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ABSTRACT The outbreak of COVID-19, the pandemic
disease caused by the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), has spurred an intense search for
treatments by the scientific community. In the absence of a
vaccine, the goal is to target the viral life cycle and alleviate the
lung-damaging symptoms of infection, which can be life-
threatening. There are numerous protein kinases associated
with these processes that can be inhibited by FDA-approved
drugs, the repurposing of which presents an alluring option as
they have been thoroughly vetted for safety and are more
readily available for treatment of patients and testing in clin-
ical trials. Here, we characterize more than 30 approved ki-
nase inhibitors in terms of their antiviral potential, due to their
measured potency against key kinases required for viral entry,
metabolism, or reproduction. We also highlight inhibitors
with potential to reverse pulmonary insufficiency because of
their anti-inflammatory activity, cytokine suppression, or

antifibrotic activity. Certain agents are projected to be dual-
purpose drugs in terms of antiviral activity and alleviation of
disease symptoms, however drug combination is also an op-
tion for inhibitors with optimal pharmacokinetic properties
that allow safe and efficacious co-administration with other
drugs, such as antiviral agents, IL-6 blocking agents, or other
kinase inhibitors.
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CLINICALNEED FOR EFFECTIVE TREATMENTS
FOR COVID-19

A novel human coronavirus, called severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2; formerly named
2019-nCoV), emerged in Wuhan, China. The outbreak in
the previously unexposed human population was marked by
high morbidity caused by SARS-CoV-2 as a result of the
associated disease COVID-19 (Corona Virus Disease-2019).
There is an urgent need for the development of therapies
targeting both direct viral infection and the inflammatory
immune response elicited by SARS-CoV-2. While many
patients with documented SARS-CoV-2 infections have
mild symptomatology, pathology can be severe in a subset
of patients (Figure 1). Overall, COVID-19 has milder clini-
cal manifestations and lower fatality than infections by the
related viruses, SARS-CoV and MERS-CoV (Figures 1 and
2). However, COVID-19 infection can be fatal .
Repurposing of drugs that have pre-existing FDA-approval
as treatments for SARS-CoV-2 and related coronaviruses
offers an attractive opportunity for the rapid deployment
of effective therapeutics in the setting of the current pan-
demic outbreak, where treatment options are largely limited
to supportive and symptomatic care.
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While symptoms associated with SARS-CoV-2 infection
initiate with viral infection, the severe and sometimes fatal
pathology seen with COVID-19 is primarily due to the onset
of a virus-driven hyper-inflammatory response. For example,
the first autopsy of a COVID-19 patient demonstrated the

rapid progression of pneumonia and overactivation of T
lymphocytes, which failed to establish an effective immune
response and resulted in tissue injury, including lung damage
and failure of other organs (1) (2). Consequently, while
therapy-related suppression of viral infection and replication

Figure 1. Covid-19 symptoms.

Figure 2. Comparison of MERS-CoV, SARS-CoV, and SARS-CoV-2.
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is a goal of current treatment approaches, it is posited that
judicious suppression of the inflammatory response is also
likely to benefit patients with severe COVID-19 disease. (3).

The most common presenting symptoms of SARS-CoV-2
are fever, dyspnea or dry cough, which are consistent with
lower respiratory tract infection; other symptoms found to
occur in less than 10% of COVID-19 patients analyzed in-
clude GI distress (diarrhea, vomiting), headache and weakness
(4). Loss of smell and taste have also been reported in a sizable
number of patients, including two-thirds of patients in
Germany and 30% of patients in South Korea (5). A hallmark
feature of COVID-19 infection is a distinct chest tomography
pattern of bilateral peripheral ground-glass and consolidative
pulmonary opacities (6). These findings can even be seen in
patients with minimal symptoms. Potentially fatal sequelae of
COVID-19 infection include respiratory failure in the form of
acute respiratory distress syndrome (ARDS), which is typified
by diffuse alveolar damage in early stages followed by fibro-
proliferation and fibrosis in prolonged cases. This leads to
respiratory failure, requiring intubation and mechanical ven-
tilation as a supportive therapy allowing time for viral clear-
ance and lung healing. Also leading to complications and in-
creased risk of death are pulmonary vascular endothelialitis,
thrombosis and angiogenesis, symptoms of which distinguish
lung pathobiology of COVID-19 patients from that of severe
influenza infection (7).

Additionally, liver, heart and kidney failure, life-
threatening coagulopathies, and cases of secondary hae-
mophagocytic lymphohistiocytosis (sHLH) have been
reported. Of note, sHLH is a syndrome characterized
by systemic inflammation as demonstrated by markedly
elevated levels of cytokines, including interleukin (IL)-2,
IL-7, granulocyte-colony stimulating factor (GM-CSF),
TNF-alpha, interferon-gamma inducible protein 10,
macrophage inflammatory protein 1-alpha, and mono-
cyte chemoattractant protein 1, resulting in elevated se-
rum inflammatory markers such as ferritin, cytopenias,
and multiorgan failure (8) (3) (9).

The point of entry for SARS-CoV-2, angiotensin-
converting enzyme 2 (ACE2) is highly expressed in the heart
and upregulated in the failing heart (10), and ACE2 receptor
levels have been found to be significantly expressed in various
organs in the body, such as the esophagus, kidney and bladder
(11). These are potential target organs for SARS-CoV-2 and
could explain the observed systemic inflammation beyond res-
piratory issues. In addition, there is evidence for the presence
of ACE2 in brain tissue (12), which could explain some of the
observed brain manifestations associated with COVID-19.

Long-term or permanent lung damage in the form of pul-
monary fibrosis, an epidermal growth factor (EGFR)-mediat-
ed process, has been observed in survivors of SARS-CoV and
MERS-CoV infections and occurs in up to 64% of patients
with ARDS (13). In a study following a SARS-CoV outbreak,

thin-section computed tomographic findings revealed fibrotic
changes in 62 % of the patients observed (14).

Pre-existing co-morbidities that appear to worsen the
course of SARS-CoV-2 disease include cancer, kidney disease,
obesity, diabetes, hypertension, and cardiovascular disease
(15). The elderly (>60 years of age) are generally the most
vulnerable to the virus with significant increased mortality in
patients over the age of 85, with precipitous onset of pneumo-
nia and systemic inflammatory changes (15). Interestingly, un-
like influenza, children, who account for 1-5% of COVID-19
cases, and those under the age of 30 are generally spared
severe illness (16). The reason for this predilection for older
adults is unclear, however may be related to dysregulated
immune response in these individuals (17). Still, severe symp-
toms are observed in up to 6.7% of children, typically those
with underlying health issues or who are under the age of 12
months (16).

As reviewed and proposed below, there are three major
needs that have yet to be met for effective management of
COVID19 disease: 1) anti-viral therapies that limit viral trans-
mission, cell entry, and replication, 2) therapies that attenuate
the non-productive immune response and thus decrease end-
organ damage, and 3) therapies that have an anti-fibrotic
effect in patients with ARDS and thus decrease long-term
sequelae of disease.

RATIONALE FOR REPURPOSING APPROVED
KINASE INHIBITORS

SARS-CoV-2 belongs to the Baltimore Group IV classifica-
tion of RNA viruses, which also includes hepatitits C virus
(HCV), West Nile virus, dengue virus, and rhinoviruses, but
it most closely resembles Severe Acute Respiratory Syndrome
Coronavirus (SARS-CoV) and Middle East Respiratory
Syndrome Coronavirus (MERS-CoV) (18) (Table 1). SARS-
CoV-2, like SARS-CoV andMERS-CoV, is a member of the
Betacoronavirus genus and shares 80% RNA sequence identity
with SARS-CoV (19) (20), and 50% sequence identity with
MERS-CoV (20) (Figure 2). While the rates of mortality and
transmission differ between SARS-CoV, MERS-CoV, and
SARS-CoV-2, there is substantial overlap in the pathogenesis,
genetic makeup and clinical features of the diseases caused by
these viruses (21). Numerous kinases have been suggested as
being important mediators of various viral infections, in par-
ticular SARS-CoV andMERS-CoV, and these same proteins
are predicted to be involved in mediating infection by SARS-
CoV-2, as well.

Protein kinases have become an exceptionally important
group of drug targets, accounting for 20-30% of the drug
discovery programs of major pharmaceutical companies
and are thus an opportune target. Many kinase inhibitors
that have pharmacologic effects that may be beneficial in

Pharm Res (2020) 37: 167 Page 3 of 29 167



ameliorating the severe and potentially life-threatening
symptoms of COVID-19, such as anti-inflammatory activi-
ty, cytokine suppression, and antifibrotic activity, are al-
ready approved. Ideally, one kinase inhibitor with optimal
pharmacokinetic properties could be repurposed as a dual
function therapeutic that could reduce infection through
direct viral targeting and could also provide clinical benefit
by suppressing disease symptoms. Alternatively, kinase
inhibitors could be tested in combination with antiviral
agents or other targeted therapies that show promise in
clinical trials for COVID-19 to achieve greater efficacy than
any one agent alone.

