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Abstract

In this work, an innovative multi-strain SV EAIR epidemic model is developed for the study

of the spread of a multi-strain infectious disease in a population infected by mutations of the

disease. The population is assumed to be completely susceptible to n different variants of

the disease, and those who are vaccinated and recovered from a specific strain k (k� n) are

immune to previous and present strains j = 1, 2, � � �, k, but can still be infected by newer

emerging strains j = k + 1, k + 2, � � �, n. The model is designed to simulate the emergence

and dissemination of viral strains. All the equilibrium points of the system are calculated and

the conditions for existence and global stability of these points are investigated and used to

answer the question as to whether it is possible for the population to have an endemic with

more than one strain. An interesting result that shows that a strain with a reproduction num-

ber greater than one can still die out on the long run if a newer emerging strain has a greater

reproduction number is verified numerically. The effect of vaccines on the population is also

analyzed and a bound for the herd immunity threshold is calculated. The validity of the work

done is verified through numerical simulations by applying the proposed model and strategy

to analyze the multi-strains of the COVID-19 virus, in particular, the Delta and the Omicron

variants, in the United State.

1 Introduction

The growing threat of infectious diseases with resistance to drugs and vaccinations, causing

large number of deaths worldwide, is a cause for concern to the medical community and the

general population. Scientists around the world are working to learn more about such diseases

in order to study how likely an emerging variant of the disease can spread more easily than

existing original variants. More data and analyses are needed for such study. These analyses

will shed more light on the possibility of reinfections in people who already recovered from

original strain, and infections in people who are fully vaccinated against original or previous

strains. An example of such disease is an emerging virus called the corona virus 2019

(COVID-19) virus that has infected and killed millions around the world within a period of

two years. The virus was caused by the virus species ‘severe acute respiratory syndrome corona

virus’, named SARS-CoV-2. The airborne transmission occurs by inhaling droplets loaded
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with SARS-CoV-2 particles that are expelled by infectious people. Symptoms of the virus

appear 2–14 days of exposure to certain strains of the virus. Several SARS-CoV-2 variants have

emerged around the world, with each new variants having different characteristics. The

COVID-19 virus evolves as changes in its genetic code occur during replication of the genome.

The United States Centers for Disease Control and Prevention (CDC) and the US government

SARS-COV-2 Inter-agency Group (SIG) [1] have confirmed the emergence of at least twelve

new variants of the virus. The SIG group evaluates the risk of the circulating SARS-CoV-2 vari-

ants in the United States and make recommendations about the impact, severity, and how

spread the virus is. Lineages of these variants that are classified as variant being monitored

(VBM) and designated as Variant of Concerned (VOC) in the United States may lead to more

severe cases of the virus. By lineages, we mean a group of related virus variant from a common

ancestor. The variant, called Omicron-B.1.1.529 [2] was first detected in specimens collected

on November 11, 2021 in Botswana and on November 14, 2021 in South Africa. It was first

detected in the United States on December 1, 2021 and classified as a VOC. There are

increased attention given to the Omicron variant. It is now the main circulating variant in the

United States as of early January, 2022, accounting for about 95% of the US reported cases

because of its high infection rate. Studies show that even vaccinated individuals can still be

infected with this new variant if proper care is not taken. Scientist around the world are work-

ing to learn more about this new variant, and to gather more data for the purpose of studying

if the variant causes more illness, hospitalizations, and death than infection with other variants.

As of early December 2021, one of the new variants, called the Delta-B.1.617.2 variant was said

to be the main circulating variant in the United States, and also classified as variant of concern

by the SIG group. It was first identified in India and was reported to spread much faster and

causes more severe cases than other early variants in the United States, probably causing twice

[3] as many infections. Other variants, called the Alpha-B.1.1.7, Beta-B.1.351, Gamma-P.1,

Epsilon B.1.427 & B.1.429, Eta B.1.525, Iota B.1.526, Kappa B.1.617.1, Zeta P.2, Mu B.1.621, are

classified as VBM. The Alpha-B.1.1.7, Beta-B.1.351, and Gamma-P.1 variants were first discov-

ered in the United Kingdom, South Africa, and Japan/Brazil, respectively. We aim to study

how these variants are being transmitted and the impact that vaccines are having on mitigating

the number of infection cases in a particular population.

