to focus on public health, the environment, and sustainable agriculture, and to
ensure that decision-makers make data available to the civil society and the scientific
community [4,5]. This concern is particularly pronounced in citizens residing in rural
areas where the use of pesticides takes place, especially regarding the risk for health of
the more vulnerable ones, such as children. This fragile category may be exposed through
inhalation of pesticide drift and/or volatilization from applications made in nearby crop
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fields, by parental take-home exposures and by residential use [6,7], by diet—particularly
fruits and vegetables [8–10]—and by house dust [11–13].

Vineyards are a cultivar in which the use of pesticides is particularly intense; annu-
ally in Northern Italy about 25 kg/h of active substances are applied in treated vineyards,
while between 1 and 10 kg/h are used in the other crops [14]. Pesticides can be used
in the different stages of vine growth: firstly herbicides are applied to keep the ground
clean; during spring (in which rains can be abundant) fungicides are applied to fight molds
that can infest leaves and/or inflorescences; finally, in the last part of the growing period,
in which grapes are ripening, insecticides are used against insects.

Evaluation of exposure is a crucial step for risk assessment; among the different
techniques, biological monitoring plays a relevant role, as it is able to take into account all
the possible routes of exposure, all sources, and the individual behavior [15,16]. However,
biomonitoring may provide unrealistic data when based on pesticide metabolites in spot
urine samples, which account only for short-term exposure, disregarding cumulative and
aggregate exposures.

Recently the use of hair as a matrix for biomonitoring of the exposure to pesticides
has been investigated [17,18]. The main features of hair biomonitoring are the large data
acquisition window (from weeks to months depending on the length of the sample),
the non-invasiveness, easy collection and transport, and the lack of a requirement for spe-
cial conditions for conservation of the sample. Moreover, the determination of pesticides in
hair greatly hastens the process of biomarkers discovery as it focuses on the determina-
tion of several unmetabolized pesticides, easily measurable with available multi-residues
analytical assays, without the need for investigating human metabolisms.

Until now, the research on biomonitoring of exposure to pesticides in the general
population using hair focused mostly on persistent pesticides, such as DDT and its metabo-
lites [11,19–23]; conversely, few studies investigated currently used pesticides in the hair
of the general population [24,25], including children [17], and only some recent studies
applied a multi-residual method to assess the exposure to mixtures of pesticides [22,24,25].
Recently, we developed and validated an analytical assay based on liquid chromatography
tandem mass spectrometry to assess the presence of several currently used pesticides in
hair, characterized by a short persistence in the environment [26].

The aim of the present work was the application of hair biomonitoring to investigate
aggregate and cumulative exposure to 39 currently used pesticides in children and their parents
residing in a rural area located in Northern Italy, extensively cultivated with wine-grape.

2. Materials and Methods
2.1. Study Population

The study was conducted in 2018 in a vineyard area of the province of Treviso,
Veneto, Italy. The study was co-organized with the citizen association ColtiviAMOfuturo,
area Grappa, Asolo, Montello and Piave. Among the association members, there are several
families living in villages surrounded by an intensely cultivated wine area and worried
about exposure to pesticides for their children and themselves. The association itself
recruited the study subjects among its members, which participated on a voluntary base.
All subjects were informed about the aim of the study; parents signed a written informed
consent for themselves and for their children.

A sample collection kit with instruction for hair sampling and a questionnaire was
given to each participant. Parents self-collected hair samples from their children and
themselves after having carefully washed hands. A lock of hair was cut, as close as possible
to the root, in the occipital region of the head, using fine scissors; the lock had a diameter of
approximatively 5–8 mm and a variable length. The lock of hair was attached with paper
masking tape on a sampling sheet that indicated the direction of the hair (root-tip) and
was stored at room temperature in the dark in a paper envelope. Subjects were instructed
to keep a lock of occipital hair in case of haircut between PRE- and POST-EXP sampling.
The treatment of vineyards with herbicides, fungicides and insecticides was performed
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from May to September. Hair samples were collected in May, before the application season
(PRE-EXP) and again in August, at the end of the application season (POST-EXP).

A self-administered questionnaire was used to gain personal information (i.e., gender,
age, weight, hair color, and smoking habit) and some possible determinants of exposure
(i.e., the last haircut, the hair washing frequency, hair treatments, the distance between
home and the nearest vineyard, and the consumption of vegetables and fruits grown in
the area).

Samples and questionnaires were collected and delivered to the laboratory in September.
Once in the laboratory, samples were kept in the dark at room temperature until analysis.

2.2. Pesticides Selection

The pesticides to be tested were chosen with the following criteria:

• Certainly Used in the study Area (CUA) = the citizen association, with the consul-
tancy of an agronomist, expert on the cultivars of the area, provided an initial list
of 9 pesticides certainly used in the study area (chlorpyrifos, cycloxidim, dimetho-
morph, mandipropamid, meptylninocap, metalaxyl, pyraclostrobin, spiroxamine,
and tetraconazole).

• Probably Used in the study Area (PUA) = Another 12 pesticides that were probably
used in the study area, as approved in the protocol of the consortium of the vine-
yard farmers [27], were added to this list (azoxystobin, boscalid, cyprodinil, fenami-
done, fludioxonil, indoxacarb, iprovalicarb, metrafenone, penconazole, pyrimethanil,
quinoxyfen, and zoxamide).

• Probably Used in the Surroundings (PUS) = Another 9 pesticides probably used in the
surroundings, that were not authorized by the farmers’ consortium, but widely used
in other vineyards, were also added (bupirimate, chlortoluron, cyproconazole, diuron,
etofenprox, imidacloprid, metobromuron, terbuthylazine, and tebuconazole).

