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Abstract

The mammary gland in adult women consists of biologically
distinct cell types that differ in their surface phenotypes. Isola-
tion and molecular characterization of these subpopulations of
mammary cells have provided extensive insights into their dif-
ferent transcriptional programs and regulation. This information
is now serving as a baseline for interpreting the heterogeneous
features of human breast cancers. Examination of breast cancer
mutational profiles further indicates that most have undergone a
complex evolutionary process even before being detected. The
consequent intra-tumoral as well as inter-tumoral heterogeneity
of these cancers thus poses major challenges to deriving informa-
tion from early and hence likely pervasive changes in potential
therapeutic interest. Recently described reproducible and effi-
cient methods for generating human breast cancers de novo in
immunodeficient mice transplanted with genetically altered
primary cells now offer a promising alternative to investigate
initial stages of human breast cancer development. In this
review, we summarize current knowledge about key transcrip-
tional regulatory processes operative in these partially character-
ized subpopulations of normal human mammary cells and effects
of disrupting these processes in experimentally produced human
breast cancers.
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The normal adult human mammary gland

The adult human female mammary gland is a continuous branching

tree of ducts that extend radially from the nipple and terminate in

expanded alveolar structures frequently called lobules (Fig 1A).

This structure is encased in a basement membrane and an outer

layer of fibroblasts, all of which are embedded in a collagen-rich

stroma containing adipocytes, macrophages, lymphocytes, and

blood and lymph vessels. The mammary gland, itself, consists of

two layers of cells with different features and functions. The outer

“basal” layer is made up of cells that are in direct contact with the

basement membrane. These cells are also referred to as myoepithe-

lial cells because they possess contractile, smooth muscle-like prop-

erties. The inner “luminal” layer of the gland contains cells with

quite different, polarized epithelial features and an ability to

produce and secrete milk upon hormone induction.

The initial stages of development of the mammary gland that

take place in humans before birth are not well documented, and

hence, knowledge of these has had to rely on inferences drawn from

studies of mice (Veltmaat et al, 2003; Spike et al, 2012; Makarem

et al, 2013b). In that species, the mammary gland can be seen to

originate in the embryo from cells in the ventral ectoderm that

invade the underlying mesoderm to form a primitive branching

structure. At this stage, the rudimentary gland is composed of cells

with a mixture of properties that are associated with distinct cell

types found in the adult mouse mammary gland. This primitive

structure then expands rapidly after the onset of puberty. There-

after, until menopause, the entire mammary gland in humans and

mice alike undergoes continuous cyclical phases of expansion and

involution under the control of changing levels of estrogen (E) and

progesterone (P) (Fig 1B; Ramakrishnan et al, 2002). Current

evidence indicates that the stimulatory effects of these hormones

are exerted indirectly by activating paracrine signaling mechanisms

that involve an upregulated production of amphiregulin by E, an

induced secretion of RANKL by P, and an enhancing effect of

hormonally controlled changes by WNT-producing macrophages

(Wilson et al, 2006; Asselin-Labat et al, 2010; Brisken & O’Malley,

2010; Joshi et al, 2010; Roarty & Rosen, 2010; Visvader & Stingl,

2014; Arendt & Kuperwasser, 2015; Chakrabarti et al, 2018). Other

growth factors implicated in regulating mammary gland develop-

ment and homeostasis include members of the epidermal growth

factor (EGF), insulin-like growth factor (IGF), and fibroblast growth

factor (FGF) families (Hynes & Watson, 2010).

The development of reproducible methods for isolating the dif-

ferent cell types that constitute the major components of the normal

adult human mammary gland as separate suspensions of single

viable cells was a key advance because it then enabled the further

biological and molecular characterization of these different cell
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types. Most studies of normal human mammary cells have made

use of discarded tissue obtained from women without known breast

disease undergoing reduction mammoplasties. The pieces of tissue

obtained are then subjected to a series of enzymatic dissociation

and filtration steps, followed by removal of prevalent blood and

endothelial cells using antibodies against CD45 and CD31. The three

major cell types that constitute the mammary gland, plus remaining

stromal fibroblasts, can then be separately isolated using flow

cytometry according to their differential staining with antibodies to

CD49f and EpCAM (Fig 2A). The three subpopulations of mammary

cells obtained are typically referred to as basal cells (BCs), luminal

progenitors (LPs), and luminal cells (LCs). Other antibody cocktails

have also been used to obtain highly overlapping phenotypes with

very similar biological and molecular properties (Raouf et al, 2008;

Bachelard-Cascales et al, 2010; Keller et al, 2012; Kannan et al,

2014; Nguyen et al, 2014; Fridriksdottir et al, 2015; Lawson et al,

2015; Britschgi et al, 2017), and additional markers have proven

useful to subdivide these three subpopulations of human mammary

cells even further (Eirew et al, 2012; Shehata et al, 2012; Knapp

et al, 2017; Morel et al, 2017). However, the combination of anti-

bodies to CD49f and EpCAM has generally been the most widely

utilized.

BCs are defined by their CD49f+EpCAMlow phenotype and are

so-named because they express numerous markers (e.g., KRT14,

TP63, ACTA2/SMA, MME/CD10, and THY1/CD90) that distinguish

cells of the basal layer from those of the luminal layer in histological

preparations of normal human mammary tissue. In culture media

containing insulin and EGF, as well as other supplements and a
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Figure 1. Macro- and microscopic structure of the normal human breast.

(A) Diagram showing the macroscopic structure of the human breast and histological sections of ducts and alveoli (scale bar = 100 lm). (B) Effects of serum hormone levels
on the human mammary epithelium during the menstrual cycle.
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feeder layer of fibroblasts, ~ 10–20% of freshly isolated BCs plated

at low density will produce readily visualized adherent colonies

within 8–10 days (Fig 2B; Eirew et al, 2008; Kannan et al, 2013).