Several mathematical models [4–36] have been developed to study the transmission of infec-

tious diseases. Some of these works [5, 11, 20, 24, 31, 32, 37–43] discussed the transmission of

infectious disease caused by the variants and lineages of the COVID-19 virus. SIR models includ-

ing a modified SIR model with two strains and vaccinated group [10], a generalized SIR model

with n- strains [39], a SIR model with complete cross-protection and nonlinear force of infection

[44], a coupled multi-strain SIR epidemic model [24] have been developed to describe the trans-

mission of the COVID-19 strains. Other works such as a multi-strain SEIR models with optimal

control [5, 6], multi-strain SEIR models with saturated and general incidence rates [5, 15], SIRD

[45] and SEIPAHRF model [46] with Caputo fractional derivative, SCIRP model incorporating

media influence [47], and statistical analysis [48] have also been considered in describing the

transmission of the virus and its strains. We direct the readers to the work of Hattaf et al. [49, 50]

for more recent information about the fractional differential equations and its generalization.

Viruses undergo changes and these changes are cause for concern for people who have

recovered from the virus, and also to those who are vaccinated against certain strain of the

virus. As discussed in Fudolig et al. [10], a highly infectious emergent strain can infect the sus-

ceptible population before the original strain, thereby impeding the spread of the original

strain or causing the two strains to coexist in an endemic equilibrium. For this reason, the

need to determine conditions in which a newly emerged strain and an existing strains that

have a means of immunity will coexist in a population is of utmost important.
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Most of the papers mentioned above often utilize simpler versions of the multi-strain net-

work, and provides less mathematical details on the asymptotic behavior of the model. In this

work, we develop a multi-strain compartmental model by assuming a population is completely

susceptible to n- different variants of a particular virus at the beginning of an epidemic, with

the population of the region partitioned into compartments consisting of susceptible popula-

tion, population vaccinated against strain k (1� k� n) of the virus, population exposed to

strain k of the virus, infected asymptomatic population with strain k of the virus, infected

symptomatic population with strain k of the virus, and population that recovered from strain

k of the infection. By denoting P = {1, 2, � � �, n} and Sr 2 2P as a subset of the power set 2P with

r number of strains, r = 0, 1, � � �, n, with r = 0 representing disease-free case, we study the exis-

tence and stability conditions for the equilibrium point corresponding to the scenario where

only strains in Sr survive. This result is used to estimate the secondary number of infections

produced by strain-k infected individual when introduced into a completely susceptible popu-

lation. This number helps public health expert control the spread of the virus as new variants

emerge. Conditions under which an endemic with more than one strain of the virus exist are

calculated. The question as to whether this is possible is answered by studying the stability

analysis of endemic strains. This model also helps us to understand the correlation between

the daily number of administered vaccines and the number of infected, exposed, and recovered

population in the region better. To understand the disease dynamics better, we study a power-

ful quantitative concept that can be used to characterize the contagiousness of each strain of

the infectious disease and how transmissible they are. The basic reproduction number, which

is the expected number of secondary cases produced by a typical infectious individual in a

completely susceptible population in the presence and absence of vaccination are calculated.

This study also helps to shed more light on the possibility of a disease being eliminated from a

population if enough individuals are immune due to either vaccination or recovery from prior

exposure to the disease. A bound for the herd immunity threshold, which is the minimum pro-

portion of the population that must be vaccinated in order to stop the spreading of the disease

in the population is calculated and analyzed for each variants.

This paper is organized as follows: In Section 2, a model is developed for the transmission

of multi strain infectious diseases for the case where individuals vaccinated against specific

strains are immune to that strain and its predecessors but can still be infected by newer emerg-

ing strains.The validity of the model, together with the existence and uniqueness of its solution

is proved in this section. The reproduction numbers for the cases where the population is vac-

cinated and when it is not vaccinated are calculated. With these, the effect of vaccination in

mitigating infection is studied. Existence of equilibrium points for the case where certain

strains persist in the population is examined. In Section 3, the local and global stability of all

equilibrium points for model (1) is investigated. In addition to the assumption made in Section

2, an extension of model (1) for the case where those that recovered from a particular strain

can get infected by emerging strain is derived and analyzed in Section 4. Existence and stability

of equilibrium points for the model is also discussed. Numerical simulations are carried out in

Section 5 by applying models (1) and (35) to analyze COVID-19 data. Summary of the work

done in this work is discussed in Section 6.