KINASE INHIBITORS AS POTENTIAL
ANTIVIRAL THERAPEUTICS

The fact that treatments for respiratory viral infections like
those caused by SARS-CoV, MERS-CoV, and SARS-CoV-
2 are restricted to medications designed to treat only symp-
toms of pulmonary disease justifies the repurposing of drugs,
preferably FDA-approved drugs already investigated in
patients for tolerance and toxicity, with the dual ability to
target the root causes of infection and to mitigate symptoms
of respiratory distress caused by the infection. It would thus be
beneficial to find and identify multi-targeted drugs in clinical

use that encompass both properties. Such drugs would ideally
also be able to potentiate the effectiveness of other more tar-
geted antiviral agents or supportive therapies approved for
severe or potentially fatal respiratory diseases.

A number of approved antiviral treatments are designed to
inhibit enzymes such as polymerases or proteases through a “one
drug, one bug” line of attack, which has been deemed inade-
quate due to the inefficiency of these treatments in working
against multiple viruses, as well as failure to treat emerging new
strains with accumulating mutations that are drug-resistant. The
high cost and lengthy timeline for development of a novel agent
are additional factors that dramatically limit the efficiency of this
approach for covering a wide range of existing viruses as well as
newly emerging ones or those that have developed resistance to
current therapies. A different strategy involves targeting integral
host cell proteins that are required by a broad spectrum of patho-
gens, including those that are emerging and novel and for which
no effective treatment exists. An advantage of targeting host cel-
lular proteins is that they do not undergo the samemutation rates
that are seen for genomes of viruses.

There is a difference between developing drug therapies
for a chronic virus, such as human immunodeficiency virus
(HIV) or HCV, which the immune system cannot clear, versus
developing drug therapies for acute viruses, such as influenza
or SARS-CoV-2, which the immune system eventually does
clear. For acute viruses, given the correlation of viral burden

Table 1. Classification of viruses and the kinase inhibitors showing antiviral activity.

Virus Baltimore classification Kinase inhibitors showing antiviral activity
(potential kinase targets)

SARS-CoV-2 Group IV, positive sense single-stranded RNA virus imatinib
(unpublished; preprint: https://www.biorxiv.org/content/

10.1101/2020.03.25.008482v2.full)
abemaciclib, gilteritinib, osimertinib
(unpublished; preprint:
https://www.biorxiv.org/content/10.1101/2020.03.

20.999730v3.full.pdf)

SARS-CoV Group IV, positive sense single-stranded RNA virus imatinib, dasatinib, nilotinib (ABL2)
(27) (29)

MERS-CoV Group IV, positive sense single-stranded RNA virus imatinib, dasatinib (ABL2) (27)
saracatinib (LYN, FYN) (33)
sorafenib (RAF) (68)

Dengue Group IV, positive sense single-stranded RNA virus dasatinib, saracatinib (SRC, FYN) (34) (35) (36)
sunitinib, erlotinib (AAK1, GAK, AXL, KIT, RET) (46)

Hepatitis C Group IV, positive sense single-stranded RNA virus sunitinib, erlotinib (AAK1, GAK) (41) (42)
gefitinib, erlotinib (EGFR) (59) ((56) (57)

West Nile Group IV, positive sense single-stranded RNA virus sunitinib, erlotinib (46)

Zika Group IV, positive sense single-stranded RNA virus sunitinib, erlotinib (46)

Ebola Group V, negative sense single-stranded RNA virus nilotinib (ABL1) (24)

Influenza A Group V, negative sense single-stranded RNA virus alvocidib (CDK9)

Human cytomegalovirus Group 1, double-stranded DNA virus gefitinib, erlotinib (EGFR) (59) (57) (56)

Vaccinia Group 1, double-stranded DNA virus imatinib (ABL) (25)

Herpes simplex type 1 Group 1, double-stranded DNA virus palbociclib (CDK6) (62)
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with disease severity, the goal may be to lower viral replication
to prevent severe disease (flatten the curve of viral replication/
burden). The potential drawback to direct-acting antiviral
agents that do not have near sterilizing potency (or that cannot
be used as a combination to suppress replication to near ster-
ilizing levels), is that allowing the virus to replicate leads to
resistance. Inhibiting a host target is unlikely ever to have
the potency one can achieve with, as an example, an inhibitor
of the viral RNA-dependent RNA polymerase (RdRp).
However, host-targeted antiviral drugs exploit the depen-
dence of the virus on specific host proteins and pathways dur-
ing replication. Resistancemay be less likely to develop against
these agents because a single point mutation in the viral ge-
nome is unlikely to enable the virus to replicate independently
of the targeted host factor. Another challenge in making anti-
viral agents against acute viral pathogens is that there is a
narrow window in which the antiviral can have an effect (as
an example influenza drugs). This raises the challenge of being
able to diagnose and treat early in the disease course in order
for the drug to provide clinical benefit.

Many FDA-approved, small molecule kinase inhibitors
have multiple protein targets, including those identified in
the host cell as being necessary or required for viral life cycle,
replication, and infection of multiple virus types. This proper-
ty could potentially be applied toward amore broad-spectrum
antiviral therapy. The fact that approved therapies are well-
characterized in terms of safety and pharmacokinetics and
thus could be readily repurposed would reduce the cost and
time involved for drug development and increase drug avail-
ability to patients.

ABL AND SRC INHIBITORS

ABL kinase inhibitors have been demonstrated to inhibit rep-
lication of several unrelated viruses at different stages of their
life cycle, including the coxsackie virus and dengue, Ebola,
and vaccinia, in in vitro cell-based studies (Table 1) (22) (23)
(24) (25) (26). For the coxsackie virus, ABL is activated follow-
ing attachment of the virus to the glycosylphosphatidylinositol
(GPI)-anchored protein decay-accelerating factor (DAF) on
the apical cell surface; the ABL activation in turn triggers
Rac-dependent actin reassembly that allows delivery of the
virus to the tight junction (22). FYN kinase is also activated
in response to viral attachment to DAF, and this leads to
phosphorylation of the plasma membrane protein, caveolin,
and viral transport into the cell through caveolin-containing
vesicles (22). Activation of ABL by the coxsackie virus and the
role ABL plays in viral infection are independent of SRC
kinases (22), whereas in contrast ABL kinases partner with
SRC family kinases to stimulate the actin-based movement
of vaccinia virus (23). In the case of Ebola virus, regulation
of viral replication by ABL1 was demonstrated by ABL1-

specific siRNA inhibition of the release of virus-like particles
in a cell culture co-transfection system; nilotinib also showed
antiviral activity in this assay, at μM concentrations that were
not cytotoxic (24). In vivo antiviral efficacy of imatinib was
shown in a model of vaccinia virus; testing of imatinib in this
model was based on the demonstrated involvement of ABL in
release of cell-associated enveloped virions from the host cell
(25). In this study, a dose of 200 mg/kg/day of imatinib was
able to reduce the number of viral genome copies by around 4
logs (25). Lack of efficacy of dasatinib in the same model was
attributed to immunotoxicity due to Src inhibition, however it
is believed that dasatinib could still be a candidate coronavirus
treatment with a dosing regimen that effectively blocks viral
dissemination while exhibiting minimal Src-related immuno-
toxicity (27).

The ABL inhibitors, imatinib and dasatinib, were iden-
tified in a screen as inhibitors of both SARS-CoV and
MERS-CoV replication, and nilotinib was identified as
an inhibitor of only SARS-CoV, in vitro (27). Investigation
of the mechanism for imatinib against SARS-CoV and
MERS-CoV revealed inhibition of the early stages of the
virus life cycle, and inhibition of viral replication through
blocking the fusion of the coronavirus virion with the
endosomal membrane (28) (29). Importantly, authors show
that targeted knockdown of ABL2, however not ABL1,
significantly inhibited SARS-CoV and MERS-CoV
replication/entry in vitro (29). The relatively high, albeit
minimally toxic, μM range concentrations of imatinib
and dasatinib required to inhibit SARS-CoV and MERS-
CoV in the aforementioned cell-based studies may be at-
tributable to experimental factors such as drug resistance
of the cell lines used as tools for propagating the viruses
(27) (29), and thus in vivo testing would be needed to deter-
mine optimal dosing. It is worth noting that in many cell-
based assays measuring drug effects on virus titer, the anti-
viral activity is cell-type dependent, and there is also vari-
ability depending on which virus strain is used. Recent,
unpublished results, reported as a preprint, suggest that
imatinib inhibits SARS-CoV-2 in vitro, among 17 other
FDA-approved drugs with IC50 values similar to those
observed for SARS-CoV and MERS-CoV; concentrations
showing antiviral activity were not cytotoxic (BioRxiv,
2020, https://doi.org/10.1101/2020.03.25.008482)

As discussed above, infection by SARS-CoV is the result of
several steps, including receptor binding, S glycoprotein con-
formational alterations, and proteolysis within endosomes that
is mediated by capthepsin L (30). SARS-CoV infection has
been shown to be blocked by targeted inhibitors of cathepsin
L (30). On a related note, it has been shown that complete
inhibition of viral entry and replication can result from treat-
ment of cells with a cathepsin inhibitor as well as treatment
with the serine protease inhibitor, camostat, which blocks ac-
tivity of the type II transmembrane serine protease (TTSP)
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TMPRSS2, a surface-expressed serine protease that cleaves
the coronavirus S protein and is involved in viral entry into a
host cell (31). It has been proposed that imatinib may inhibit
the function, localization or activity of TMPRSS2 (29). This
suggests that this may be a promising drug:target match that
could be further explored as a potential treatment for SARS-
CoV-2 infection, since SARS-CoV-2 uses the SARS-CoV re-
ceptor ACE2 and the protease TMPRSS2 to enter host cells.
In addition, ABL and ARG kinases have been found, in
cancer cells, to promote secretion of the endosomal protease
cathepsin L (30) (32). Thus, the testing of the ability of ABL
inhibitors to inhibit cathepsin L in the context of viral infection
may be warranted. It may generally be worthwhile to evaluate
each of these targets with respect to what is known about
SARS-CoV-2 infection and conduct further studies to eluci-
date potential therapeutic approaches involving ABL
inhibition.