Many of the individual colonies produced from BCs under these

conditions will contain a mixture of cells expressing either basal or

luminal markers (Stingl et al, 2001). A smaller fraction of the BCs

(~ 0.1%) will produce bilayered epithelial structures that resemble

the normal human mammary gland when injected directly into

“humanized” fat pads (Kuperwasser et al, 2004; Proia &

Kuperwasser, 2006; Lim et al, 2009) or when transplanted in colla-

gen gels that are then inserted either under the kidney capsule

(Eirew et al, 2008, 2010; Nguyen et al, 2015) or subcutaneously

(Pellacani D and Eaves C, unpublished) in immunocompromised

mice. In both of these sites, the regenerated human mammary

gland-like structures contain the same spectrum of EGF-dependent

in vitro mammary colony-forming cells (CFCs) that are present in

the normal human mammary gland, as well as rarer cells that can

regenerate similar bilayered mammary gland structures and
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Figure 2. Subpopulations of cells within the normal adult human mammary gland.

(A) Diagram showing the workflow for separating the fourmain cell populations present in the breast in addition to blood cells and endothelial cells (scale bar = 400 lm). (B)
Examples of typical Giemsa-stained colonies derived from BCs and LPs and assessed after 7–9 days in vitro (scale bar = 400 lm).
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mammary CFCs upon transplantation into secondary hosts (Eirew

et al, 2008; Lim et al, 2009; Nguyen et al, 2014). In addition, the

regenerated human gland-like structures will produce human milk

proteins when appropriately hormonally stimulated (Eirew et al,

2008).

LPs and LCs are defined by their shared high expression of

EpCAM, a well-established marker of cells that constitute the lumi-

nal layer of mammary glands. Both LPs and LCs also express other

markers histologically associated with the luminal layer (e.g., KRT8,

KRT18, and MUC1). However, these EpCAM+ mammary cells can

be readily subdivided according to their differential expression of

CD49f (and CD117, c-KIT). LC is the term assigned to the CD49f�

cells within the EpCAM+ fraction, and they include most of the cells

that express E and P receptors (ER/ESR1 and PR/PGR) and express

low to undetectable levels of EGFR (Lim et al, 2009). Not surpris-

ingly, LCs do not mount a significant direct signaling response to

EGF (Knapp et al, 2017) and do not proliferate when exposed to

EGF in vitro (Kannan et al, 2013, 2014). They are also incapable of

reconstituting epithelial structures in vivo that contain clonogenic

progeny (Eirew et al, 2008). However, it was recently reported that

a small proportion (~ 0.4%) of EpCAM+CD271�CD166highCD117low

human mammary cells, a phenotype expected to overlap with

CD49f�EpCAMhi LCs, will form colonies in cultures containing inhi-

bitors to the TGF-b pathway (Fridriksdottir et al, 2015). Interest-

ingly, cultures established from these cells could be expanded for 15

population doublings and their progeny continued to express ER

and respond to E stimulation. In mice, similar evidence of the prolif-

erative activity in vivo of non-clonogenic LCs has also been obtained

from BrdU incorporation studies (Giraddi et al, 2015). Together,

these findings raise the possibility that at least some human

mammary cells with a LC phenotype can proliferate when appropri-

ately stimulated. Nevertheless, the relevance of these in vitro find-

ings to events that underpin the cellular dynamics within the

mammary gland of normal adult women remains obscure as,

in situ, very few ER+ or PR+ mammary cells appear to be proliferat-

ing (Clarke et al, 1997; Stingl, 2011).

LPs are defined as the EpCAM+ cells that co-express CD49f,

suggesting that they might be an intermediate stage between BCs

and LCs. However, these cells express other markers specific to the

luminal layer of the epithelium assessed histologically, although

only a minority express ER or PR (Lim et al, 2009). LPs are also

distinct in their expression of high levels of CD117, a marker often

used for their differential isolation (Fridriksdottir et al, 2015;

Lawson et al, 2015). Approximately 50% of LPs also express KRT5/

6 (Lim et al, 2009), a type of cytokeratin known to be expressed by

cells in the basal layer of many types of epithelia (Purkis et al, 1990;

Böcker et al, 1992). On average, 20–30% of LPs will generate colo-

nies in vitro under the same conditions as BCs (Fig 2B). But, in this

case, only cells with luminal features are produced (Stingl et al,

2005). A small proportion of LPs have also been reported to regener-

ate epithelial structures in vivo (Shehata et al, 2012), but the struc-

tures produced do not contain CFCs (Eirew et al, 2008).

Most LPs have very short telomeres and display a pronounced

telomere-associated DNA damage response, even in mammary cells

obtained from women in their twenties (Kannan et al, 2013). Inter-

estingly, some LPs expressing activated caspase-3 will still show

considerable subsequent proliferative activity in vitro (Knapp et al,

2017). LPs are also distinguished by elevated levels of reactive

oxygen species (ROS) compared to LCs and BCs. In addition, they

display an innately greater resistance to oxidative stress and a

higher level of associated DNA damage (Kannan et al, 2014), two

processes that have been proposed to accelerate telomere shortening

(von Zglinicki, 2002; Richter & von Zglinicki, 2007), and predispose

cells to transformation.

More recently, single-cell mass cytometry (Knapp et al, 2017)

and RNA sequencing methodologies (Nguyen et al, 2018) have

provided further support for the segregation of normal human

mammary epithelial cells into the same three main cell types. On

the other hand, these studies have also highlighted their extensive

molecular heterogeneity and the possible existence of new subsets

within each (Shehata et al, 2012; Knapp et al, 2017; Nguyen et al,

2018). Nevertheless, pseudo-temporal ordering of the available

single-cell transcriptional data produces a differentiation trajectory

profile that separates into three main branches corresponding to the

historically visualized distinction of cells produced in the normal

adult human mammary gland (Nguyen et al, 2018).

Taken together, these findings are consistent with a hierarchi-

cally organized sequence of changes initiated in bipotent BCs that

are able to generate progeny with either luminal or basal

features. Cells with luminal features can then be phenotypically

and biologically segregated into an intermediate, luminal-restricted

but EGF-responsive state, and a state in which the capacity to

proliferate in response to EGF has been lost. However, this model

of a hierarchical differentiation process should not be viewed as

necessarily reflecting a series of tightly co-ordinated events and

may also not reflect the operation of mechanisms that maintain

these subpopulations under normal homeostatic conditions.