2 Materials and methods

2.1 Model formulation

By assuming a population is completely susceptible to n- different variants of a particular virus

at the beginning of an epidemic, we partitioned the population of the region into compart-

ments consisting of susceptible (denoted S(t)) population, population Vk(t) vaccinated against
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strain k of the virus, population Ek(t) of exposed individuals infected with strain/variant k of

the virus, infected asymptomatic population Ak(t) with strain/variant k of the virus, infected

symptomatic population Ik(t) with strain/variant k of the virus, and population Rk(t)
that recovered from strain k of the virus at a given time t, for k = 1, 2, � � �, n. These state vari-

ables are described in Table 1. We assume that the order of existence of newer strains follow

k = 1, 2, � � �, n. That is, the population is first infected by strain 1, followed by strain 2, � � �, n.

We assume those who are vaccinated and recovered from strain k are immune to previous and

present strains j = 1, 2, � � �, k, but can be infected by newer strains j = k + 1, k + 2, � � �, n. We

can see, for example, that this assumption is satisfied in the case of COVID-19 and supported

by the United States Centers for Disease Control and Prevention (CDC), who claimed that

current vaccines approved in the United States are expected to protect against severe illness,

hospitalizations, and deaths caused by variants of the virus, although people who are fully vac-

cinated can still be infected. We assume that the migration rate into the susceptible population

not receiving vaccination against any of the strains of the virus is (1 − q)μ, while the migration

rate into the population vaccinated against strain k is μqk, where q ¼
Pn

k¼1

qk < 1. The parameter

βj denotes the per capita contact rate of susceptible individuals with symptomatic infected

strain j; γj denotes the per capita contact rate of susceptible individuals with asymptomatic

infected strain j; �b j;k and �g j;k denote the reduced per capita contact rates of symptomatic and

Table 1. Description of variables for the epidemic model.

Variable Description

S Population of susceptible individuals

Vk Population of vaccinated individuals immune to strain k of the infection

Ek Population of individuals exposed to strain k of the infection

Ak Population of asymptomatic individuals infected with strain k of the infection

Ik Population of symptomatic individuals infected with strain k of the infection

Rk Population of individuals who recovered from the k-th strain

https://doi.org/10.1371/journal.pone.0271446.t001

Table 2. Description of parameters for the epidemic model.

Parameter Description

βk Transmission rate of symptomatic infected individuals with strain k of infection interacting with

susceptible population

γk Transmission rate of asymptomatic infected individuals with strain k of infection interacting with

susceptible population

�bk;j Transmission rate of symptomatic infected individuals with strain k interacting with population

vaccinated against strain j of infection, k = j + 1, � � �, n
�gk;j Transmission rate of asymptomatic infected individuals with strain k interacting with population

vaccinated against strain j of infection, k = j + 1, � � �, n
hk, j Transmission rate of symptomatic infected individuals with strain k interacting with population that

recovered from strain j of infection, k = j + 1, � � �, n
�k, j Transmission rate of asymptomatic infected individuals with strain k interacting with population that

recovered from strain j of infection, k = j + 1, � � �, n
μ Natural birth rate

p Fraction of infection cases that are asymptomatic

qk Fraction of population vaccinated against strain k of infection

λk Transition rate of individuals with strain k of infection from exposed to infected class

rk Asymptomatic recovery rate of those with strain k of infection

θk Symptomatic recovery rate of those with strain k of infection

q Pn

j¼1

qj

https://doi.org/10.1371/journal.pone.0271446.t002
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asymptomatic strain j infected individual, respectively, that are vaccinated against strain k, j =

k + 1, � � �, n; hj, k and �j, k denote the per capita contact rates of symptomatic and asymptomatic

strain j infected individual, respectively, that recovered from strain k, j = k + 1, � � �, n. These

parameters are described in detail in Table 2.

In this section, we study a case where individuals vaccinated against specific strains are

immune to that strain and its predecessors but can still be infected by newer emerging strains.