• Persistent Pesticides Not Authorized (PPNA) = Finally, 9 persistent pesticides not
authorized by the European Commission [28], but widely used in the past and with
a high persistence in the environment, were included in the list (atrazine, bitertanol,
carbendazim, linuron, methabenzthiazuron, metoxuron, monolinuron, sebuthylazine,
and simazine).

The complete list of 39 measured pesticides, together with their CAS number, their
agrochemical category, their approval status according with the EU regulation and/or the
farmers consortium protocol, are reported in Table 1.

All the chemicals used in this study are reported in a previously published method [26].

Table 1. Categories and list of measured pesticides, CAS number, agrochemical category, EU approval status, approval
status according with the farmers’ consortium rules, and the analytical assay limit of quantification (LOQ).

Pesticides Group Pesticides CAS Agrochemical
Category EU Status

Approved by the
Farmers’

Consortium

LOQ (pg/mg
Hair)

Pesticides Certainly
Used in the study

Area (CUA)

Chlorpyrifos 2921-88-2 Insecticide Approved Approved 0.08

Cycloxidim 101205-02-1 Herbicide Approved Approved 0.08

Dimethomorph 110488-70-5 Fungicide Approved Approved 0.04

Mandipropamid 374726-62-2 Fungicide,
Herbicide Approved Approved 0.04

Meptyldinocap 131-72-6 Fungicide Approved Approved 0.04

Metalaxyl 57837-19-1 Fungicide Approved Approved 0.04

Pyraclostrobin 175013-18-0 Fungicide Approved Approved 0.04

Spiroxamine 118134-30-8 Fungicide Approved Approved 0.08

Tetraconazole 107534-96-3 Fungicide Approved Approved 0.04
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Table 1. Cont.

Pesticides Group Pesticides CAS Agrochemical
Category EU Status

Approved by the
Farmers’

Consortium

LOQ (pg/mg
Hair)

Pesticides Probably
Used in the study

Area (PUA)

Azoxystrobin 131860-33-8 Fungicide Approved Approved 0.04

Boscalid 188425-85-6 Fungicide Approved Approved 0.04

Cyprodinil 121552-61-2 Fungicide Approved Approved 0.04

Fenamidone 161326-34-7 Fungicide
Not Approved
Max period of

grace: 14/11/2019
Approved 0.04

Fludioxonil 131341-86-1 Fungicide
Not Approved
Max. period of

grace: 31/10/2018
Approved 0.08

Indoxacarb 173584-44-6 Insecticide
Not Approved
Max. period of

grace: 31/10/2018
Approved 0.04

Iprovalicarb 140923-17-7 Fungicide Approved Approved 0.04

Metrafenone 220899-03-6 Fungicide Approved Approved 0.04

Penconazole 66246-88-6 Fungicide Approved Approved 0.04

Pyrimethanil 53112-28-0 Fungicide Approved Approved 0.04

Quinoxyfen 124495-18-7 Fungicide Approved Approved 0.04

Zoxamide 156052-68-5 Fungicide Approved Approved 0.04

Pesticide Probably
Used in the

Surroundings (PUS)

Bupirimate 41483-43-6 Fungicide Approved Not approved 0.04

Chlortoluron 15545-48-9 Herbicide
Not Approved
Max. period of

grace: 31/10/2018
Not approved 0.08

Cyproconazole 94361-06-5 Fungicide Approved Not approved 0.04

Diuron 330-54-1 Herbicide
Not Approved
Max period of

grace: 30/09/2018
Not approved 0.20

Etofenprox 80844-07-1 Insecticide Approved Not approved 0.20

Imidacloprid 138261-41-3 Insecticide Approved Not approved 0.04

Metobromuron 3060-89-7 Herbicide Approved Not approved 0.20

Terbuthylazine 5915-41-3 Herbicide Approved Not approved 0.04

Tebuconazole 107534-96-3 Fungicide Approved Not approved 0.04

Persistent Pesticides
Not Authorized

(PPNA)

Atrazine 1912-24-9 Herbicide Not Approved Not approved 0.04

Bitertanol 55179-31-2 Insecticide Not Approved Not approved 0.08

Carbendazim * 10605-21-7 Fungicide Not Approved Not approved 0.08

Linuron 330-55-2 Herbicide Not Approved Not approved 0.20

Methabenzthiazuron 18691-97-9 Herbicide Not Approved Not approved 0.04

Metoxuron 19937-59-8 Herbicide Not Approved Not approved 0.08

Monolinuron 1746-81-2 Herbicide Not Approved Not approved 0.20

Sebuthylazine 7286-69-3 Herbicide Not Approved Not approved 0.20

Simazine 122-34-9 Herbicide Not Approved Not approved 0.20

* Carbendazim can also be found following the application of thiophanate-methyl, an EU approved pesticide that can breaks down to
carbendazim both in the environment and in human body. CAS = Chemical Abstracts Service number.