Indeed, in the mouse, where analogous populations of BCs, LPs,

and LCs have been identified, some luminal cells possess or can

acquire the regenerative activity originally thought to be restricted

to BCs (Shehata et al, 2012; Makarem et al, 2013a). In addition,

in mice, in situ lineage-tracing experiments suggest that both

myoepithelial and luminal lineages can display self-sustaining

dynamics (Van Keymeulen et al, 2011), despite the continued

presence and activity of transplantable cells with the bipotent

regenerative properties of “stem cells” (Rios et al, 2014). Such

findings are consistent with increasing evidence of an incomplete

overlap of mechanisms that control mammary cell proliferative

potential and those that determine whether their differentiated

state will change (or not) with sequential divisions.

At the same time, it is important to recognize the caveats and

assumptions inherent in available methods for associating func-

tional and molecular properties of individual human mammary cells

or the history of their acquisition and display. Deriving these associ-

ations is necessarily limited by an inability to undertake the

requisite prospective lineage-tracing experiments in humans.

Accordingly, direct measurements of normal human mammary cell

outputs in situ cannot be compared with the outputs that can be

elicited from the same cells when they are exposed to highly stimu-

latory conditions in vitro or following their transplantation into

mice. In addition, both flow cytometry and clonal assays have tech-

nical limitations of efficiency and specificity. They may also be

compromised by the use of markers that are not co-ordinately

controlled by mechanisms that regulate their functional properties.

However, these caveats may be partially reduced by the use of

index-sorting strategies to link molecular and functional properties
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more directly (Wilson et al, 2015), thereby circumventing the prob-

lem of assigning functions of rare cells present in bulk isolates.

Transcriptional differences between human mammary
cell subsets

A variety of technologies have been used over the past 10 years to

characterize the transcriptomes of BCs, LPs, and LCs isolated from

normal adult female breast tissue (Bloushtain-Qimron et al, 2008;

Raouf et al, 2008; Lim et al, 2009, 2010; Maruyama et al, 2011;

Shehata et al, 2012; Kannan et al, 2013; Gascard et al, 2015;

Pellacani et al, 2016). These studies have revealed consistent dif-

ferences in the activity of hundreds of genes in each of these

phenotypically defined subsets. In turn, these studies have pointed

to a number of differentially activated pathways that may regulate

their different biological properties (Liu et al, 2005). For example,

many components of the NOTCH pathway are expressed at dif-

ferent levels in BCs, LPs, and LCs, with some evidence of corre-

sponding functional consequences (Dontu et al, 2004; Raouf et al,

2008). WNT pathway components also show differential patterns

of expression, with biological evidence of their importance in

maintaining a mammary stem cell state, at least as inferred from

studies of the mouse mammary gland (Teulière et al, 2005; Roarty

& Rosen, 2010; Zeng & Nusse, 2010; van Amerongen et al, 2012;

Gu et al, 2013) with more limited, but consistent data for human

cells (Arendt et al, 2014). Other pathways similarly implicated are

the TGF-b (Moses & Barcellos-Hoff, 2011; Kahata et al, 2017) and

the Hippo pathways (Chen et al, 2014; Pelissier et al, 2014; Skibin-

ski et al, 2014; Shi et al, 2015; Britschgi et al, 2017). Importantly,

all of these are variably deregulated in breast cancers (Howard &

Ashworth, 2006).

Human mammary cell epigenomes reflect their
transcriptional profiles

Several studies have now characterized the epigenomic features of

human as well as mouse mammary cells (Maruyama et al, 2011;

Choudhury et al, 2013; Dos Santos et al, 2015; Gascard et al,

2015; Huh et al, 2015; Pellacani et al, 2016; Shin et al, 2016; Lee

et al, 2017). Early studies reported an association of differences in

the H3K27me3 and DNA methylation of genes that are differently

expressed in luminal and basal subsets (Maruyama et al, 2011).

These genes include several that encode transcriptional regulators

and/or other members of pathways of reported activity in the

mammary gland. Subsequent analyses revealed DNA methylation

to be a stable mark of exonic and intronic usage, with evidence of

intron retention events specific to each subpopulation and linked

to differences in protein expression (Gascard et al, 2015). The

latter study also found many more hypo-methylated enhancer

elements in luminal cells (LPs + LCs) than in BCs and these were

commonly associated with binding sites for FOXA1, GATA3, and

ZNF217. These studies also indicated a higher overall transcrip-

tional activity in the luminal cells. More extensive epigenomic

characterization of highly purified human BCs, LPs, LCs and their

associated stromal cells has now been derived from ChIP-seq anal-

yses of H3K4me1, H3K4me3, H3K27me3, H3K27ac, H3K36me3,

and H3K9me3 marks on histones and accompanying whole-

genome bisulfite sequencing, with matching mRNA-seq and

miRNA-seq data for the same cells (Pellacani et al, 2016). From

these datasets, the chromatin landscape at putative enhancer sites

of these different mammary cell types has been derived. Compar-

isons of these have also shown LPs to be intermediate between

BCs and LCs, consistent with their different biological properties.

Analysis of transcription factor binding sites (TFBS) and derived

TF networks for each subpopulation has also enabled novel TFs to

be identified as potential regulators of each subpopulation, in addi-

tion to others previously reported. Analysis of our more recently

accrued epigenomic data has also provided new evidence of a

bipartite TF network in LPs that includes elements of those opera-

tive in BCs and LCs (Fig 3A). In addition, this study showed that

the epigenomic and transcriptional profiles of primary sources of

normal human mammary cells are very different from those of

established lines of immortalized but non-tumorigenic mammary

cells (Fig 3B; Pellacani et al, 2016). This latter finding highlights

the caveats of relying on data from such immortalized cell lines to

infer mechanisms controlling the biological properties of normal

human mammary cells, and, conversely, the importance of analyz-

ing primary isolates for this purpose.