Several of the SRC family kinases have been implicated in
replication of viruses, including those related to SARS-CoV-2,
as well as unrelated viruses. The ABL/SRC inhibitor, saraca-
tinib, has been shown to inhibit MERS-CoV at early stages of
the viral life cycle, at μM range concentrations (33). In this
study, siRNA knockdown of SRC family proteins, LYN and
FYN, the latter implicated in coxsackievirus entry through
epithelial tight junctions (22), led to significant reductions in
MERS-CoV titer, suggesting these proteins may be important
for MERS-CoV replication (33). Saracatinib was also shown
to synergize with gemcitabine, which also exhibits anti-
MERS-CoV activity (33). SRC has been shown, through
siRNA knockdown, to be important for replication of dengue
virus; dasatinib inhibited dengue infection by preventing in-
fectious virus particle formation within the virus replication
complex (34) (35). Saracatinib and dasatinib were shown to
exhibit activity against dengue virus in vitro, with FYN impli-
cated as a target for RNA replication (36). YES was demon-
strated, through genetic knockdown, to reduceWest Nile virus
titers through effects on the viral replication cycle and to at-
tenuate viral assembly and egress (37). Finally, siRNA library
screenings focused on identifying host factors required for rep-
lication of HCV and dengue revealed c-terminal SRC kinase
(Csk) as being important (38) (35).

NAK INHIBITORS

Important virus-associated protein targets include those asso-
ciated with intracellular membrane trafficking, a cellular pro-
cess vulnerable to “hijacking” by a broad range of unrelated
viruses. Two host cell kinases that have been found to play an
integral role in viral infection and life cycles are members of
the numb-associated kinase (NAK) family: (1) AP2-associated
protein kinase 1 (AAK1), which promotes endocytosis, and (2)
cyclin G–associated kinase (GAK), which mediates

endocytosis (39) (40). AAK1 and GAK are reported to be
exploited by a variety of viruses, including HCV and dengue
virus, which fall into the same Group IV Baltimore classifica-
tion as SARS-CoV, MERS-CoV and SARS-CoV-2, and also
the Ebola virus, which belongs to a different group (Table 1)
(18) (41) (42) (43) (44) (45). The importance of AAK1 and
GAK for HCV and dengue virus infection in vitro was shown
via genetic (siRNA) silencing of AAK1 and GAK, which
inhibited viral entry and infectious virus production (42) (46).
Genetic (siRNA) silencing of AAK1 and GAK also decreased
infection by Ebola virus (46).

Several kinase inhibitors have been proposed to exhibit
antiviral activity based on their ability to potently target
AAK1 and GAK. One drug, the FDA-approved janus kinase
(JAK) inhibitor, baricitinib, was identified- in response to the
SARS-CoV-2 outbreak- as a possible treatment for COVID-
19 by investigators from BenevolentAl and Imperial College
London (45). Baricitinib was proposed to potentially reduce
infection, based on the drug’s ability to inhibit AAK1 and
bind to GAK (45). It has been argued that the therapeutic
dosing and low plasma protein binding of baricitinib, in
contrast to the JAK kinase inhibitors, ruxolitinib and
fedratinib, may make baricitinib more likely to inhibit
AAK1 at therapeutically effective and tolerated doses and
potentially reduce viral infectivity in patients than the other
inhibitors (45) (47). AAK1 and GAK binding potency for
these inhibitors is shown in Table 2.

The multi-targeted kinase inhibitor sunitinib and the
EGFR tyrosine kinase inhibitor erlotinib, which potently
bind to AAK1 and GAK (dissociation constant [KD] of
11 and 3.1 nM, respectively) (48), were shown to block
HCV as s emb l y and inh i b i t HCV en t r y w i t h
overexpression of AAK1 or GAK effectively reversing
their antiviral activity (41) (42). Sunitinib and erlotinib
also exhibited broad spectrum activity against dengue,
West Nile virus and Zika virus infection in vitro at μM
concentrations that were nontoxic to cells (46). To con-
firm antiviral activity of sunitinib and erlotinib, levels of
phospho-AP2, a substrate of AAK1 and GAK, were
measured and were found to be reduced in a dose-
dependent fashion (46). Genetic (siRNA) depletion of
AXL, KIT, and RET, out of a total of 27 protein targets
of sunitinib and erlotinib, were found to inhibit dengue
infection in a cell-based assay (46). This suggests that
these three proteins are potential host targets mediating
antiviral effects of the two drugs. Synergy between suni-
tinib and erlotinib was observed in a murine model of
dengue, with 30-60 mg/kg of the drugs administered
(doses chosen were at or near the approved human dose)
(46). Sunitinib showed some efficacy in this model as a
single agent (46). The protective effects of the combina-
tion of sunitinib and erlotinib observed in this murine
model suggest it is plausible to utilize tolerable drug
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Table 2. FDA approved kinase inhibitors: Kinase targets and respiratory benefits

Kinase Inhibitor (brand name)
(indication; main therapeutic targets)

Selected Kinase Target Affinity
(antiviral and pulmonary benefit)
KINOMEscan
(kd<100 nM)

Anti-inflammatory activity, cytokine
suppression, antifibrotic activity

Midostaurin (Rydapt)
(acute myeloid leukemia, systemic mastocytosis; multi-

targeted; FLT3-ITD, D816V-c-KIT)

AAK1, JAK2, JAK3,
Kd KIT (220nM),
Kd RET (350nM)
(48)

Anti-inflammatory and cytokine
suppression (107)

Lestaurtinib
(orphan drug status, acute myeloid leukemia; multi-

targeted; FLT3, JAK2, TrkA, TrkB, TrkC)

AAK1, AXL, FYN, GAK, JAK1, JAK2, JAK3, RET
Kd KIT (150nM)*

Anti-inflammatory and cytokine
suppression (107)

Gilteritinib (Xospata)
(acute myeloid leukemia;
FLT3-ITD; AXL)

AXL
IC50 (41 nM)
(49)**

Dasatinib (Sprycel)
(chronic myeloid leukemia, Ph+acute lymphoblastic

leukemia; multi-targeted; BCR-ABL, SRC)

ABL1, ABL2, CSK, FYN, GAK, KIT, LYN, SRC, YES Anti-inflammatory, cytokine suppression,
antifibrotic (100) (99) (102) (103) (104)
(101)

Imatinib Mesylate (Gleevec (US)/Glivec (Europe/
Australia)

(chronic myeloid leukemia, Ph+acute lymphoblastic
leukemia, gastrointestinal stromal tumor, chronic
eosinophilic leukemia, hypereosinophilic syndrome,
systemic mastocytosis; myelodysplastic syndrome;
BCR-ABL, KIT, FIP1L1-PDGFRalpha)

ABL1, ABL2, KIT Anti-inflammatory,
cytokine suppression/immunomodulatory,
antifibrotic (91) (92) (90) (79) (94) (95)
(96) (93) (77)

Nilotinib (Tasigna)
(chronic myeloid leukemia; BCR-ABL)

ABL1, ABL2, KIT Antifibrotic ((80) (81) (82) (83) (84) (85) (86)

Ponatinib (Iclusig)
(chronic myeloid leukemia, Ph+ acute lymphoblastic

leukemia; BCR-ABL)

ABL1, ABL2, KIT, RET, SRC Cytokine suppression (78)

Saracatinib
(orphan drug status, idiopathic pulmonary fibrosis; ABL,

SRC, LCK, FGR, BLK)

ABL1
FYN, LYN, SRC, YES1
IC50 v-ABL (30 nM); IC50 FYN (10 nM); IC50 LYN (5

nM) (isolated protein kinase assay) (186)**

Antifibrotic (100) (99) (105)

Bosutinib (Bosulif)
(chronic myeloid leukemia; ABL, SRC)

ABL1, ABL2, AXL, CSK, EGFR, FYN, GAK, LYN, SRC,
YES

Anti-inflammatory, cytokine suppression,
and antifibrotic (104) (87) (88)

Baricitinib (Olumiant)
(rheumatoid arthritis; JAK1, JAK2)

JAK1, JAK2, TYK2
Kd AAK1 (17 nM); Kd GAK (136 nM) (cell-free assay)