Without loss of generality, we assume the population is normalized so that the sizes S, Vk, Ek,
Ak, Ik, and Rk are in percentages, for k = 1, 2, � � �, n. The model governing the transmission of

the infectious disease for this case follows the system of deterministic differential equation

dS ¼

 

ð1 � qÞm � S
Xn

j¼1

ðbjIj þ gjAjÞ � mS

!

dt; Sðt0Þ ¼ S0;

dVk ¼

 

qkm � Vk

Xn

j¼kþ1

ð�b jkIj þ �g jkAjÞ � mVk

!

dt; Vkðt0Þ ¼ Vk0; k ¼ 1; 2; � � � ; n � 1

dVn ¼ ðqnm � mVnÞdt; Vnðt0Þ ¼ Vn0;

dE1 ¼ ðSðb1I1 þ g1A1Þ � e1E1Þ dt; E1ðt0Þ ¼ E10;

dEk ¼

 

SðbkIk þ gkAkÞ þ
Xk� 1

j¼1

Vjð
�bkjIk þ �gkjAkÞ � ekEk

!

dt; Ekðt0Þ ¼ Ek0; k ¼ 2; 3; � � � ; n

dAk ¼ ðplkEk � akAkÞ dt; k ¼ 1; 2; � � � ; n Akðt0Þ ¼ Ak0; k ¼ 1; 2; � � � ; n

dIk ¼ ðð1 � pÞlkEk � wkIkÞ dt; Ikðt0Þ ¼ Ik0; k ¼ 1; 2; � � � ; n;

dRk ¼ ðykIk þ rkAk � mRkÞdt; Rkðt0Þ ¼ Rk0; k ¼ 1; 2; � � � ; n � 1

dRn ¼ ðynIn þ rnAn � mRnÞ dt;Rnðt0Þ ¼ Rn0;

ð1Þ

where

ek ¼ mþ lk;

ak ¼ mþ rk;

wk ¼ mþ yk;

ð2Þ

and the states and parameters in the model are described in Tables 1 and 2, respectively.. An

extension of model (1) to include a case where those that recovered from a particular strain

can get infected by emerging strain is discussed in Section 4.

In order to better understand the transmission dynamics described in (1), we give a sche-

matic diagram of the model in Fig 1. The circle compartments represent group of individuals.

An arrow pointing out of a compartment represents migration of individuals out of the

compartment.

Remark 1. Since individuals in the vaccinated group Vj are only assumed to be immune to
strain j and its predecessors, and not to future strains k> j, we assume they are also susceptible
to future strains k> j. For this reason, we expect that the rate at which an infectious individual
with strain k make contact with susceptible individuals and individuals in group Vj, j< k, should
be the same. That is, bk ¼

�bk;j for j = 1, 2, � � �, k − 1. Likewise, we expect βk = hk, j,

gk ¼ �gk;j ¼ 2k;j, for j = 1, 2, � � �, k − 1. Vaccination against past and current strains do not

PLOS ONE Analysis of multi-strain epidemic model: Application to COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0271446 July 29, 2022 5 / 45

https://doi.org/10.1371/journal.pone.0271446


provide any protection against new emerging strains. In the case where the infectivity of strain k
(k> j) is different for the vaccinated group Vj due to certain circumstances so that bk 6¼

�bk;j and
gk 6¼ �gk;j, we present a comparison of the reproduction number for the case where bk ¼

�bk;j, gk ¼

�gk;j and the case where bk >
�bk;j, gk > �gk;j for j = 1, 2, � � �, k − 1 in Remark 3. Also, based on

model (1), an individual infected with certain strain k cannot be infected with another strain j 6¼
k at a given time t.

Fig 1. Schematic diagram for the epidemic model (1). The circle compartments represent group of individuals.

https://doi.org/10.1371/journal.pone.0271446.g001
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2.2 Validity of the epidemic model (1)

In this section, we discuss the validity of the proposed epidemic model (1), that is, we discuss

the existence and uniqueness of the solution of (1). Let N ¼ Sþ
Pn

k¼1

ðVk þ Ek þ Ak þ Ik þ RkÞ.

Since the population is assumed to be normalized, we have N0 ¼ Nðt0Þ ¼ S0 þ
Pn

k¼1

ðVk0 þ Ek0 þ

Ak0 þ Ik0 þ Rk0Þ ¼ 1 denoting the entire population. It follows that dN/dt = μ − μN, N(t0) = 1,

so that the population size is constant over time. This suggests that the birth and death rates

(with the recruitment rate into the susceptible S and vaccinated Vk classes in the absence and

presence of vaccines being (1 − q)μ and qkμ, respectively, k = 1, 2, � � �, n) are assumed to be the

same so that the population is constant over certain period of time. The most appropriate epi-

demiological feasible region where solution exist is the set

T ¼ ðS; fVkg
n
k¼1
; fEkg

n
k¼1
; fAkg

n
k¼1
; fIkg

n
k¼1
; fRkg

n
k¼1
Þ 2 R5nþ1

þ
j 0 � Sþ

Xn

k¼1

ðVk þ Ek þ Ak þ Ik þ RkÞ � 1

( )

: ð3Þ

The existence, uniqueness, and positiveness of the solution of (1) is shown for the case where

S0 > 0, Vk0 > 0, Ek0 > 0, Ak0 > 0, Ik0 > 0, Rk0 > 0 using results from Kelley and Peterson [51].