Epigenomic and transcriptional changes related to aging
and reproductive history

Aging and pregnancy are associated, respectively, with an increase

and decrease in breast cancer risk. Several groups have therefore

started dissecting the molecular changes evident in mammary cells

obtained from donors of different ages or different reproductive

histories. These include a report of an expansion with aging of

defective multipotent progenitors that show altered interactions

with extracellular matrix elements and in KRT14+ and CD49f+

luminal cells (Garbe et al, 2012; Pelissier et al, 2014). Accompany-

ing transcriptome changes suggested an aging-associated epige-

nomic deregulation, potentially mediated by changes in the

microenvironment of the mammary gland (Miyano et al, 2017).

Comparison of the transcriptomes of purified mammary cell subsets

isolated from breast tissue of parous and nulliparous women has

shown differences between the CD44+ cells from these two sources,

with CDKN1B (p27) as one of the most differentially expressed

genes (Choudhury et al, 2013). More extensive studies in mice have

shown pregnancy to be associated with long-lasting alterations in

DNA methylation profiles at sequences enriched for STAT5 binding

sites (Dos Santos et al, 2015).

▸Figure 3. Transcriptional regulation of normal human mammary cell subpopulations.

(A) TF regulatory networks constructed from the chromatin profiles at enhancers of BCs, LPs, and LCs. (B) Genome browser plots showing the differences in chromatin states
defined for normal human mammary cell subpopulations and non-tumorigenic mammary cell lines around the PROM1 and the NT5E genes.
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Figure 3.
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Transcription factors regulating normal mammary cells

Epigenomic and transcriptional profiling of primary human

mammary cells has also led to the identification of many candidate

TFs that show subpopulation specificity. For example, several TFs

are significantly elevated in only one of the three major subpopula-

tions of normal human mammary cells (Fig 4A–C). In silico predic-

tions further identify a differential enrichment of associated TFBSs

at epigenetically defined promoter and enhancer regions in these

cell types (Lim et al, 2010; Kannan et al, 2013; Gascard et al, 2015;

Pellacani et al, 2016). Several studies in mice or human cell lines

have also implicated a multitude of TFs to be involved in mammary

cell development and differentiation. However, similar analyses of

primary human cells are still very limited, although the strong corre-

lations found between in silico predictions and results obtained from

mice justify a brief overview of these.

One of the TFs implicated in modulating mouse mammary stem

cell activity by acting directly on BCs is ΔNp63, a known regulator

of normal stem cell maintenance in multiple epithelial tissues

(Senoo et al, 2007). ΔNp63 appears to act by modulating several

key pathways. These include enhancing WNT signaling by upregu-

lating Fzd7 expression (Chakrabarti et al, 2014), activating Hedge-

hog signaling (Li et al, 2008; Memmi et al, 2015), and partially

counteracting the effects of Notch signaling (Yalcin-Ozuysal et al,
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Figure 4. Transcriptional regulators active in the normal human mammary gland and in human breast cancer.

(A) Ternary plot of relative expression of all transcriptional regulators in normal human mammary cell subpopulations from a re-analysis of the RNA-seq data presented in
Pellacani et al (2016). Transcriptional regulators discussed in the text are highlighted. (B) List of the top 20 transcriptional regulators most specific to each cell type
highlighted in (A). (C) Clustering of the tumors profiled by RNA-seq in Nik-Zainal et al (2016) using the genes shown in (B).
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2010). TP63 expression in basal cells is also necessary during preg-

nancy and lactation: Genetic deletion of Trp63 in keratin 14-expres-

sing cells of the adult mouse leads to defects in luminal cell

proliferation and differentiation, and failure to produce milk, due to

lack of expression of the EGF family ligand NRG1 in basal cells

which is required for ERBB4/STAT5A activation in luminal cells

(Forster et al, 2014). Several SOX family TFs have likewise been

implicated. For example, modulation of SOX9 expression was found

to directly influence the ability of mouse mammary cells to produce

organoid structures in vitro (Guo et al, 2012) and its conditional

knockout impaired postnatal development of the gland (Malhotra

et al, 2014). SOX10 is expressed specifically in mammary cells

exhibiting the highest levels of stem/progenitor activity (Dravis

et al, 2015) and SOX2 has also been implicated, albeit less directly,

as its expression was induced by LGR4 downstream of WNT signal-

ing (Wang et al, 2013).

Many of these studies in mice have associated expression of SOX

TFs with the acquisition of features characteristic of mesenchymal

cells in a process resembling an embryonic epithelial–mesenchymal

transition (EMT). In fact, the possession of mesenchymal features has

been frequently associated with mammary stem cell activity, both

during development and subsequently throughout adulthood (Mani

et al, 2008; Guen et al, 2017), although this is still controversial

(Sikandar et al, 2017). Nevertheless, many other TFs associated with

EMT have been directly linked to changes in the clonogenic or repop-

ulating activity of mouse mammary cells. Of these, SNAI2 (SLUG) has

been reported to cooperate with SOX9 (Guo et al, 2012) in regulating

the transition of mouse mammary stem cells to short-term progenitors

(Phillips et al, 2014). SNAI1 (SNAIL) is another member of this group,

and it was found to regulate the spindle orientation machinery in

mammary stem cells responding to SLIT2/ROBO1 signaling (Ballard

et al, 2015). OVOL2, a transcriptional repressor, was likewise

reported to restrict activation of EMT (Watanabe et al, 2014). More

recently, another transcription factor, ZEB1, was shown to be

expressed at high levels in a fraction of mammary BCs (Nguyen et al,

2018) and associated with cells expressing protein C receptor (ProCR;

Wang et al, 2015). ZEB1 was also recently reported to have a protec-

tive role against oncogene-induced DNA damage in normal human

mammary epithelial cells (Morel et al, 2017). Other TFs involved in

mammary stem cell function include FOXO1 (Sreekumar et al, 2017),

RUNX2 (Ferrari et al, 2015), MYC (Hynes & Stoelzle, 2009; Moumen

et al, 2012), CEBPB (C/EBPb; LaMarca et al, 2010), BCL11A (Khaled

et al, 2015), and BCL11B (Miller et al, 2018).