2.3. Hair Preparation and Extraction

Sample preparation was performed as previously described [26]. Briefly, a segment
of hair of 3 cm length, measured starting from the root, and with an approximate weight
of 50–100 mg, was added to 2 mL of ultra-pure water and vortexed at room temperature
to remove contaminants on the hair surface. The length of the hair segment was chosen
to cover approximatively the last three months of exposure to pesticides. In the case of
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the POST-EXP sample, this was the period in which the pesticides were spread in the
vineyards. The aqueous solution was then completely removed and analyzed to control
the presence of the analytes; no presence of pesticides was detected. Rinsed hair was
dried at 60 ◦C for one hour, cut, and introduced into a 2 mL cryogenic tube (Eppendorf,
Safe-Lock tube, Milan, Italy). The tube was placed in a grinding jar and was cooled down
in a bath with liquid nitrogen for about 10 min; then the sample was milled (MM400,
Retsch Italy, Torre Boldone, Italy). A known amount of about 50 mg of hair powder was
transferred into a glass vial. Hair powder was added with 2 mL CH3CN and IS solution;
the vial was sealed and the sample was extracted at 45 ◦C for 3 h with a horizontal shaker
with a rotatory vibration. An aliquot of the extract was completely dried. 50 µL of CH3CN
were used to reconstitute and 5 µL of this sample were analyzed by liquid chromatography
tandem mass spectrometry (LC-MS/MS). The precision of the overall process was <4%
for all the analyzed pesticides, while the extraction efficiency could only be evaluated as a
relative extraction, comparing different extraction media and conditions in hair samples of
exposed donors, for which quantifiable levels of almost all analyzed pesticides could be
detected, and taking the most effective condition as the reference (100%) [26].

2.4. LC-MS/MS Analysis of Pesticides

The analysis were performed with a high performance liquid chromatography (LC,
Agilent Technologies, Cernusco Sul Naviglio, Italy) equipped with an Acquity UPLC HSS
T3 column (100 mm length, 2.1 mm internal diameter, 1.8 µm particle size, Waters, Sesto San
Giovanni, Italy). The column was kept at 40 ◦C with a flow rate of 200 µL/min, using a
linear gradient with two mobile phases: the A phase was composed by 5 mM ammonium
formate in water with 0.1% of formic acid, while the B phase was composed by 5 mM am-
monium formate in methanol with 0.1% of formic acid. The LC system was interfaced with
a hybrid triple quadrupole/linear ion trap mass spectrometer (QTRAP 5500; Sciex, Monza,
Italy) equipped with an electrospray ionization source (ESI), operated in scheduled selected
reaction monitoring (sSRM) mode. The two most intense sSRM transitions were recorded
for each native analyte; the most intense transition was used for quantitation, and the
other one was used for qualification [26]. For each isotopically labelled standard, the most
intense ion transition was recorded. The Analist® software (version 1.6.3; Sciex, Monza,
Italy) was used for setting up the method and the batches for analysis, while MultiQuant™
software (version 3.0.8664.0; Sciex, Monza, Italy) was used for quantification.

Together with the hair extracts, calibration solutions (0, 1, 2, 5, 10, 50, 100, 500, 1000,
5000, and 10,000 ng/L), and quality control solution (QC, 5 and 500 ng/L, low- and high-
QC, respectively) were analyzed, with a precision, estimated as RSD%, <10% and an
accuracy between 93 to 109% of the spiked concentrations. Linear regression curves were
used to quantify pesticides concentrations in the extract (ng/L); these were than converted
into concentrations in the hair samples (pg/mg hair) taking into account the weight of
the hair sample and the extraction volume [26]. The two isomers of dimethomorph and
cyproconazole were summed and considered together. Limit of quantification (LOQ) of
the investigated pesticides was in the range of 0.04–0.20 pg/mg, as reported in Table 1.

2.5. Statistical Analysis

The concentration of pesticides in hair was classified as quantifiable or not quantifiable,
based on comparison with the LOQ.

For quantifiable pesticides, data were analyzed either as dichotomous (i.e., values be-
low or above the LOQ) or quantitative variables (samples with pesticide concentration
≥LOQ). The total exposure to pesticides (Σfmolpest/mg hair) was obtained by the sum of
all measured pesticides, previously transformed in fmol.

We made two types of comparisons, across groups (unpaired data) and before–after
(paired data). For unpaired data we calculated the Fisher exact test (dichotomous variables)
and the Wilcoxon (also known as Mann–Whitney) rank-sum test (quantitative variables).
For paired dichotomous data we calculated (a) the McNemar exact test; and (b) the dif-
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ferences of quantitation (POST-EXP minus PRE-EXP) with their 90% confidence intervals
(CI) [29,30]. For paired quantitative data, we calculated (a) the Wilcoxon signed-ranks
test; and (b) the geometric mean ratios (GMR, POST-EXP/PRE-EXP) and their 90% CI,
because distributions were log-normal, as usual.

Correlations between the exposure to pesticides, both considering single molecules
and the total exposure, and possible determinants of exposure were investigated with
Spearman’s rank correlation coefficient rho (ρ).

Statistical analysis was performed using the SPSS 25.0 package for Windows (SPSS Inc.,
Chicago, IL, USA) and Stata 16 (StataCorp. 2019, College Station, TX, USA). Forest plots
for before–after comparisons (frequency differences and GMRs) were produced with the
Stata “metan” command. A p ≤ 0.05 was considered statistically significant.

3. Results
3.1. Study Population and Hair Samples

In Table 2 selected characteristics of study subjects and hair samples are summarized.
Forty-nine subjects were initially recruited in the study, of which 33 were children and
16 were parents. Most of the participating parents were females (75%), and 70% of the
involved children were male. For 3 children insufficient hair amount was obtained both
in PRE- and in POST-EXP samples, so they were not further considered. A total of 46
subjects, collecting 42 PRE-EXP samples, 7 samples during the application season, and 45
POST-EXP samples, was the final study group. Pair samples, i.e., samples obtained from
the same individuals in PRE-EXP and POST-EXP sampling, were 27 for children and 14 for
parents. The majority of study subjects consumed vegetables and fruits grown in the area
of residence, and they all lived very close to the vineyards (maximum distance 400 m).

Table 2. Personal characteristics of study subjects and number of hair samples.