(47)**

Anti-inflammatory and cytokine
suppression (106) (107) (108)

Ruxolitinib (Jakafi)
(myelofibrosis, polycythemia vera; JAK1, JAK2)

GAK, JAK1, JAK2, JAK3, TYK2
Kd AAK1 (100 nM); Kd GAK (120 nM) (cell-free assay)

(47)**

Anti-inflammatory and cytokine suppression,
antifibrotic (107)

Fedratinib (Inrebic)
(myelofibrosis; JAK2)

AAK1, ABL1, FYN, GAK, JAK2, SRC
Kd AAK1 32 nM; Kd GAK 1 nM (cell-free assay) (47)**

Anti-inflammatory and cytokine suppression,
(107) (115)

Tofacitinib (XELJANZ XR)
(ulcerative colitis, rheumatoid arthritis, psoriatic arthritis,

ankylosing spondylitis; JAK1, JAK3)

JAK1, JAK2, JAK3, TYK2
No AAK1 inhibitory activity (47)

Anti-inflammatory and cytokine suppression
(109) (110) (107) (111)

Gefitinib (Iressa)
(non-small cell lung cancer; EGFR)

EGFR, GAK Antifibrotic (119) (116) (178) (118)

Afatinib (Gilotrif)
(non-small cell lung cancer, advanced squamous cell

carcinoma; Her2/EGFR)

EGFR, GAK Anti-inflammatory, antifibrotic (116) (178)
(179)

Lapatinib (Tykerb and Tyverb)
(breast cancer; Erb1/Erb2, EGFR)

EGFR Antifibrotic (116) (178)

Osimertinib (Tagrisso)’
(non-small cell lung cancer; EGFR)

EGFR
(60)**

AZ5104, active metabolite of osimertinib,
downregulates Th17-related cytokine
production via inhibition of SRC-ERK-
STAT3

(127)
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Table 2. (continued)

Kinase Inhibitor (brand name)
(indication; main therapeutic targets)

Selected Kinase Target Affinity
(antiviral and pulmonary benefit)
KINOMEscan
(kd<100 nM)

Anti-inflammatory activity, cytokine
suppression, antifibrotic activity

Erlotinib (Tarceva)
(non-small cell lung cancer, pancreatic cancer; Erb1,

EGFR)

EGFR, GAK
Kd ABL1 (310nM)
(48)

Antifibrotic (116) (178)

Neratinib (Nerlynx)
(breast cancer; Her2/EGFR)

EGFR

Pazopanib (Votrient)
(renal cell carcinoma, advanced soft tissue sarcoma;

multi-targeted; c-KIT, FGFR, PDGFR, VEGFR)

KIT Anti-inflammatory potential, antifibrotic
(136)

Sorafenib (Nexavar)
(renal cell carcinoma, hepatocellular carcinoma, thyroid

cancer; multi-targeted; PDGFR, VEGFR, RAF)

KIT, RET Antifibrotic (125) (126) (187)

Sunitinib malate (Sutent)
(renal cell carcinoma, gastrointestinal stromal tumor;

multi-targeted; PDGFR, VEGFR)

AAK1, AXL, GAK, JAK1, KIT, RET Anti-inflammatory potential, cytokine
suppression, antifibrotic (137) (135) (107)

Axitinib (Inlyta)
(renal cell carcinoma; c-KIT, PDGFR, VEGFR1,

VEGFR2, VEGFR3)

ABL1, ABL2, KIT Anti-inflammatory and cytokine
suppression (128)

Vandetanib (Caprelsa)
(medullary thyroid carcinoma; EGFR, RET, VEGFR)

ABL2, EGFR, GAK, RET, SRC
Kd ABL1 (270nM) (48)

Regorafenib (Stivarga)
(colorectal cancer, gastrointestinal stromal tumor, hepa-

tocellular cancer; PDGFRβ, Raf-1, TIE2, VEGFR1/2/
3)

KIT, RET

Ibrutinib (Imbruvica)
(mantel cell lymphoma, Waldenstrom macroglobuline-

mia, chronic lymphocytic leukemia, Small lympho-
cytic lymphoma, marginal zone lymphoma; BTK)

EGFR, RET Anti-inflammatory (132) (133)

Palbociclib (Ibrance)
(breast cancer; CDK4, CDK6)

CDK6

Abemaciclib (Verzenio and Verzenios)
(breast cancer, CDK4,CDK6)

CDK6
IC50 (10 nmol/L)
CDK9
IC50 (57 nmol/L)
(188)**

Abemaciclib in combination with anastrozole
led to increased cytokine signaling and
immune activation

(189)

Alvocidib
(orphan drug status, acute myeloid leukemia; CDK1,

CDK2, CDK4, CDK9)

CDK9 Anti-inflammatory (134)

Ceritinib (Zykadia)
(non-small cell lung cancer; ALK, IGF1R, InsR, STK22D)
Crizotinib (Xalkori)
(non-small cell lung cancer; ALK/ROS1)

ABL1, AXL

Masitinib (Masivet)
(orphan drug status, potential amyotrophic lateral scle-

rosis drug; FAK, FGFR3, KIT, LCK, PDGFR)

ABL1, KIT,
LYN

Nintedanib (Ofev and Vargatef)
(idiopathic pulmonary fibrosis, non-small cell lung can-

cer; FGFR, PDGFR, VEGFR)

AAK1, ABL1, AXL, JAK2, JAK3, KIT, RET, YES1 Anti-inflammatory, cytokine suppression,
antifibrotic (129) (130) (131)

Left Column: Drug names and disease indication, and main therapeutic targets. Middle Column: Potency (based on KINOMEscan data) against key proteins
associated with respiratory function and proteins involved in viral replication/life span/infection- believed to be necessary for a wide variety of viruses, including
SARS-CoV and MERS-CoV and SARS-CoV-2. Right column: Anti-inflammatory activity, cytokine suppression, and antifibrotic activity of the kinase inhibitors.

*These values were derived from ChEMBL database: https://www.ebi.ac.uk/chembl/.

**These values were not derived from KINOMEscan; References are cited.
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dosages with the potential to inhibit viral replication (46).
It has been suggested, however, that side effects associat-
ed with these agents at doses required to inhibit AAK1
may not be tolerated by patients infected with SARS-
CoV-2 (45).

Gilteritinib is a potent inhibitor of AXL (49), which is one
of the targets of sunitinib and erlotinib identified to be impor-
tant for dengue infection (46). Gilteritinib was reported (un-
published results; preprint) to be one of 24 FDA-approved
drugs to show in vitro activity against SARS-CoV-2 (0.1
μM<IC50<10 μM)) (BioRxiv. https://doi.org/10.1101/
2020.03.20.999730) (Table 1). Gilteritinib has been approved
for adult patients with mutant FLT3-positive refractory/
relapsed AML (Table 2).

EGFR INHIBITORS

Epidermal growth factor receptor (EGFR) has been implicated
in infection by a wide range of unrelated viruses (50), including
the spread and motility of vaccinia virus (51) and the processes of
endocytosis (for influenza A and HCV), and entry and/or post-
entry events (for human cytomegalovirus (HCMV) and adeno-
associated virus serotype A (AAV6) (Table 1) (52) (53) (54) (55)
(56) (57). In fact, among the first studies to show that tyrosine
kinase inhibitors can have significant antiviral activity was one
identifying EGFR as a co-factor for entry of HCV into human
host cells (56). EGFR is also used by different viruses, including
many respiratory viruses, to evade the host immune response
(58). Activity against HCMV and HCV in vitro and in vivo has
been demonstrated by the EGFR-targeting inhibitors, gefitinib
and erlotinib (59) (56) (57).

Osimertinib is a potent inhibitor of EGFR (60).
Osimertinib was reported (unpublished results; preprint) to
be one of 24 FDA-approved drugs to show in vitro activity
against SARS-CoV-2 (0.1 μM<IC50<10 μM)) (BioRxiv.
https://doi.org/10.1101/2020.03.20.999730) (Table 1).
Osimertinib has been approved for non-small cell lung carci-
noma (Table 2).

CYCLIN-DEPENDENT KINASE INHIBITORS

Cell cycle progression of host cells can be modulated by
viruses through influences on host cell cyclin-dependent
kinases (CDKs). As an example, CDK9 has been implicated
in infection by herpes simplex virus type 1 (HSV-1) (Table 1)
(61). Specifically, CDK9 was shown for HSV-1 to be involved
in expression of genes controlled by the viral regulatory pro-
tein, ICP22, and through binding to ICP22 leads to phos-
phorylation of RNA polymerase II (61). Palbociclib, at least
partly through inhibition of CDK6, inhibited HSV-1 replica-
tion in vitro (62), likely through blockade of cellular protein

phosphorylation (62). CDK9-targeting alvocidib showed ac-
tivity against influenza A (Table 1) (63). CDK9 has been found
to mediate the activity of RdRp of the influenza virus; cells
lacking CDK9 showed impairment of viral replication (64).