TFs implicated in regulating luminal cell production and mainte-

nance have also been identified. Of these, GATA3 was found to have

an essential role in controlling the morphogenesis of the mammary

gland in the mouse embryo, during puberty, and in adult life

(Kouros-Mehr et al, 2006; Asselin-Labat et al, 2007). In addition,

GATA3 promoted differentiation of cells within the luminal lineage

in mice, potentially through a positive regulatory loop with ESR1

(Eeckhoute et al, 2007). FOXA1 was found to be involved in

hormone-induced mammary ductal invasion (Bernardo et al, 2010),

but did not affect lobulo-alveolar maturation and milk production.

ELF5 was shown to be necessary for alveologenesis during preg-

nancy (Choi et al, 2009), and its deletion led to an accumulation of

cells with mixed basal/luminal molecular phenotypes (Chakrabarti

et al, 2012b). ELF5 was found to suppress EMT by down-regulating

transcription of SNAI2 (Chakrabarti et al, 2012a). ELF5 also acted

directly in LPs (Yamaji et al, 2009) to influence expression of

STAT5A (Choi et al, 2009), another TF involved in alveologenesis

(Liu et al, 1997). Contrary to the effects of RUNX2, RUNX1 was

shown to induce the appearance of ER+ luminal cells at least

partially through the modulation of ELF5 and FOXA1 expression

(van Bragt et al, 2014), potentially downstream of the p38a kinase

(Del Barco Barrantes et al, 2018).

Notably, the Hippo pathway regulator TAZ, together with many

other TFs, has recently emerged as a negative regulator of luminal dif-

ferentiation in primary human cells (Skibinski et al, 2014). Other TFs

and chromatin modifiers necessary for correct human luminal cell dif-

ferentiation include TFAP2C (Cyr et al, 2015), TBX3 (Arendt et al,

2014), NOTCH3 (Raouf et al, 2008), FOXM1 (Carr et al, 2012), and

KDM6A (Yoo et al, 2016). However, many “potential” TFs identified

more recently from genome-wide epigenomic analyses of both human

and mouse mammary gland cells remain poorly characterized.

Cellular and molecular heterogeneity of human
breast cancers

Breast cancers arise from single cells as aberrant clones of progeny

that undergo a continuous process of evolution, demarcated by

distributed genetic and epigenetic alterations in successive genera-

tions of daughter cells (Balani et al, 2017). Those that maintain

and/or confer a selective growth advantage promote successive

waves of subclonal expansion depending on local conditions and/or

exposure to therapeutic agents. Such a complex history of subclonal

evolution leading to the production of billions of genetically hetero-

geneous cells in human breast cancers has been dramatically

revealed from genomic DNA sequence data (Nik-Zainal et al, 2012;

Eirew et al, 2014). And this profound inter-tumor as well as intra-

tumor heterogeneity is further exacerbated by the metastatic process

in which subclones differentially populated different sites.

Breast cancers are currently classified clinically on the basis of

their extent and confinement, or not, within the basement membrane

that surrounds the normal mammary gland, the proliferative activity

and presence of nuclear abnormalities in the malignant cells, and

their expression of ER, PR, and HER2. Global gene expression profil-

ing has led to the identification of five major subtypes (Perou et al,

2000) that can now be distinguished based on the measurement of

transcript levels of just 50 genes (PAM50; Parker et al, 2009; Nielsen

et al, 2010; Chia et al, 2012). Notably, many of these detect the same

perturbed features that have long been recognized histologically

(Table 1). The five major subtypes thus identified are referred to as

follows: basal-like, luminal A, and luminal B, normal-like, and

claudin-low tumors. More recently, additional subdivisions have

come from analyses of both genomic sequencing data (Cancer

Genome Atlas Network, 2012; Curtis et al, 2012) and altered epige-

nomic marks (Holm et al, 2010, 2016; Kamalakaran et al, 2011).

Interestingly, the expression profiles of the five main cancer

subtypes are correlated with expression profiles of BCs, LPs, and

LCs (Table 1). Even the PAM50 signature relies on an assessment of

many gene transcripts (e.g., FOXA1, PGR, ESR1, KRT14, KRT5,

EGFR, FOXC1, and MIA) that are normally present at different levels

in BCs, LPs, and LCs. Generally, the transcriptional profiles of basal-

like breast cancers are closest to those of LPs, those of luminal A

and B cancers to LCs, and claudin-low cancers to BCs. These
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findings reinforce the concept that malignancies represent perturba-

tions of the normal tissue from which they arise and frequently

retain many components of the transcriptional regulatory networks

that control cell production, differentiation, and death in the normal

human mammary gland.

Altered transcriptional regulation in human
breast cancers

Breast cancer “drivers” is a term that has been used to refer to muta-

tions that are found repeatedly, suggesting they contribute to the

malignant properties of the cells. In contrast, “passenger mutations”

is a term often assigned to mutations that are rare and do not appear

to be relevant to the genesis or progression of the malignant popula-

tion. It is notable that a majority of the most frequently encountered

mutations affect genes linked directly or indirectly to transcriptional

regulation (Nik-Zainal et al, 2016; Zacksenhaus et al, 2017).

One of the most frequently altered transcriptional regulators is

GATA3 (mutated in > 10% of cases; Cancer Genome Atlas

Network, 2012), most often in ER+ breast cancers (Fig 5; Nik-

Zainal et al, 2016). Both clinical and experimental lines of

evidence link mutations in GATA3 directly to breast cancer devel-

opment and progression. Expression of GATA3 has been associ-

ated with a favorable prognosis, although this is still debated

(Chou et al, 2010; Takaku et al, 2018), and similarly, in mice and

cell lines, a heightened expression reduces tumorigenesis,

suppresses metastasis, and promotes expression of a luminal

molecular signature. In contrast, a loss of GATA3 has been found

to accelerate tumor progression (Asselin-Labat et al, 2011; Chou

et al, 2013).