Children Parents Total

Subjects initially recruited, n 33 16 49

Subjects without valid hair samples, n 3 0 3

Subjects entering the study, n 30 16 46

PRE-EXP hair samples only, n 0 1 1

POST-EXP hair samples only, n 3 1 4

PRE-EXP + POST-EXP paired hair samples, n 27 14 41

Gender
n male (%) 21 (70%) 4 (25%) 25 (54%)

n female (%) 9 (30%) 12 (75%) 21 (46%)

Mean age (minimum-maximum) 6 (1.5–16) 42 (35–51)

Home-to-vineyards distance (m)
Mean (minimum-maximum)

73
(5–400)

63
(5–400)

67
(5–400)

Consumption of vegetables
grown in the study area, n (%)

Never 6 (20%) 3 (19%) 9 (20%)

Rarely 4 (13%) 2 (12%) 6 (13%)

Often 16 (54%) 4 (25%) 20 (43%)

Usually 4 (13%) 7 (44%) 11 (24%)

Consumption of fruits grown
in the study area, n (%)

Never 3 (10%) 3 (19%) 6 (13%)

Rarely 8 (27%) 4 (25%) 12 (26%)

Often 15 (50%) 4 (25%) 19 (41%)

Usually 4 (13%) 5 (31%) 9 (20%)
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3.2. Pesticides in Hair

Out of 39 measured pesticides, 8 were never detected in any hair sample and were
not further included in the analysis. These pesticides were fenamidone (belonging to the
PUA group), bupirimate, chlortoluron, etofenprox (PUS group), linuron, monolinuron,
sebuthylazine, and simazine (PPNA group). Results of the 31 pesticides detected in
hair of study subjects are reported in Table 3, grouped by sampling time and by study
group (children and parents). Data are given as number and percentage of samples
above LOQ, and as median, minimum and maximum of concentrations (pg/mg hair).
Seven subjects had haircuts during the application season and collected an intermediate
sample, in addition to the PRE- and POST-EXP samples. For them, the POST-EXP results
are given as the sum of pesticides in POST-EXP sample and in the intermediate sample.

Considering PRE-EXP samples, in children, 26 out of 39 pesticides were quantifiable
at least in one subject; similarly, in parents 24 out of 39 pesticides were quantifiable at least
in one subject. Considering both children and parents, the median levels of pesticides in
hair ranged from 0.05 to 3.29 pg/mg hair (for zoxamide and chlorpyrifos, respectively).
Total exposure to pesticides (Σfmolpest/mg hair) in PRE-EXP samples ranged from 12.5 to
16.8 fmol/mg hair, for children and parents, respectively.

Considering POST-EXP samples, in both children and parents, 31 pesticides were
detectable at least in one sample, with the only exception of atrazine that was below LOQ
in children. In positive samples, the median levels of pesticides were in the range of 0.06 to
5.28 pg/mg hair (for indoxacarb and chlorpyrifos, respectively). Altogether, total exposure
to pesticides in POST-EXP samples was 68.7 and 82.6 fmol/mg hair, for children and
parent, respectively.

In both children and parents, pesticides with the highest concentrations in hair were
chlorpyrifos, cycloxidim, dimethomorph, and spiroxamina, all belonging to the group
of CUA.

The comparison among frequency of quantitation showed that, for several pesticides,
the percentage of quantifiable samples increased from PRE- to POST-EXP. In particular,
the frequency of quantitation increased for 22 pesticides in children, and 15 pesticides in
parents (see Table 3 and Figure 1a,b).

In paired samples, i.e., pesticides ≥LOQ in both PRE- and POST-EXP (number of pairs
ranged from 2 to 27), we found that for almost all pesticides the concentrations at the end
of the application season increased. In particular, the concentrations were significantly
higher for 15 pesticides for children, and 16 pesticides for parents out of 20 considered
pesticides (see Figure 2a,b).

Considering the correlations between exposure to pesticides and the possible determi-
nants of exposure, only the distance between the residence and the treated vineyards was
correlated with the total exposure to pesticides (Σfmolpest/mg hair) in POST-EXP samples.
The scatter plot in Figure 3 shows the negative correlation, with Spearman ρ = −0.380
and p = 0.010. The correlation was significant also separately considering pesticides in
CUA and PUA (Spearman ρ = −0.364 and −0.368, p = 0.013 and 0.014, respectively), but
not considering those in the PUS and PPNA groups. No correlation was found for other
possible determinants of exposure, such as hair color, the last haircut, the hair washing
frequency, hair treatments, and diet based on fruit and vegetables locally grown.
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Table 3. Summary of statistics of pesticides in hair in samples collected before (PRE-EXP) and after (POST-EXP) the application season. Results of 31 pesticides with at least one quantifiable
sample are reported in pg/mg hair.

Pesticides Group Pesticide

Children Parents Children vs. Parents

PRE-EXP POST-EXP
p Value PRE- vs.

POST-EXP a,b PRE-EXP POST-EXP
p Value PRE- vs.