The CDK4/6 inhibitor, abemaciclib, was identified as one
of 24 FDA-approved drugs to display in vitro activity against
SARS-CoV-2 (0.1 μM<IC50<10 μM); these results are un-
published and are reported as a preprint (BioRxiv. https://
doi.org/10.1101/2020.03.20.999730) (Table 1). Abemaciclib
has been approved for advanced or metastatic breast cancer
(Table 2).

PI3K/AKT/MTOR AND ERK/MAPK INHIBITORS

Activation of the phosphatidylinositol 3’-kinase-Akt-mamma-
lian target of rapamycin (PI3K/Akt/mTOR) pathway has
been implicated in growth and replication of numerous
viruses, including HCV, West Nile virus, and influenza A
virus (65) (66) (67). Pathway overrepresentation analysis and
functional network analysis employed to identify cell signaling
changes occurring during MERS-CoV infection (68) revealed
members of the PI3K/AKT/mTOR signaling pathway, in-
cluding AKT, target of rapamycin (mTOR), RPS6KB1,
PDPK1, PIK3R1, and PIK3R2, and members of the Ras/
Raf/MEK/ERK signaling pathway signaling pathway, in-
cluding MAP2K1, MAPK3 andMAPK14, to be upregulated
(68). At a concentration of 10 μM, themTOR inhibitor, rapa-
mycin, caused significant (61%) inhibition of MERS-CoV in-
fection (correlated with decreased viral titers) in MERS-CoV-
infected cells (68). Treatment of cells prior to MERS-CoV
infection with sorafenib, which targets RAF, strongly inhibited
infection (93%) (68). The inhibitory activity was diminished
when sorafenib was added post-infection, suggesting a possible
role for RAF early in the viral life cycle. Genetic knockdown
studies, focusing on mTOR and RAF and other signaling
molecules shown to be overrepresented during MERS-CoV
infection, are warranted to validate the role of these proteins
in this process.

Activation of the MAPK/ERK1 pathway has been impli-
cated in influenza A virus production and viral nuclear export
of ribonucleoprotein complexes (69). The pathway has also
been associated with Ebola virus entry coupled with cellular
(glycoprotein-induced) damage and elevated cytokine
production (70) (71).

SUMMARY OF KINASE INHIBITOR ACTIVITY
AGAINST VIRUS-ASSOCIATED PROTEINS

Using KINOMEscan biochemical kinase profiling assay data
from the Harvard Medical School Library of Integrated
Network-based Cellular Signatures (LINCS) (72) and data
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derived from the ChEMBL database, we focused on the abil-
ity of a list of FDA-approved kinase inhibitors to target those
proteins implicated in SARS-CoV, MERS-CoV and related
virus infections, as well as several unrelated viral infections,
including ABL proteins, AAK1, AXL, CDK6, CDK9,
CSK, EGFR, FYN, GAK, KIT, LYN, RET, SRC, and
YES (Table 2, Fig. 3).

PHARMACOKINETICSOF KINASE INHIBITORS

Kinase inhibitors are significantly metabolized by cytochrome
P450 enzymes, and some are either inhibitors or substrates of
drug transporters, including P-glycoprotein (P-gp; ABCB1) or
Breast Cancer Resistance Protein (BCRP;ABCG2). The ex-
tent of plasma protein binding can also affect and in some
cases lower drug potency, such as occurs with highly
(>99.9% plasma protein bound) midostaurin (73) (74).
These factors can lead to differences in the amount of
circulating and cellular drug concentrations between
patients, and thus the potential a drug has for tissue

distribution/bioavailability may be helpful when considering
repurposing a drug based on its anticipated targeted effects.
Some drug characteristics are shown in Table 3 (75) (76).

The majority of kinase inhibitors listed are recommended
for repurposing for COVID-19 based on the volume of dis-
tribution (Vd), or the theoretical volume necessary to contain
the amount of a dosed drug at the same concentration ob-
served in plasma, the area under the curve (AUC), which
defines the variation of a drug concentration in plasma as a
function of time (AUC0-infinity describes total drug exposure
across time), and maximum plasma levels (Cmax), or peak se-
rum concentration achieved by a drug in an identified part of
the body following administration of a drug dose. There are
several drugs, however, which raise some concerns with re-
spect to pharmacokinetic properties, with limitations that
would need to be overcome in order to serve as appropriate
therapeutics for SARS-CoV-2 infection. These drugs include
nilotinib, ponatinib, saracatinib, tofacitinib, pazopanib, and
axitinib (Table 3). For nilotinib, based on the dosage and
bioavailability, the drug concentration is adequate, however
the volume of distribution (0.55-3.9 L/kg) suggests that

Figure 3. Repurposing of kinase inhibitors as antiviral therapies and for respiratory benefit.
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nilotinib is mainly distributed in the blood and poorly distrib-
uted in tissue. For ponatinib, the Cmax and Tmax of ponatinib
were reported as 73 ng/mL and 6 hours, respectively, which
suggests that drug absorption is slow and plasma drug concen-
trations are low. To increase exposure in the blood, ponatinib
would need to be taken continuously for a number of days,
and this would not be ideal for the rapid treatment necessary
for a COVID-19 patient. For saracatinib, both the Cmax (34
ng/mL) and AUC (399 ng*h/mL) are low, which suggests that
dosing continuously for a number of days could potentially
increase the blood drug concentration, which is not desirable.
For tofacitinib, an oral dose of 5 mg/kg, Cmax=34 ng/mL,
AUC=144ng*h/mL and a half-life of 2.49h would require
long-term dosing to achieve optimal drug concentrations
and anti-inflammatory effects. Based on this timeline, this
would not be ideal for the rapid treatment required for a
patient with COVID-19. Pazopanib has been reported clini-
cally to be associated with severe hepatotoxic deaths, and thus
there may be potential safety issues for patients. The potential
toxicity associated with pazopanib and the volume of distribu-
tion (only 11.1 liters) are issues that would need to be
addressed for repurposing for COVID-19 treatment. For axi-
tinib, the Tmax (3.2 hrs) and AUC0-infinity (160 mg*h/mL)
values were very low, suggesting that multiple doses are nec-
essary. Axitinib is prone to causing elevated blood pressure
and arterial thromboembolism events, especially for elderly
people, which for an older COVID-19 patient would mean
a high risk of death. Lapatinib is more complicated and the
following should be taken into consideration prior to using
lapatinib as a therapy for COVID-19 patients: The bioavail-
ability is not reported to be high and the recommended dose is
considerably high, which are not ideal characteristics.
However, the drug is likely to be safe at high doses, meaning
that optimal blood concentrations can be reached, with a half-
life of 14.8 hours.

KINASE INHIBITORS AS POTENTIAL
THERAPEUTICS FOR COVID-19 RESPIRATORY
COMPLICATIONS

Kinase inhibitors that have been approved for treatment of
various malignancies have properties, such as anti-
inflammatory and cytokine inhibitory activity, which may be
able to reduce the likelihood of life-threatening conditions due
to lung damage from respiratory virus infections. Numerous
small molecule kinase inhibitors target proteins associated
with severe respiratory distress, including cytokines (such as
IL-6 and TNF-alpha) that contribute to cytokine release syn-
drome and sHLH, as well as proteins associated with inflam-
mation and induction of pulmonary fibrosis (such as the pro-
inflammatory cytokine TGF-beta).

ABL, PDGFR, AND SRC INHIBITORS

Cytokine inhibition and anti-inflammatory and antifibrotic
activity displayed by some inhibitors of Abelson murine leu-
kemia viral oncogene homolog 1 or 2 (ABL1, ABL2), platelet-
derived growth factor receptor, and SRC (proto-oncogene
encoding a non-receptor tyrosine kinase, similar to the v-Src
gene of the Rous sarcoma virus), could potentially provide
benefit for SARS-CoV-, MERS-CoV-, or SARS-CoV-2-
infected patients (77). For instance, the ABL inhibitor, pona-
tinib, exhibited cytokine storm suppression in a preclinical
model of influenza (78). Imatinib inhibited TNF-alpha pro-
duction in murine models of acute hepatitis and prevented
TNF-alpha-dependent acute liver inflammation in these mod-
els (77), and attenuated signaling associated with rheumatoid
arthritis, such as KIT-mediated signaling and TNF-alpha re-
lease by mast cells, macrophage FMS activation and produc-
tion of cytokines (79). Nilotinib and bosutinib showed activity
against pulmonary fibrosis and other models of fibrosis,
through regulation of levels of pro-inflammatory cytokines
such as IL-1 and IL-6 (80) (81) (82) (83) (84) (85) (86) (87)
(88) (89).