In > 15% of breast cancers, MYC is amplified. This is generally

associated with an unfavorable clinical prognosis (Deming et al,

2000) and an ER� breast cancer phenotype (Fig 5; Nik-Zainal et al,

2016). MYC is one of the most intensively studied oncogenes (Fallah

et al, 2017). Of particular note is recent evidence that overexpres-

sion of MYC in immortalized human mammary cells triggers a

reprogramming of the epigenome that confers tumor-initiating

proprieties and a down-regulation of luminal-specific TFs and genes

(Poli et al, 2018). MYC activity has also been shown recently to be

influenced by its interaction with EPIC1, a long non-coding RNA,

that is upregulated in many cancers (Wang et al, 2018). Interest-

ingly, MYC amplification was also reported to be a frequent event in

the genesis of transformants from primary human mammary cells

Table 1. List of the genes used for the PAM50 classification.

Symbol Histology BC vs. LP BC vs. LC LC vs. LP

ACTR3B

ANLN

BAG1

BCL2 DN UP

BIRC5

BLVRA UP

CCNB1

CCNE1

CDC20

CDC6

CDH3

CENPF

CEP55

CXXC5 UP

EGFR UP DN

ERBB2 ✓

ESR1 ✓ DN DN

EXO1

FGFR4

FOXA1 DN UP

FOXC1 DN

GPR160 DN UP

GRB7

KIF2C

KRT14 UP UP

KRT17 UP UP

KRT5 UP UP DN

MAPT

MDM2

MELK

MIA DN DN

MKI67 ✓

MLPH DN DN UP

MMP11

MYBL2

MYC

NAT1 DN UP

NDC80

NUF2

ORC6

PGR ✓ UP

PHGDH DN

PTTG1 UP

RRM2

SFRP1 UP DN

Table 1. (continued)

Symbol Histology BC vs. LP BC vs. LC LC vs. LP

SLC39A6 UP

TMEM45B DN UP

TYMS

UBE2C

UBE2T

Gene products used routinely in histological studies (✓) and transcripts
increased (UP) or decreased (DN) in mammary epithelial cells are marked.
Differential gene expression data are based on the RNA-seq data presented
in Pellacani et al (2016).
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(Elenbaas et al, 2001) and in radiation-induced mammary cell lines

(Wade et al, 2015).

FOXA1 is a TF that is mutated or amplified less frequently in

human breast cancers (~ 2% mutated and ~ 1% amplified;

Cancer Genome Atlas Network, 2012; Robinson et al, 2013) and

usually found to be altered in ER+ tumors (Fig 5; Nik-Zainal

et al, 2016). FOXA1 is a main regulator of steroid receptor func-

tion in cancer (Augello et al, 2011), and it regulates ER signaling

in breast cancer (Carroll et al, 2005; Lupien et al, 2008). FOXA1

mediates ESR1 binding and transcriptional activity (Hurtado et al,

2011), and its expression is associated with superior breast cancer

outcomes (Shou et al, 2016). Molecularly, FOXA1 can recruit

KMT2C (MLL3) to deposit H3K4me1 on FOXA1-bound enhancers

(Jozwik et al, 2016).

KMT2C is another frequently mutated transcriptional regulator in

breast cancer, with a mutational spectrum consistent with a loss-of-

function role (Wang et al, 2011; Ellis et al, 2012; Cancer Genome

Atlas Research Network, 2015). Functionally, it is the catalytic

component of a complex called COMPASS (complex of proteins

associated with Set1) or ASCOM (ASC-2- and MLL3-containing

complex) and responsible for the monomethylation of H3K4 (Herz

et al, 2014). In mouse models, Mll3 deletion in the mammary gland

results in hyperplasia and expansion of cells with basal features in

transplant experiments, and an acceleration of PI3K-driven

tumorigenesis (Zhang et al, 2016), supporting its role as a tumor

suppressor.

Many other histone methyltransferases are deregulated in breast

cancer by genetic alteration (Michalak & Visvader, 2016) and

thereby contribute to an increased emergence of epigenomic alter-

ations in breast cancer. Consequent changes in the epigenomes of

analyzed human breast cancers have revealed more than 100

frequently hyper- or hypo-methylated gene promoters and

pronounced global DNA hypo-methylation (Davalos et al, 2017;

Pasculli et al, 2018), and the functional implication of these changes

is now starting to be investigated using CRISPR/Cas9 systems

(Saunderson et al, 2017). These findings are particularly interesting

clinically, as they may offer new biomarkers of risk, prognosis, and

treatment response (Pouliot et al, 2015; Terry et al, 2016) that can

be robustly measured at relatively low cost (Cheuk et al, 2017).

However, downstream transcriptional alterations are not consis-

tently predicted and many exceptions to the general inverse correla-

tion between promoter methylation and gene expression exist. In

addition, expression of many frequently hypermethylated genes in

breast cancer cells is already repressed in normal mammary cells,

usually by polycomb group proteins depositing H3K27me3 (Sproul

et al, 2011).

Comparisons of the DNA methylation profiles of individual

breast cancers have shown they are highly heterogeneous.

However, when subjected to unsupervised clustering, these profiles

subdivide into groups that correspond largely to established tran-

scriptionally defined breast cancer subtypes with corresponding

similarities to normal human mammary subpopulations (Holm

et al, 2010, 2016; Kamalakaran et al, 2011). From these, specific

DNA methylation signatures with prognostic potential have been

derived for luminal B and basal-like subtypes (Stefansson et al,

2015).

Interestingly, DNA sequence alterations that do not occur within

regions that encode protein sequences directly (non-coding muta-

tions) represent ~ 98% of mutations in cancer and most still remain

poorly characterized. Of these, mutations occurring in cis-regulatory

elements (i.e., enhancers and promoters) are of particular interest,

as they can directly alter expression of associated gene products, by

directly or indirectly altering DNA binding of TFs (Deplancke et al,

2016; Shi et al, 2016). Such mutations are frequent in breast cancer
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Figure 5. Frequency of genomic alteration of GATA3, MYC, FOXA1, and KMT2C in human breast cancer subtypes.