Theorem 1. If S0 > 0, Vk0 > 0, Ek0 > 0, Ak0 > 0, Ik0 > 0, Rk0 > 0, k = 1, 2, � � �, n, then there
exist a positive unique solution of (1) in the feasible region T for all t� 0.

Proof. Let S0 > 0, Vk0 > 0, Ek0 > 0, Ak0 > 0, Ik0 > 0, Rk0 > 0 for model (1). Define

~y ¼ ðS;V1; � � � ;Vn; E1; � � � ;En;A1; � � � ;An; I1; � � � ; In;R1; � � � ;RnÞ
T

so that Eq (1) can be written as

d~y ¼ hðtÞ dt; ~yðt0Þ ¼ ~y0; ð4Þ

for some vector function h(t). It can be shown that h : R5nþ1
! R5nþ1

is continuous with

continuous first-order partial derivatives with respect to ~y1; ~y2; � � � ; ~y5nþ1. It follows from Theo-

rem 3.1 of Kelley and Peterson [51] that there exist a unique solution S(t), Vk(t), Ek(t), Ak(t),

Ik(t), Rk(t), k = 1, 2, � � �, n of (1) for all t� 0. Let lðtÞ ¼
Pn

j¼1

ðbjIjðtÞ þ gjAjðtÞÞ. It follows from

(1) that S(t) satisfies SðtÞ ¼ S0 expð�
R t

0
ðmþ lðvÞÞdvÞ þ ð1 � qÞm expð�

R t
0
ðmþ lðvÞÞdvÞ

R t
0
expð�

R u
0
ðmþ lðvÞÞdvÞdu > 0 for all t� 0. Likewise, we can show in a similar manner that

Vk(t)> 0, Ek> 0, Ak(t)> 0, Ik(t)> 0, and Rk(t)> 0 for all k = 1, 2, � � �, n, t� 0. The result fol-

lows since dN/dt = μ − μN, N(t0) = 1.

The long term behavior of the solutions of model (1) depends on certain thresholds of the

reproduction number. The reproduction number and the thresholds are calculated in sections

to come.

2.3 Reproduction number

Define

ck ¼ ð1 � pÞakbk þ pwkgk;

�ck ¼ ð1 � pÞakyk þ pwkrk; for k ¼ 1; 2; � � � ; n:
ð5Þ
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The disease-free equilibrium, denoted E0, of the system (1) is given by

E0 ¼ fS0 ¼ 1 � q;V0
1
¼ qk; � � � ;V0

n ¼ qn;E0
1
¼ 0; � � � ;E0

n ¼ 0;A0
1
¼ 0; � � � ;A0

n ¼ 0; I0
1
¼ 0; � � � ; I0

n ¼ 0;R0
1
¼ 0; � � � ;R0

n ¼ 0g: ð6Þ

The dynamic model (1) can be written in the form

dx ¼ ðFðxÞ � VðxÞÞ dt; ð7Þ

where

x ¼ ðE1; � � � ;En;A1; � � � ;An; I1; � � � ; In;R1; � � � ;Rn;V1; � � � ;Vn; SÞ
T
; ð8Þ

F j denotes the rate of appearance of new infections in compartment j, Vj ¼ V �j � Vþj with Vþj
and V�j denoting the rate of transfer of individuals in and out of compartment j, respectively

[52]. For any vector u = (u1� � �, un)T, define the n × n matrix M(u) by the diagonal matrix

MðuÞ ¼ diagðu1; u2; � � � ; unÞ: ð9Þ

Define

Qk ¼
Xk

j¼1

qj� 1; ð10Þ

where q0 = 0. Let ~b and ~g be two vectors with entries

~bk ¼ ð1 � qþ QkÞbk;

~gk ¼ ð1 � qþ QkÞgk;

respectively, where ~b1 ¼ ð1 � qÞb1 and ~g1 ¼ ð1 � qÞg1. Define F and V such that

Fi;j

� �
¼

@F i

@xj
ðE0Þ

 !