POST-EXP a,b
p Value PRE-EXP

c,d
p Value

POST-EXP c,d

CUA

Chlorpyrifos

N ≥ LOQ (%) 14 (52) 30 (100) <0.001 9 (60) 15 (100) 0.06 0.75 na

Median
(min–max)

3.29
(2.07–7.41)

3.83
(0.79–21.9) 0.14 2.94

(2.41–28.2)
5.28

(1.41–33.8) 0.18 0.64 0.16

Cycloxidim

N ≥ LOQ (%) 14 (52) 30 (100) <0.001 11 (73) 15 (100) 0.12 0.21 na

Median
(min–max)

0.16
(0.10–0.32)

1.86
(0.58–4.37) <0.001 0.18

(0.12–0.40)
3.12

(0.68–4.46) <0.001 0.24 0.01

Dimethomorph

N ≥ LOQ (%) 27 (100) 30 (100) 1.00 12 (80) 15 (100) 0.25 0.04 na

Median
(min–max)

0.30
(0.05–4.97)

1.06
(0.22–12.9) 0.001 0.39

(0.07–10.4)
1.27

(0.30–18.8) 0.04 0.66 0.62

Mandipropamid

N ≥ LOQ (%) 7 (26) 28 (93) <0.001 14 (93) 15 (100) 1.00 <0.001 0.55

Median
(min–max)

0.11
(0.06–0.27)

0.19
(0.06–3.36) 0.04 0.24

(0.06–0.78)
0.39

(0.09–1.76) 0.01 0.04 0.03

Meptyldinocap

N ≥ LOQ (%) 1 (4) 10 (33) 0.01 3 (20) 8 (53) 0.06 0.12 0.22

Median
(min–max) 0.38 0.31

(0.08–10.8) 0.75 0.07
(0.05–0.14)

1.15
(0.14–7.10) 0.02 0.18 0.29

Metalaxyl

N ≥ LOQ (%) 23 (85) 30 (100) 0.12 13 (87) 15 (100) 0.50 1.00 na

Median
(min–max)

0.24
(0.05–1.30)

0.42
(0.08–5.20) 0.02 0.18

(0.08–1.84)
0.51

(0.13–7.04) 0.01 0.75 0.26

Pyraclostrobin

N ≥ LOQ (%) 17 (63) 30 (100) 0.002 4 (27) 13 (87) 0.008 0.05 0.11

Median
(min–max)

0.16
(0.06–0.66)

0.33
(0.09–1.37) 0.01 0.30

(0.13–0.45)
0.47

(0.07–1.58) 0.14 0.28 0.15

Spiroxamine

N ≥ LOQ (%) 21 (78) 30 (100) 0.03 14 (93) 14 (93) 1.00 0.39 0.33

Median
(min–max)

0.92
(0.37–3.13)

3.83
(0.42–37.7) <0.001 0.74

(0.13–1.73)
2.61

(0.63–30.1) 0.001 0.14 0.40

Tetraconazole

N ≥ LOQ (%) 15 (56) 28 (93) 0.001 12 (80) 14 (93) 0.50 0.18 1.00

Median
(min–max)

0.14
(0.06–0.57)

0.30
(0.05–1.53) 0.001 0.20

(0.11–0.88)
0.42

(0.18–1.01) 0.02 0.06 0.34
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Table 3. Cont.

Pesticides Group Pesticide

Children Parents Children vs. Parents

PRE-EXP POST-EXP
p Value PRE- vs.

POST-EXP a,b PRE-EXP POST-EXP
p Value PRE- vs.

POST-EXP a,b
p Value PRE-EXP

c,d
p Value

POST-EXP c,d

PUA

Azoxystrobin

N ≥ LOQ (%) 6 (22) 11 (37) 0.69 2 (13) 11 (73) 0.004 0.69 0.03

Median
(min–max)

0.07
(0.06–0.19)

0.29
(0.05–0.77) 0.04 0.08

(0.06–0.11)
0.21

(0.05–0.73) 0.08 0.86 0.97

Boscalid

N ≥ LOQ (%) 8 (30) 18 (60) 0.01 8 (53) 11 (73) 0.25 0.19 0.51

Median
(min–max)

0.08
(0.05–0.15)

0.20
(0.06–2.55) 0.004 0.14

(0.05–0.35)
0.30

(0.05–3.85) 0.13 0.24 0.43

Cyprodinil

N ≥ LOQ (%) 12 (44) 22 (73) 0.008 2 (13) 13 (87) 0.001 0.05 0.46

Median
(min–max)

0.09
(0.04–0.21)

0.11
(0.05–0.71) 0.10 0.15

(0.06–0.24)
0.18

(0.05–0.57) 0.67 0.52 0.37

Fludioxonil

N ≥ LOQ (%) 6 (22) 16 (53) 0.004 7 (47) 14 (93) 0.03 0.16 0.01

Median
(min–max)

0.21
(0.10–0.46)

0.29
(0.09–3.19) 0.29 0.24

(0.09–1.45)
0.25

(0.09–7.48) 0.91 0.47 0.76

Indoxacarb

N ≥ LOQ (%) 0 1 (3) 1.00 1 (7) 2 (13) 1.00 0.36 0.25

Median
(min–max) 0.06 na 0.08 0.16

(0.12–0.21) 0.22 na 0.22

Iprovalicarb

N ≥ LOQ (%) 6 (22) 14 (47) 0.03 5 (33) 11 (73) 0.01 0.48 0.12

Median
(min–max)

0.07
(0.06–0.41)

0.11
(0.05–0.70) 0.11 0.20

(0.06–0.34)
0.12

(0.06–0.77) 0.87 0.71 0.60

Metrafenone

N ≥ LOQ (%) 12 (44) 21 (70) 0.04 8 (53) 15 (100) 0.03 0.75 0.02

Median
(min–max)

0.11
(0.05–0.33)

0.18
(0.05–1.20) 0.02 0.21

(0.05–0.83)
0.22

(0.10–3.43) 061 0.03 0.17

Penconazole

N ≥ LOQ (%) 10 (37) 23 (77) 0.01 6 (40) 13 (87) 0.07 1.00 0.70

Median
(min–max)

0.07
(0.04–0.18)

0.11
(0.04–0.60) 0.02 0.06

(0.05–0.22)
0.14

(0.04–0.59) 0.11 0.87 0.83

Pyrimethanil

N ≥ LOQ (%) 15 (56) 26 (87) 0.008 12 (80) 15 (100) 0.25 0.18 0.29

Median
(min–max)