Heatmap showing the frequency of genomic alterations detected in GATA3,MYC, FOXA1, and KMT2C in human breast cancer subtypes. Data are drawn from the 993 breast

cancer cases in the TCGA PanCancer Atlas study analyzed and plotted via cBioportal (http://www.cbioportal.org).
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(Bailey et al, 2016; Zhou et al, 2016; Rheinbay et al, 2017; Gyorffy

et al, 2018), but their significance is generally unclear (Nik-Zainal

et al, 2016). However, mutations in ESR1 enhancer sequences found

in ~ 7% of breast cancers have now been shown to be responsible

for altering ESR1 expression by modulating TF binding activity

(Bailey et al, 2016). In addition, a single-nucleotide variant in one

of these enhancer sequences has been associated with increased

breast cancer risk. Mutations in the promoter of FOXA1 that cause

its overexpression through increased E2F binding constitute a

second documented example of a biologically relevant mutation in a

cis-element in some breast cancer genomes (Rheinbay et al, 2017).

Variants linked to increased breast cancer risk have been found in

distal regulatory elements of genes whose expression is modulated

by FOXA1 (Cowper-Sal Lari et al, 2012).

Breast cancers also contain many cell types that are not part of

the malignant population but, nevertheless, interact with them and

co-evolve with them, adding further to the complexity and hetero-

geneity of breast tumors (Hanahan & Weinberg, 2011). These addi-

tional cell types include components of the blood and lymph

vasculature, tissue macrophages and lymphocytes, and various

stromal fibroblasts and their derivatives. Both the infiltrating

leukocytes and resident cancer-associated fibroblasts (CAFs) are

now well established as playing significant roles in modulating

breast cancer cell growth and plasticity through direct interactions

as well as through their secretion of growth factors, cytokines, and

extracellular matrix components (Allinen et al, 2004; Aboussekhra,

2011; Place et al, 2011; Esquivel-Velázquez et al, 2015; Qiao et al,

2016).

One of the best characterized mechanisms of CAF modulation of

human breast cancer cells is mediated by their secretion of TGF-b.
Recently, this has been updated to include the suppression of adja-

cent normal mammary cells (Chatterjee et al, 2018) and the promo-

tion of EMT in a xenografted breast cancer cell line through the

transactivation of a HOX transcript antisense RNA (Ren et al, 2018).

A third recently described role of CAFs is their induction of a

FOXA1-mediated creation of a hormone-sensitive, luminal gene

regulatory program in basal-like breast cancers in response to PDGF

secretion by the tumor cells (Roswall et al, 2018). Loss of TP53 in

stromal fibroblasts has also been shown to promote breast tumor

development in vivo through the production of SDF-1 (Addadi et al,

2010). Additional reported mechanisms include the altered expres-

sion in CAFs of non-coding RNAs and microRNAs (Verghese et al,

2013; Shah et al, 2015; Ren et al, 2018). Other components of the

tumor microenvironment, including tumor-associated macrophages,

have been implicated in tumor promotion through the expression of

TFEB (Fang et al, 2017).

Transcriptional deregulation during the initiation of
breast cancers

Early events important to the genesis of human breast cancer are

still limited and largely extrapolated from transgenic mouse models.

Information derived from studies of human cancers has been largely

limited to retrospective analyses of prevalent changes in established

tumors (Futreal et al, 2004; Nik-Zainal et al, 2012), or a few analy-

ses of preneoplastic mammary cells were obtained from carriers of

BRCA1 mutations (Lim et al, 2009; Proia et al, 2011; Choudhury

et al, 2013) or from samples of ductal carcinoma in situ (DCIS;

Yeong et al, 2017). Events that accompany the acquisition of malig-

nant properties by immortalized, but non-tumorigenic, human

mammary cell lines have also been described (Debnath et al, 2003;

Leung & Brugge, 2012). More recently, experimental models initi-

ated directly with primary human mammary cells have been

reported.

Transgenically controlled overexpression of potential culprit

genes in mice, including overexpression of MYC and HER2, was

important in providing the first experimental evidence that onco-

gene overexpression alone could induce the formation of malignant

tumors (Stewart et al, 1984; Muller et al, 1988; Bouchard et al,

1989). Since then, derivative approaches are now able to model

metastasis due to expression of co-operating oncogenes (Sinn et al,

1987; Guy et al, 1992; Podsypanina et al, 2008; Adams et al, 2011)

and assess mechanisms of pathway perturbation including TGF-b
and WNT (Pierce et al, 1995; Li et al, 2000). The introduction of

conditional and inducible systems to drive the expression of transge-

nes has enabled these models to be further refined (Sandgren et al,

1995; Moody et al, 2002; Podsypanina et al, 2008; Menezes et al,

2014; Rutkowski et al, 2014), including a model in mice of invasive

lobular breast cancer created using CRISPR/Cas9-mediated disrup-

tion of PTEN (Annunziato et al, 2016).

However, a major criticism of these mouse models of breast

cancer is the very ease with which the tumors can be generated.

They also frequently lack the genetic complexity of human breast

cancers, and their similarities to their human counterparts are often

restricted to specific sites within the tumors produced (Cardiff et al,

2000; Hollern et al, 2018). In addition, their pathology may be

highly dependent on the promoters used to drive expression of the

oncogenic transgene and few display highly invasive properties

(Cardiff et al, 2000). Gene expression differences in mice are also

notable (Pfefferle et al, 2013), and some types of human breast

cancer have not yet been possible to model in mice. For example,

although ER+ tumors account for the majority of all human breast

cancers, stably ER+ mouse mammary tumors have been difficult to

obtain and the genetic changes that lead to ER expression in mouse

tumors are frequently not characteristic of patients’ ER+ tumors

(Mohibi et al, 2011).