Case study reports and small clinical trial data exist, gen-
erally in favor of the anti-inflammatory and antifibrotic effects
of imatinib, although results have been variable. Two targets
of imatinib are ABL, which is a key downstream mediator of
profibrotic TGF-beta signaling, and PDGFR, also associated
with fibrotic diseases (90). In chronic myeloid leukemia (CML)
and gastrointestinal stromal tumor (GIST) patients, imatinib
treatment improved rheumatoid arthritis symptoms, suggest-
ing anti-inflammatory activity, and downregulated proinflam-
matory cytokines, IL-6 and IL-8 (91) (92) (93). Antifibrotic
effects of imatinib were demonstrated in two patients with
nephrogenic systemic fibrosis, with each patient showing pro-
gressive reduction of skin thickening and tethering following
the start of imatinib treatment (94), and pulmonary fibrosis
improved in a patient treated with imatinib for the 20 weeks
the patient was on therapy (95). Antifibrotic activity of imati-
nib was also demonstrated in a patient with bleomycin inter-
stitial pneumonitis, a condition sharing biochemical and his-
tological features with idiopathic pulmonary fibrosis that is
caused by the antibiotic chemotherapy agent bleomycin (96).
However, imatinib was not observed to affect lung function or
survival in idiopathic pulmonary fibrosis patients followed for
96 weeks in a randomized, placebo-controlled clinical trial
(97), and limited success was observed for imatinib in a
Hodgkin’s lymphoma patient with bleomycin interstitial
pneumonitis due to adverse effects including thrombocytope-
nia with gastrointestinal bleeding (98).

SRC kinases are activated by profibrotic cytokines TGF-
beta and PDGF (99), and SRC kinases are important for in-
flammatory responses (100). Dasatinib has been proposed as
an agent for fibrotic diseases, based on its inhibition of
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TGFbeta-induced myofibroblast differentiation through
SRC-mediated signaling in vitro (101). Dasatinib blocked pro-
duction of pro-inflammatory cytokines in a model of autoim-
mune arthritis, including IL-1, TNF-alpha, and IL-6, and
stimulated production of the anti-inflammatory cytokine IL-
10 (102) (103), and caused macrophages to change to an anti-
inflammatory phenotype marked by high IL-10 production
and suppression of levels of pro-inflammatory cytokines (IL-
6, TNF-alpha) (104). Preclinical studies with the SRC/ABL
inhibitor, saracatinib, which has orphan drug status for idio-
pathic pulmonary fibrosis, showed that it decreases collagen
deposition and fibroblast activity, which are characteristic of
lung fibrosis (105). Specifically, saracatinib, in an in vitro lung
fibroblast model, inhibited TGF-beta-induced SRC activa-
tion and consequently inhibited myofibroblast differentiation,
supporting the notion that SRC promotes myofibroblast dif-
ferentiation and lung fibroblast activation (105). Saracatinib
also showed efficacy in a mouse model of bleomycin-induced
lung fibrosis (105).

JAK INHIBITORS

Selective JAK inhibitors, such as baricitinib, through tar-
geted inhibition of JAK1 and JAK2, inhibit production
of cytokines, including IL-2, IL-6, GM-CSF, and IFN-
gamma and exhibit significant anti-inflammatory effects
in animal models (106) (107). Baricitinib, ruxolitinib, and
tofacitinib are anti-inflammatory treatments for rheuma-
toid arthritis (108) (109) (110), with suppression of in-
flammatory cytokines associated with rheumatoid arthri-
tis, including TNF-alpha, IL-6, IL-17, and IFN-gamma
(111). Ruxolitinib has been observed to normalize the
cytokine profile of myelofibrosis patients (112). Due to
the JAK inhibitory activity of more multi-targeted agents
such as midostaurin (Rydapt; Novaris), lestaurtinib
(Cephalon), and sunitinib (Table 2, Fig. 3), each has
anti-inflammatory potential as well as potential to com-
bat cytokine release syndrome, which could benefit
patients infected with respiratory viruses (107).

The peripheral blood of a patient with severe COVID-19
was shown to have a substantially high number of CCR6+ T
helper 17 cells (TH17), a subset of pro-inflammatory T helper
cells that produce IL-17 (1), andMERS-CoV and SARS-CoV
patients also showed increased TH17 responses or IL-17-
mediated signaling (113) (114). The TH17 type response is
associated with the cytokine storm in SARS-CoV-2 infection
that leads to pulmonary edema and lung damage. The JAK2
inhibitor, fedratinib, was observed to suppress production of
TH17-related cytokines and is proposed to be potentially use-
ful for patients with COVID-19 suffering from TH17-related
cytokine storm (115).

EGFR INHIBITORS

Studies suggest that inhibiting EGFR signaling might prevent
an excessive fibrotic response to SARS-CoV and other respi-
ratory infections (like that characteristic of COVID-19).
EGFR plays a role in interstitial lung disease, and interaction
between EGF and TFG-beta signaling is believed to drive
development of fibrosis (116) (117). The role of EGFR signal-
ing in the development of lung fibrosis is complex, though,
with data suggesting both profibrotic and antifibrotic roles
for EGFR signaling, at least in part seeming to depend on
the trigger for fibrosis (13). Gefitinib inhibited TGF-beta1
induction of fibrosis in vivo (118) and inhibited bleomycin-
induced fibrosis in a mouse model (119), and erlotinib was
reported to block fibrosis development in a variety of in vivo
models (13).

TGF-beta induces the expression of EGFR ligands, which
in turn activate EGFR. Of relevance, TGF-beta was one of
several pro-inflammatory cytokines that were observed to be
highly upregulated in SARS-CoV patients (120) (121) (122),
andmousemodels of SARS-CoV infection showed interferon,
cytokine and lung-associated wound-healing and ARDS-
related genes (123). These findings are consistent with TGF-
beta being profibrotic, as has been demonstrated in animal
models (124). The kinase inhibitor, sorafenib, attenuated
bleomycin-induced pulmonary fibrosis in a preclinical model
(125) and ameliorated fibrosis in liver fibrosis models through
STAT3 inhibition and downregulation of TGF-beta- and
PDGFRβ-mediated pathways of fibrogenesis (126).

The EGFR inhibitor, osimertinib, is metabolized and bro-
ken down into two pharmacologically active metabolites
(AZ7550 and AZ5104), which circulate at around 10% of
the concentration of the parent compound (Table 3). One
metabolite, AZ5104, which is more potent than osimertinib,
downregulates Th17-related cytokine production via inhibi-
tion of SRC-ERK-STAT3 (127) (Table 2).

OTHER KINASE INHIBITORS

Among numerous other kinase inhibitors with demonstrated
therapeutic potential are axitinib, which, through VEGFR-3
(vascular endothelial growth factor receptor-3) inhibition, im-
proved lymphangiogenesis and oxygen saturation in preclini-
cal model of aspiration pneumonia (128). Nintedanib is ap-
proved for idiopathic pulmonary fibrosis and displays anti-
inflammatory activity through TNF-alpha and IL-6 inhibition
(129) (130) (131). Ibrutinib exerted anti-inflammatory effects
in a model of neuroinflammation-related disease (132) and
mitigated acute lung inflammation in a model of pneumococ-
cal pneumonia (133). Alvocidib also shows anti-inflammatory
activity by blocking leukocyte-endothelial association by
inhibiting CDK9 (134). Pazopanib exhibits antifibrotic
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activity through modulating inflammatory cytokines, and
sunitinib inhibited bleomycin-induced pulmonary fibrosis in
mice (135) (136). Sunitinib, believed to primarily work
through PDGFR-mediated signaling, was also shown to sup-
press cytokine storm in a mouse model (137). Finally, sunitinib
was shown to synergize with an anti-TNF antibody against
lethal dengue infection (138).

ADVERSE PULMONARY EFFECTS
ASSOCIATED WITH KINASE INHIBITORS

Pulmonary toxicity is reportedly a rare event with many tar-
geted treatments. The incidence of lung toxicity with tyrosine
kinase inhibitors is relatively low, although there is substantial
variability in their occurrence with a reported range from 0.2-
10.9% (139). However certain adverse side effects, such as
pleural effusions associated with ABL inhibitors dasatinib or
imatinib, interstitial lung disease associated with EGFR inhib-
itors erlotinib and gefitinib, or ALK inhibitors ceritinib or
crizotinib, can occur but often reverse quickly with lowering
the dose or terminating use (140). The timing of onset of
toxicities following initial dosing needs to be considered for
patients afflicted with cancer and other diseases, for whom
therapy can be implemented for months, versus patients
infected with a respiratory virus that require immediate treat-
ment. Reported cases of adverse pulmonary effects for the
listed kinase inhibitors are shown in Table 3.

IMATINIB AND DASATINIB

Respiratory side effects of imatinib include pneumonia (1-
10%). Generally, imatinib-induced pulmonary fibrosis
and pneumonitis are very infrequently occurring (141)
(142), and imatinib-induced pneumonitis develops in a
median time of 49 days (143). In dasatinib-treated CML
patients, pleural effusion and lung parenchyma changes
(ground-glass or alveolar opacities and septal thickening)
were described, however resolved after treatment was
interrupted (144). The median time between dasatinib
treatment initiation and respiratory symptoms was 229
days. In a case study of a dasatinib-treated Japanese pa-
tient, pneumonia developed two years after initiation of
dasatinib therapy, and drug discontinuation along with
corticosteroid therapy greatly improved symptoms (145).