0.16
(0.07–2.11)

0.23
(0.06–11.1) 0.36 0.15

(0.07–8.42)
0.42

(0.09–48.6) 0.03 0.64 0.07

Quinoxyfen

N ≥ LOQ (%) 6 (22) 16 (53) 0.02 8 (53) 14 (93) 0.03 0.09 0.01

Median
(min–max)

0.08
(0.05–0.17)

0.10
(0.04–0.55) 0.48 0.06

(0.04–0.21)
0.15

(0.05–0.48) 0.04 0.56 0.20

Zoxamide

N ≥ LOQ (%) 1 (4) 2 (7) 1.00 0 3 (20) 0.25 1.00 0.32

Median
(min–max) 0.05 0.16

(0.05–0.27) 0.48 0.12
(0.11–0.85) na na 0.56
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Table 3. Cont.

Pesticides Group Pesticide

Children Parents Children vs. Parents

PRE-EXP POST-EXP
p Value PRE- vs.

POST-EXP a,b PRE-EXP POST-EXP
p Value PRE- vs.

POST-EXP a,b
p Value PRE-EXP

c,d
p Value

POST-EXP c,d

PUS

Cyproconazole

N ≥ LOD (%) 14 (52) 30 (100) <0.001 8 (53) 15 (100) 0.03 1.00 na

Median
(min–max)

0.07
(0.05–0.29)

0.26
(0.12–2.17) <0.001 0.11

(0.06–0.23)
0.23

(0.19–0.68) 0.001 0.13 0.87

Diuron

N ≥ LOQ (%) 0 5 (17) 0.12 0 2 (13) 1.00 na 1.00

Median
(min–max)

0.29
(0.23–4.47) na 0.49

(0.22–0.75) na na 0.70

Imidacloprid

N ≥ LOQ (%) 16 (59) 27 (90) 0.004 5 (33) 11 (73) 0.03 0.20 0.20

Median
(min–max)

0.09
(0.04–12.4)

0.20
(0.04–32.7) 0.08 0.31

(0.14–1.60)
0.37

(0.04–8.19) 0.78 0.14 0.69

Metobromuron

N ≥ LOQ (%) 0 1 (3) 1.00 0 2 (13) 0.50 na 0.25

Median
(min–max) 0.21 na 0.25

(0.20–0.31) na na 1.00

Terbuthylazine

N ≥ LOQ (%) 5 (19) 16 (53) 0.01 9 (60) 14 (93) 0.03 0.02 0.01

Median
(min–max)

0.06
(0.05–0.10)

0.12
(0.05–0.50) 0.02 0.08

(0.04–0.11)
0.17

(0.04–0.73) 0.02 0.25 0.43

Tebuconazole

N ≥ LOQ (%) 19 (70) 30 (100) 0.008 14 (93) 15 (100) 1.00 0.12 na

Median
(min–max)

0.13
(0.04–0.91)

0.29
(0.04–1.63) 0.02 0.14

(0.05–0.68)
0.46

(0.07–1.31) 0.02 0.72 0.27

PPNA

Atrazine

N ≥ LOQ (%) 2 (7) 0 0.50 1 (7) 2 (13) 1.00 1.00 0.11

Median
(min–max)

0.14
(0.06–0.21) na 0.16 0.08

(0.05–0.10) 0.22 1.00 na

Bitertanol

N ≥ LOQ (%) 1 (4) 3 (10) 0.50 0 1 (7) 1.00 1.00 1.00

Median
(min–max) 0.20 0.14

(0.11–1.00) 0.66 0.10 na na 0.18

Carbendazim

N ≥ LOQ (%) 1 (4) 10 (33) 0.008 0 11 (73) 0.002 1.00 0.03

Median
(min–max) 0.37 0.29

(0.09–1.35) 0.53 0.35
(0.09–6.39) na na 0.46

Methabenzthiazuron

N ≥ LOQ (%) 0 6 (20) 0.03 0 2 (13) 0.50 na 0.70

Median
(min–max)

0.15
(0.07–0.94) na 0.07

(0.05–0.08) na na 0.10

Metoxuron

N ≥ LOQ (%) 0 9 (30) 0.008 0 3 (20) 0.25 na 0.72

Median
(min–max)

0.15
(0.09–0.35) na 0.10

(0.08–0.12) na na 0.11
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Table 3. Cont.

Pesticides Group Pesticide

Children Parents Children vs. Parents

PRE-EXP POST-EXP
p Value PRE- vs.

POST-EXP a,b PRE-EXP POST-EXP
p Value PRE- vs.

POST-EXP a,b
p Value PRE-EXP

c,d
p Value

POST-EXP c,d

Total exposure to
pesticides Σfmolpest/mg hair Median

(min–max)
12.5

(1.83–68.7)
68.7

(17.1–280) <0.001 16.8
(3.35–173)

82.6
(22.9–571) <0.001 0.19 0.31

a = McNemar exact test. b = Wilcoxon test. c = Fisher exact test. d = Mann-Whitney test. na = not applicable.
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Figure 1. (a) Children: frequency of quantitation of pesticides in paired PRE-EXP and POST-EXP hair samples (N = 27) and difference (90% CI) between the frequencies of quantitation. 

CUA = Pesticides Certainly Used in the Area; PAU = Pesticides Probably Used in the Area; PUS = Pesticides Possibly Used in the Surroundings; PPNA = Persistent Pesticides Not 

Authorized. (b) Parents: frequency of quantitation of pesticides in paired PRE-EXP and POST-EXP hair samples (N = 14) and difference (90% CI) between the frequencies of quantitation. 