Immortalized cell lines, and the MCF10A line in particular, have

also been used for modeling the human mammary cell transforma-

tion process also because of their ease of use and manipulation and

their availability in virtually unlimited numbers. MCF10A cells were

generated by immortalizing human mammary cells obtained from a

donor with benign fibrocystic disease (Soule et al, 1990). Forced

expression of multiple cancer genes in these cells has been found to

induce some features of transformation (recently reviewed in Balani

et al, 2017). Notably, aggressively tumorigenic lines have been

derived from MCF10A cells forced to overexpress HRAS and

passaged in vivo, and their extensive characterization has revealed

the presence of a number of predicted driver mutations (Maguire

et al, 2016). However, their controlled modification has not recapit-

ulated the phenotypic, genomic, and functional heterogeneity found

in most spontaneously arising human breast cancers (Kaur &

Dufour, 2012).

Analysis of DCIS has been another strategy used to investigate

early events leading to invasive breast cancer. Initial transgenic

mouse models of DCIS were obtained by driving expression of the
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SV40 large tumor antigen with the mouse WAP promoter that

becomes highly active in terminal lobular luminal cells in pregnant

mice (Schulze-Garg et al, 2000). More recently, in vivo models of

human DCIS have also been developed by the intraductal injection

of mice with experimentally transformed human cell lines (Behbod

et al, 2009) or primary DCIS samples from patients (Valdez et al,

2011). These models generally recapitulate the histology and hetero-

geneity of the human disease, including occasional examples of

disease progression indicated by cellular invasion into the surround-

ing stroma.

Experimental models of de novo mammary tumorigenesis start-

ing from isolated primary cells from normal tissues are particularly

attractive because they avoid species differences and concerns of

extrapolating from human immortalized cell lines. However, there

are very few reports of genetic perturbations that consistently yield

fully malignant human mammary cells in transplanted female

immunodeficient mouse hosts (either NOD/SCID or NRG—NOD-

Rag1�/�-IL2Rcc�/� mice). Interestingly, most of those that have

been reported have used different combinations of oncogenes, cell

types, and sites of injection, with or without added fibroblasts.

Immunohistological analyses of tumors produced from human

EpCAM+ luminal cells transduced with either TP53R175H +

CCND1 + myristoylated PIK3CA + KRASG12V or SV40 T antigen +

KRASG12V transplanted into “humanized” fat pads of NOD/SCID

mice (obtained by added injection of human fibroblasts) suggested

the tumors most closely resemble ductal carcinomas with predomi-

nant luminal features, including expression of ERa, CK8/18, and

CK19. In contrast, the same manipulation of CD10+ (basal) cells

caused them to acquire squamous and metaplastic features with

reduced ERa and CK19 expression and robust expression of the

basal marker, CK14 (Keller et al, 2012). On the other hand, we have

found that transduction of either normal human BCs or LPs (but not

LCs or SCs from the same mammoplasty samples) with just a

KRASG12D-encoding vector produces serially transplantable invasive

ductal carcinomas rapidly and at high efficiency in mice using injec-

tion sites under the kidney capsule or subcutaneously (Nguyen

et al, 2015). These KRASG12D-derived tumors are also highly hetero-

geneous with variable proportions of cells positive for ERa, Ki67,
EGFR, CK14, and CK8/18, independently of their BC or LP cell of

origin (Nguyen et al, 2015).

Use of a DNA barcoding strategy, to track the clonal dynamics of

the primary and secondary KRASG12D-derived tumors, showed them

to be consistently and highly polyclonal, regardless of the initial cell

type transduced (Nguyen et al, 2015). The median size of the few

clones found in both primary and secondary tumors derived from

the same initial inoculum was larger than most of the clones appear-

ing only after a first passage. Interestingly, normal human

mammary cells transduced with the same tracking vector also

showed a delayed appearance of new and larger clones in the

“normal” structures obtained in secondary as compared to primary

recipients of the same original cells (Nguyen et al, 2014). The inva-

sive nature of the primary clones but their general lack of perpetua-

tion in secondary implants contrasts with the conventional concept

of the oncogenic process, in which the control of invasive properties

by human mammary cells is usually modeled as property that is

acquired after deregulated growth has created a large “premalig-

nant” population from which a more advanced derivative then

arises. Taken together, these findings thus challenge previous

assumptions of a requirement for a multi-step selective process

during which the genetic and/or epigenetic changes needed to

obtain a continuously growing invasive tumor are successively

accrued.

Transcriptional profiling of the polyclonal KRASG12D-induced

primary tumors we have described has shown they are character-

ized by a global deregulation of gene expression that is largely but

not completely independent of the cell type used to initiate them

(Nguyen et al, 2015). A similar result was found for tumors derived

by transducing primary cells from the same normal donors with

SV40 T antigen + KRASG12V (Keller et al, 2012) or cells from donors

with a different BRCA1 mutation status using vectors encoding

TP53R175H + CCND1 + myristoylated PIK3CA + KRASG12V (Proia

et al, 2011). Thus, the initiating cell type may not necessarily make

a major contribution to the transcriptional profile of the cells consti-

tuting the bulk of any breast cancer. Such a concept is of interest as

it challenges the idea that globally acquired molecular profiles of

breast cancers will provide informative indications of the cell of

origin or the cells from which relapses are most likely to emerge.

Conclusions

Heterogeneity is a pronounced feature of human breast cancer

genomes and epigenomes. These variable features likely explain the

corresponding heterogeneity evident in the transcriptomes of these

malignant populations. The multitude of these alterations, plus the

still partial elucidation of the molecular networks governing the

properties of normal human mammary cells, still obscures identifi-

cation of critical initial transforming events. Nevertheless, early

changes that lead to human breast cancer development remain

important potential targets for more effective strategies. Expansion

of de novo models now appears possible with established robust

transduction protocols and new screening approaches on the hori-

zon. The coupling of these strategies with clonal analyses, highly

multiplexed gene manipulations, and exposure to small molecules

thus holds new promise for the future more rapid identification of

targetable mechanisms critical to breast cancer development.
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