ERLOTINIB AND GEFITINIB

Pulmonary toxicities associated with erlotinib have been infre-
quently reported. Two cases were described that developed
acute pneumonitis (chest tomography scan showed bilateral

ground-glass infiltrates), 5-6 days following initiation of erloti-
nib treatment (146). Interstitial lung disease has been observed
as a serious adverse side effect for gefitinib (147), with a 0.3%
incidence in the U.S. and a 2% incidence in Japan. The me-
dian onset of gefitinib-induced interstitial pneumonia in the
U.S. was 42 days, and in Japan was 24 days, with around one-
third of all cases caused by gefitinib being fatal (148).

CERITINIB AND CRIZOTINIB

Interstitial lung disease/pneumonitis resulting from ALK
inhibitors is relatively rare (1.2-8% of patients) (149) (150)
(151). In a case study of a Korean ALK-rearranged metastatic
lung adenocarcinoma patient, ceritinib induced organizing
pneumonia (152). Treatment was ceased and the patient was
treated with antibiotics and recovered. In a study testing cri-
zotinib in Japanese patients with ALK-positive non-small cell
lung cancer, the incidence of interstitial lung disease was
5.77%, and interstitial lung disease developed within 4 weeks
in 41.9% patients from the start of crizotinib treatment and
within 8 weeks in 69.2% of patients (153). In a clinical study of
250 NSCLC patients treated with ALK inhibitors, including
crizotinib or ceritinib, the median time from the start of treat-
ment to the development of pneumonitis, which occurred in
11 of the patients, was 5 months (range 0.5-11 months) (154).

RISK OF INFECTION DUE TO KINASE
INHIBITOR TREATMENT

For ABL inhibitors, including imatinib, dasatinib, nilotinib,
basutinib, and ponatinib, there is a modest increased risk of
overall infection, with a risk of invasive fungal infection, tuber-
culosis, and cytomegalovirus (especially with dasatinib, partic-
ularly after hematopoietic stem cell transplantation), and a risk
of hepatitis B virus reactivation (155). For the BTK/EGFR
inhibitor, ibrutinib, there is a modest increased risk of overall
infection, with a risk of pneumocystis jirovecil pneumonia, invasive
fungal infection, and progressive multifocal leukoencephalop-
athy, and a risk of hepatitis B virus reactivation (155). For JAK
inhibitors, including ruxolitinib, tofacitinib, baricitinib, there
is a major increased risk of overall infection, with a risk of
pneumocystis jirovecil pneumonia, herpes zoster, tuberculosis, cy-
tomegalovirus, Epstein-Barr virus, and progressive multifocal
leukoencephalopathy, as well as a risk of hepatitis B virus
reactivation (155).

It should be noted that the overall risk of a COVID-19
patient being treated with JAK inhibitors and afflicted with
tuberculosis as a side effect is likely exceptionally low, especial-
ly given that for a COVID-19 patient, treatments for many of
the trials are carried out for a couple of weeks. The risk of
developing serious infections, such as tuberculosis, is higher for
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patients that are on medication causing chronic immunosup-
pression, such as would be the case for a patient with a chronic
illness like rheumatologic disorders, or patients with latent
tuberculosis. However, with a short course of treatment in
the case of a COVID-19 patient, it is unclear whether the
period of immunosuppression would be long enough to result
in a meaningful risk. In addition, latent tuberculosis can be
tested for rather quickly (1-2 days) with a T-spot. TB test. This
would normally be carried out for patients treated with JAK
inhibitors, although there may be more of a delay than is ideal
for patients with high risk COVID-19.

CLINICAL TRIALS: SINGLE AGENT
AND COMBINATION THERAPYAPPROACHES

Based on a query of www.ClinicalTrials.gov, which lists
numerous ongoing trials for COVID-19, a number of
studies were found that include testing of kinase inhibitors
listed in this article. There are currently several COVID-19
clinical studies investigating imatinib as a single agent
(NCT04346147, NCT04357613, NCT04356495). COVID-
19 trials are ongoing that investigate ruxolitinib as a single
agent and in combination with the lipid-lowering medication,
s im v a s t a t i n (NCT043 4 80 7 1 , NCT043 55 7 93 ,
NCT04354714, NCT04362137, NCT04334044,
NCT04366232, NCT04338958, NCT04331665,
NCT04337359, NCT04361903, NCT04348695,
NCT04359290). Although there is no strong clinical evidence
to date that statins are beneficial for COVID-19 patients and
the limited evidence is mixed (156) (157), statins are still under
consideration due to possible generation of a greater potent
adaptive immune response and a decreased mortality rate
associated with patients with influenza, pneumonia, and
MERS-CoV (158) (159) (160) (161). COVID-19 clinical stud-
ies are investigating baricitinib, both as a single agent and in
combination with the antiviral drugs, lopinavir-ritonavir
(NCT04340232, NCT04362943, NCT04346147,
NCT04358614, NCT04320277, NCT04321993,
NCT04345289, NCT04366206). Baricitinib does not interact
with antiviral agents due to its prevalent renal elimination,
and so it is proposed to suitable for combination therapy
(162). There is one study investigating nintedanib, an FGFR
(fibroblast growth factor receptor)/PDGFR/VEGFR inhibi-
tor approved for idiopathic pulmonary fibrosis, as a single
agent treatment for pulmonary fibrosis in patients with mod-
erate to severe COVID-19 (NCT04338802).

A COVID-19 study is ongoing that investigates tofacitinib
as a single agent at 10 mg twice a day for 14 days
(NCT04332042). Of note, this dose of tofacitinib administra-
tion has been associated with an increased risk of thrombosis
and death and the FDA has issued a boxed warning (163)
(Table 3). In a clinical study investigating the predisposition

of COVID-19 patients to venous and arterial thromboembo-
lism, a 31% incidence of thrombotic complications, with pul-
monary embolism being the most prevalent, was observed in
intensive care unit SARS-CoV-2-infected patients (164). The
blood clotting risk reported for tofacitinib pertains to patients
receiving the drug chronically, and while the increased risk
reported for tofacitinib at 10 mg twice daily for 14 days is
not known, it is anticipated to be small. It is also general
practice as a precaution to place hospital-admitted patients
with COVID-19 on blood thinners as DVT/clot prophylaxis
(most usually enoxaparin or heparin). This would likely make
the risk of blood clots minimal (although not zero percent).

Though not included on www.ClinicalTrials.gov as a
COVID-19 tr ia l , resu l t s o f a c l in ica l t r ia l wi th
Waldenstrom’s macroglobulinemia patients suggest that ibru-
tinib might confer protection against lung damage in hypoxic
COVID-19 patients, and it may possibly improve respiratory
function (165). However, the study was small and involved 6
COVID-positive patients, 5 of whom received ibrutinib at
420 mg and presented with mild symptoms that did not re-
quire hospitalization. The 6th patient on a lower dose of ibru-
tinib had progressive dyspnea and hypoxia and was placed on
treatments in addition to ibrutinib at the lower dose, including
hydroxychloroquine, azithromycin and tocilizumab. Due to
worsening hypoxia, the patient was eventually placed on the
higher ibrutinib dose (420 mg) and this was followed by im-
provement of symptoms (165).

Kinase inhibitors with good safety profiles and desirable
pharmacokinetics properties, including minimal association
with drug transporters and CYP enzymes, warrant testing in
combination with antiviral agents or other targeted agents, to
more effectively decrease viral load and potentially more dra-
matically improve COVID-19 symptoms. There are currently
numerous direct antiviral agents that are under consideration
for COVID-19 (several prominent investigational drugs are
shown in Fig. 4).

Although imatinib is, at the time of the writing of this arti-
cle, under investigation in COVID-19 patients as a single
agent, it may effectively combine with certain antiviral agents
and this might be an approach worth considering for
COVID-19 trials. For instance, ribavirin has demonstrated
synergy in vitro with imatinib against leukemia growth (166).
Despite proposed lack of efficacy of ribavirin as a single agent
against SARS-CoV-2 (167), it is possible that it could syner-
gize with imatinib against SARS-CoV-2 if the drugs are able
to be administered at doses that are effective but safe.

The drug-drug interactions between imatinib and a wide
variety of antiviral and other agents have been thoroughly
assessed. Imatinib displays variable drug-drug interactions
and so its potential for effective combination needs to be taken
on a case by case basis. For instance, protease inhibitors
ritonavir-lopinavir and darunavir increase imatinib exposure,
and saquinavir and indinavir decrease imatinib exposure
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(168). Contrarily, there is no interaction between imatinib and
the antiviral/nucleoside analogs acyclovir and valaciclovir,
although its intracellular exposure is reduced by ganciclovir
and valganciclovir (168). The antimalarial drug, chloroquine,
decreases imatinib intracellular exposure (168).

The FDA-approved tapeworm medication, niclosa-
mide, reported as having antiviral activity against SARS-
CoV and MERS-CoV is presently under investigation as
a SARS-CoV-2 agent (169). Niclosamide has been
reported (unpublished results; preprint) to be one of 24
FDA-approved drugs to show in vitro activity against
SARS-CoV-2, with an IC50 of 0.28 μM (https://www.
biorxiv.org/content/10.1101/2020.03.20.999730v3.full.
pdf). The inhibitory activity of niclosamide against SKP2,
which diminishes MERS-CoV replication and augments
autophagy (170), is proposed to be the potential mecha-
nism through which niclosamide acts against SARS-CoV-
2. Niclosamide was demonstrated to synergize in preclin-
ical studies with imatinib and other kinase inhibitors
against different malignancies. For instance, synergy be-
tween niclosamide and imatinib, as well as niclosamide
and dasatinib or ponatinib, against CML cells was dem-
onstrated (171). Niclosamide was also found to potentiate
the effects of erlotinib against head and neck cancer cells

through STAT3 inhibition (172), with erlotinib against
human colon cancer lines (173), and with sorafenib
against human renal cell cancer cells (174).