CUA = Pesticides Certainly Used in the Area; PAU = Pesticides Probably Used in the Area; PUS = Pesticides Possibly Used in the Surroundings; PPNA = Persistent Pesticides Not 

Authorized. 
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Figure 1. (a) Children: frequency of quantitation of pesticides in paired PRE-EXP and POST-EXP hair samples (N = 27) and difference (90% CI) between the frequencies of quantitation.
CUA = Pesticides Certainly Used in the Area; PAU = Pesticides Probably Used in the Area; PUS = Pesticides Possibly Used in the Surroundings; PPNA = Persistent Pesticides Not
Authorized. (b) Parents: frequency of quantitation of pesticides in paired PRE-EXP and POST-EXP hair samples (N = 14) and difference (90% CI) between the frequencies of quantitation.
CUA = Pesticides Certainly Used in the Area; PAU = Pesticides Probably Used in the Area; PUS = Pesticides Possibly Used in the Surroundings; PPNA = Persistent Pesticides
Not Authorized.
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Figure 2. (a) Children: geometric mean of the difference (90% CI) between the concentration of pesticides in hair in POST-EXP and PRE-EXP samples. N pairs ≥ LOQ indicates the 

number of paired samples with a detectable concentration of pesticides available for the comparison. CUA = Pesticides Certainly Used in the Area; PAU = Pesticides Probably Used in 

the Area; PUS = Pesticides Possibly Used in the Surroundings. (b) Parents: geometric mean of the difference (90% CI) between the concentration of pesticides in hair in POST-EXP and 

PRE-EXP samples. N pairs ≥ LOQ indicates the number of paired samples with a detectable concentration of pesticides available for the comparison. CUA = Pesticides Certainly Used 

in the Area; PAU = Pesticides Probably Used in the Area; PUS = Pesticides Possibly Used in the Surroundings; PPNA = Persistent Pesticides Not Authorized. 
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Figure 2. (a) Children: geometric mean of the difference (90% CI) between the concentration of pesticides in hair in POST-EXP and PRE-EXP samples. N pairs ≥ LOQ indicates the number
of paired samples with a detectable concentration of pesticides available for the comparison. CUA = Pesticides Certainly Used in the Area; PAU = Pesticides Probably Used in the Area;
PUS = Pesticides Possibly Used in the Surroundings. (b) Parents: geometric mean of the difference (90% CI) between the concentration of pesticides in hair in POST-EXP and PRE-EXP
samples. N pairs ≥ LOQ indicates the number of paired samples with a detectable concentration of pesticides available for the comparison. CUA = Pesticides Certainly Used in the Area;
PAU = Pesticides Probably Used in the Area; PUS = Pesticides Possibly Used in the Surroundings; PPNA = Persistent Pesticides Not Authorized.
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Figure 3. Scatter plot and linear regression line between total exposure to pesticides (∑fmolpest/mg hair) in POST-EXP
samples of all study subjects and the distance between home and cultivated vineyard (m).

4. Discussion

In the present study, hair was used to assess the exposure to 39 pesticides in children
and their parents living close to vineyards. The majority of pesticides were incorporated
into hair and increased during the application season.

In this work, the selected pesticides were chosen based on the probability of use,
with nine pesticides certainly applied (CUA) and another 12 pesticides approved by the
farmers’ consortium protocol for the use in the vineyards (PUA) (Table 1). Unsurprisingly,
these pesticides were the most frequently found and those with the highest concentrations
(Table 3). In particular, for the CUA group, chlorpyrifos was always quantified in POST-EXP
hair samples and was the pesticide with the highest concentration (median up to 5.28 and
maximum level up to 33.8 pg/mg hair); this is explained considering that chlorpyrifos is the
only insecticide certainly applied in the vineyards. Among the herbicides, both cycloxidim
and mandipropamid were from the CUA group: they were consistently found in the large
majority of samples, but the percentage of quantification and the concentration were higher
for cycloxidim than for mandipropamid, with medians up to 3.12 vs. 0.39 pg/mg hair,
respectively. This suggests a larger use for the first than for the second herbicide, even if
we cannot exclude that other determinants, such as a different absorption, metabolism,
and storage rates can also explain this result. Among the seven fungicides belonging to
the CUA group, we found the highest concentrations for spiroxamine and dimethomorph,
with median and maximum levels up to 3.83 and 37.7 pg/mg hair and 1.27 and 18.8 pg/mg
hair, respectively. These results suggest a higher use of these fungicides in comparison
with the others.

For the PUA group, the highest level of pesticide in hair was detected for the fungicide
pyrimethanil, with a median and maximum concentrations of 0.42 and 48.6 pg/mg hair;
this substance was approved in the protocol of farmers’ consortium, although it was not
in the list of pesticides known to be applied. Considering the PUS group, the insecticide
imidacloprid, not approved by the consortium, but approved by the EU regulation and
widely used for other types of grapes, was found in 90% of children’s POST-EXP hair,
with median and maximum concentrations of 0.20 and 32.7 pg/mg hair. Moreover, expo-
sure to imidacloprid could be associated with the use of new generation bait to fight beetles
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in domestic/indoor environments. Finally, it is relevant to note that pesticides in the PPNA
group were not found (linuron, monolinuron, sebuthylazine, and simazine) or were found
in very small percentage/concentration (atrazine, bitertanol, methabenzthiazuron, metox-
uron). For the latter pesticides, both their frequency of quantitation and their concentration
did not increase during the application season. These evidences support their ubiquitous
presence in the environment due to a past use and their long persistence. The only ex-
ception was for carbendazim, a fungicide not approved by the EU [28], that was found
in 33% of children’s and 73% of parent’s POST-EXP hair samples. Rather than an illegal
use of this product, the result may be explained by the use of thiophanate-methyl, an EU
approved fungicide which breaks down to carbendazim, both in the human body and in
the environment [28]. Overall, our findings indicate a legal use of pesticides by vineyard
farmers, in accomplishment of the consortium internal protocol and the EU regulations,
and an environmental diffusion with a consequent exposure of the rural residents.