EGFR-targeting kinase inhibitors are characterized by ex-
tensive tissue distribution, moderate to high plasma protein
binding, and a relatively high volume of distribution (>1700
L) (175). Although not currently under investigation for
COVID-19 as of this writing, the non-small cell lung cancer
drug and EGFR inhibitor, afatinib, has been shown to be able
to be safely administered with various antiviral agents in
clinical studies (176) (177). In a phase I study in human pap-
illomavirus (HPV)-associated head and neck squamous cell
carcinoma, afatinib, with demonstrated anti-inflammatory
and antifibrotic activity (116) (178) (179), was tested in combi-
nation with ribavirin and standard chemotherapy (176).
Afatinib was used because of its targeting of ErbB proteins
associated with HPV infection, and ribavirin was chosen due
to its targeting of oncogenic eIF4E (180) (176). In this study,
there were no dose-limiting toxicities, supporting the safe,
clinical use of ribavirin with a kinase inhibitor having key
virus-associated protein targets and those with respiratory
benefit. Another clinical study showed low potential for inter-
action between afatinib, a P-gp pump transporter substrate,
and the protease inhibitor, ritonavir, a potent inhibitor of P-gp

Figure 4. Drug therapies under investigation for COVID-19.
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(181) (177). This was partially attributed to the fact that afati-
nib is not a modulator of substrate of cytochrome P450
enzymes. It is possible that the combination of afatinib and
antiviral agents, such as ribavirin or ritonavir, which show
little activity on their own against COVID-19, may be syner-
gistic in the context of the disease. Alternatively afatinib could
potentially be combined with remdesivir, more recently
shown to reduce the length of hospital stay for COVID-19
patients and thus exhibiting a degree of activity against
SARS-CoV-2 in patients. Or perhaps afatinib could be inves-
tigated as a treatment for COVID-19 in combination with
several antiviral drugs as part of a cocktail.

Afatinib has also been tested in combination with ninteda-
nib in a Phase I dose-escalation study in patients with ad-
vanced solid tumors (182). It was determined that afatinib at
10 mg/day combined with nintedanib at 200 mg twice a day
had a manageable safety profile, however the doses were

Table 4 Chemical structures of kinase inhibitor candidates for COVID-19
treatment. Chemical structures and molecular weights were obtained on
chemspider.com

Molecule Name Structure SMILES
Molecular
weight (g/mol)

Abemaciclib CCN1CCN(CC2=
CN=C(NC3=NC=
C(F)C(=N3)C3=C
C(F)=C4N=C(C)N
(C(C)C)C4=C3)C=
C2)CC1

506.61

Afa�nib CN(C)C\C=C\C(=
O)NC1=CC2=C(C
=C1O[C@H]1CC
OC1)N=CN=C2N
C1=CC(Cl)=C(F)C
=C1

485.94

Barici�nib CCS(=O)(=O)N1C
C(CC#N)(C1)N1C
=C(C=N1)C1=C2
C=CNC2=NC=N1

371.42

Bosu�nib COC1=C(Cl)C=C(
Cl)C(NC2=C(C=N
C3=CC(OCCCN4
CCN(C)CC4)=C(O
C)C=C23)C#N)=C
1

530.45

Erlo�nib COCCOC1=C(OC
COC)C=C2C(NC3
=CC(=CC=C3)C#
C)=NC=NC2=C1

393.44

Fedra�nib CC1=CN=C(NC2=
CC=C(OCCN3CC
CC3)C=C2)N=C1
NC1=CC(=CC=C1
)S(=O)(=O)NC(C)
(C)C

524.68

Gilteri�nib CCc1nc(C(N)=O)
c(Nc2ccc(N3CCC
(CC3)N3CCN(C)C
C3)c(OC)c2)nc1
NC1CCOCC1

552.72

Ima�nib CN1CCN(CC2=C
C=C(C=C2)C(=O)
NC2=CC=C(C)C(
NC3=NC=CC(=N
3)C3=CC=CN=C3
)=C2)CC1

493.62

Table 4 (continued)
Nintedanib COC(=O)C1=CC2

=C(C=C1)\C(=C(\
NC1=CC=C(C=C1
)N(C)C(=O)CN1C
CN(C)CC1)C1=CC
=CC=C1)C(=O)N
2

539.64

COC1=C(NC2=N
C=CC(=N2)C2=C
N(C)C3=C2C=CC
=C3)C=C(NC(=O)
C=C)C(=C1)N(C)
CCN(C)C

499.62

Sorafenib CNC(=O)C1=CC(
OC2=CC=C(NC(=
O)NC3=CC=C(Cl)
C(=C3)C(F)(F)F)C
=C2)=CC=N1

464.83

CCN(CC)CCNC(=
O)C1=C(C)NC(\C
=C2\C(=O)NC3=
C2C=C(F)C=C3)=
C1C

398.48

Vandetanib COC1=CC2=C(N
C3=CC=C(Br)C=C
3F)N=CN=C2C=C
1OCC1CCN(C)CC
1

475.36
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subtherapeutic. The antifibrotic and anti-inflammatory po-
tential of afatinib and nintedanib, coupled with key virus-
associated protein targets for each (Table 2, Fig. 3), warrant
investigation of this drug combination for treatment of
COVID-19.

Ritonavir is a strong inhibitor of CYP3A4 and it also inhib-
its ABCB1, and the multi-targeted inhibitor sunitinib is me-
tabolized by CYP3A4 and is a substrate for ABCB1 (183)
(184). Consequently, this combination has the potential for
reduced efficacy and/or increased toxicity. Sunitinib was in-
vestigated in HIV-positive cancer patients treated with ritona-
vir, and due to toxicities was recommended to be dosed at
37.5mg/day on a 4 week on/2 week off schedule in these
patients (185). These results suggest that drug-drug interac-
tions between sunitinib and ritonavir require dosing modifica-
tions for sunitinib. Should sunitinib, with key virus-associated
targets and anti-inflammatory, cytokine-suppressive and anti-
fibrotic potential, be considered for co-administration with a
protease inhibitor like ritonavir for COVID-19, this estab-
lished dosing regimen would need to be considered to control
toxicity.

Table 4 shows the chemical structures and molecular
weights of a panel of the most promising kinase inhibitors in
terms of their pharmacokinetics, potential antiviral targets and
anti-inflammatory, cytokine suppressive, or antifibrotic activ-
ity. Also included in Table 4 are those kinase inhibitors with
potential to effectively synergize with other agents, including
antiviral drugs.

CONCLUSION

There are many factors to consider when repurposing ap-
proved drugs for a new indication, and identification of key
protein targets that are potently inhibited offers an attractive
option for a new therapeutic application. The urgency of need
and constraints of time, however, which come with developing
effective therapeutic approaches during a pandemic crisis can
make it challenging to conduct well-controlled studies with
data that definitively attribute efficacy to a drug. Numerous
agents, which show promise based on preclinical studies and
anecdotal data, are presently under clinical investigation as
single agents or in combination with other therapies. Several
kinase inhibitors are under clinical investigation for COVID-
19 that target key virus-associated proteins as well as proteins
that play a role in development of symptoms associated with
COVID-19, including pneumonia, fibrosis and inflammation.
For optimal drug repurposing, the pharmacokinetics of agents
need to be taken into consideration. For instance, drugs that
require long-term dosing to achieve optimal drug concentra-
tions and anti-inflammatory effects, may not easily treat the
symptoms of COVID-19 due to the immediacy of treatment
requirement for afflicted patients. Similarly, adverse effects

associated with some kinase inhibitors also need to be consid-
ered and may present a challenge for treatment of some
COVID-19 patients. However, short-term dosing may mini-
mize these risks.

Roads less traveled might also be considered over time as
an alternative to the current therapies being tested in
COVID-19 clinical trials, such as the combination of IL-6
blocking agents (tocilizumab sarilumab) or antiviral therapies
(ribavirin, ritonavir-lopinavir, remdesivir, niclosamide), with
kinase inhibitors (imatinib, osimertinib, gilteritinib, abemaci-
clib, afatinib, sunitinib, sorafenib, erlotinib), or the direct com-
bination of kinase inhibitors with each other that target rele-
vant virus-associated proteins and proteins associated with
pulmonary health (sunitinib and erlotinib, or afatinib and
nintedanib). As historically drug combinations and cocktails
have offered substantial clinical benefit in the context of other
life-threatening diseases, such as AIDS caused by HIV, there
is reason to believe the same approach with drugs shown to
safely combine and that have provided some benefit on their
own, warrants testing in the context of the current SARS-
CoV-2 pandemic.
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