The design of the study, including the collection of hair samples before and after the
application season, was meant to evaluate the capability of hair to reflect the cumulative
exposure during the growing season. The same design was previously applied to investi-
gate exposure to organophosphates, terbuthylazine, penconazole and tebuconazole, and a
mixture of 27 pesticides in agricultural workers [22,31–33]. In the present study, similarly to
the previous ones, an accumulation of pesticides during the growing season was found,
but major novelties were introduced as the enlargement of the investigated pesticides and
the application of the protocol to the rural general population, including children.

An increase in the frequency of quantification was found for 22 pesticides in children
(Figure 1a) and for 15 pesticides in parents (Figure 1b). For dimethomorph, a CUA group
pesticide, no increase in the detection frequency was observed, given the fact that it was
quantified in almost all samples in both PRE- and POST-EXP samples (Table 3, Figure 1a,b).

Figure 2 reports the comparison between the concentration of pesticides in hair in
POST- and PRE-exposure samples. The number of pairs samples varies from 2 to 27,
because only pairs samples with quantifiable concentrations of pesticides could be included.
Nevertheless, the analysis showed a general increase in POST-EXP samples for almost all
the included pesticides, with a mean increase of 3-fold in children (ranging from 1.71 for
metrafenone to 11.65 for cycloxidim), and a mean increase of 4-fold in parents (ranging
from 1.47 for iprovalicarb to 16.0 for cycloxidim). The increase, as expected, follows this
trend: CUA > PUA > PUS.

Pesticide levels were comparable in children and their parents (Table 3). Only for
cycloxidim and mandipropamid parents showed significantly higher levels in POST-EXP
samples (p = 0.01 and p = 0.03, respectively). This suggests that childhood behaviors,
such as playing in the garden and/or ingesting ground dust, were not a significant source
of additional exposure.

Negative correlations between the exposure to pesticides, either expressed as total
pesticides or as CUA or PUA, in POST-EXP hair and the home-to-treated fields distance
were found (Figure 3). This supports the use of hair for quantitative biomonitoring of
cumulative pesticide exposure in people living near the treated areas and confirms our
previous results, showing a relationship between the number of treatments/quantity of
applied pesticides during the season and the concentration in hair for occupationally
exposed subjects [32,33].

Among studies investigating pesticides in the hair of the general population, it is
worth mentioning a recent work measuring 140 pesticides and metabolites in the hair of 311
French pregnant women [24]. Comparing this study with the present work, we note that
common pesticides, such as carbendazim, tebuconazole, azoxystrobin, diuron, boscalid,
and imidacloprid, were similar for both quantitation frequency and concentration. Differ-
ently, a previous study of our group [33], investigating pesticides in agricultural workers
and in a few agricultural relatives, reported higher concentrations of pesticides in the hair
of agricultural relatives in comparison with rural residents of the present study. Those may
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be explained with a higher exposure of agricultural relatives, due to take-home exposure
from occupational settings.

Specific limitations of the present study are the small number of investigated subjects
and the fact that they were citizens worried for their exposure to pesticides, so our results
cannot be regarded as representative of the exposure to pesticides of the Italian general
population living near vineyards. Moreover, we assumed that pesticide applications in the
vineyards during the growing season are responsible for the difference in the exposure
levels detected in POST- vs. PRE-EXP hair samples. However, other mechanisms such
as the difference in food habits in summer and the higher temperatures that increase the
volatility of pesticides might also have influenced the level of exposure over the study
period. In addition, the stability over time of the pesticides in the hair matrix was only
assumed, not proved; since the POST-EXP samples are more recent, degradation over time
might also explain part of our results.

Several other general limitations of hair biomonitoring were listed in the Summary
report “Hair analysis panel discussion: exploring the state of the science”, promoted by the
U.S. Agency for Toxic Substances and Disease Registry [34]. Among others, there are the
difficulty distinguishing between external contamination and real internal dose, the absence
of data for predicting adverse effects in health through hair measurements, and the lack of
interpretation criteria, such as reference values. In fact, the development of biomonitoring
exposure to organic chemicals in hair analysis is promising, but is still at its initial stage
and therefore it must be limited to research purposes. In spite of the limitations associated
with the hair biomonitoring, we believe that the potential advantages of using hair as a
matrix capable of integrating mixture chemical exposures over months are relevant and
worth further investigation. Moreover, it can be foreseen that the use of new technologies,
such as mass spectrometry, and further studies on the biology and toxicokinetic of hair will
be beneficial to collect additional data for building a frame for the future interpretation of
hair biomonitoring.

Among the strengths of this study there are the double hair sampling that allowed
to evaluate the difference between pre- and post-application and to speculate about the
cumulative exposure along the growing season, and the application of a validated multi-
residue analytical assay with a high sensitivity, which allowed us to measure very tiny
concentration of pesticides in non-professionally exposed subjects.

5. Conclusions

Our results showed that the majority of investigated pesticides was measured into
the hair of rural children and their parents residing near a large area with vine cultivar.
The increased quantitation frequency and concentration at the end of the season, and the
inverse relationship between the total level of pesticides in hair and the home-to-crop dis-
tance, add new elements that support the use of hair biomonitoring for assessing aggregate
and cumulative exposure to pesticides in the general population, including vulnerable
categories, such as children.
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