;

Vi;j

� �
¼

@Vi

@xj
ðE0Þ

 !

;

where (i, j) with 1� i, j� 3n corresponds to the index of the infected compartments. Based on

our model (1), there are three infected compartments E, A, and I, each assumed to have n-dif-

ferent strains so that the infected compartments are the first 3n entries of x in (8). Let 0n × n

represents the zero square matrix of order n. The corresponding matrices F and V are calcu-

lated as

F ¼

0n�n Mð~gÞ Mð~bÞ

0n�n 0n�n 0n�n

0n�n 0n�n 0n�n

0

B
B
B
@

1

C
C
C
A
;

V ¼

MðeÞ 0n�n 0n�n

� pMðlÞ MðaÞ 0n�n

� ð1 � pÞMðlÞ 0n�n MðwÞ

0

B
B
B
@

1

C
C
C
A
;
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where M(u) is as defined in (9) and ~b, ~g, e, λ, a, and w are vectors. From the matrix

V� 1 ¼

MðeÞ� 1 0n�n 0n�n

pMðeÞ� 1MðaÞ� 1MðlÞ MðaÞ� 1 0n�n

ð1 � pÞMðeÞ� 1MðwÞ� 1MðlÞ 0n�n MðwÞ� 1

0

B
B
B
@

1

C
C
C
A
;

where M(e)−1 is the diagonal matrix MðeÞ� 1
¼ diag 1

e1
; 1

e2
; . . . ; 1

en

� �
, we see that the average

length of time an individual spent being exposed, asymptomatically infected, symptomatically

infected with strain k is 1/ek, 1/ak, and 1/wk, respectively. Also, the average length of time an

individual exposed to strain k spent being asymptomatic with the same strain during its life

time is expected to be
pwklk
akekwk

. The average length of time an individual exposed to strain k spent

being symptomatic with strain k during its life time is expected to be
ð1� pÞaklk
akekwk

. Since the trans-

mission rates of symptomatic and asymptomatic individuals with strain k in a susceptible pop-

ulation are βk and γk, respectively, it follows that at the emergence of a new strain k (k� 2), the

expected number of new infections produced by individual with such strain in a completely

susceptible non-vaccinated population, and a population completely vaccinated against strain

j, are
ð1� qÞðð1� pÞakbkþpwkgkÞlk

akekwk
¼
ð1� qÞcklk
akekwk

and
qj� 1ðð1� pÞakbkþpwkgkÞlk

akekwk
¼

qj� 1cklk
akekwk

, respectively, j = 1, 2, � � �, n,

where we set q0 = 0.

The expected number, Rk, of new infections produced by individual with such strain k in a

population containing susceptible and vaccinated individuals is obtained as

Rk ¼

ð1 � qÞcklk þ
Xk

j¼1

qj� 1cklk

akekwk
¼
ð1 � qþ QkÞcklk

akekwk
; k ¼ 1; 2; � � � ; n;

ð11Þ

where 1 − q is the proportion of those that are susceptible but not vaccinated. Using the next

generation matrix [52], since F is non-negative and V is a non-singular M-matrix [53], the

number Rk obtained in (11) is the (k, k)-th entry of the next generation matrix FV−1, for k = 1,

2, � � �, n. It is the expected number of new infections in compartment k (compartment exposed

to strain k) produced by infected individual originally introduced into the same compartment.

Remark 2. Effect of Vaccination
We remark here that the expected number Rk of new infections in the compartment exposed

to strain k depends on the vaccination rates ql, l = k, k + 1, � � �, n. If no one is vaccinated in the
population (that is, if ql = 0 for all l = 1, 2, � � �, n), then the expected number of infections caused
by strain k is obtained to be

Rc;k ¼
cklk

akekwk
; k ¼ 1; 2; � � � ; n: ð12Þ

It follows from Remark 1 that this number is clearly more than the reproduction number
obtained in (11) where some individuals are receiving vaccination in the population. The repro-
duction number Rk can be written in terms Rc;k as

Rk ¼ ð1 � qþ QkÞRc;k; ð13Þ

showing that the ratio of numbers of infection caused by strain k in a population with vaccina-
tion to a population without vaccination is 1 − q + Qk : 1. If individuals are not vaccinated
against strain k (that is, if qk = 0 for fixed k), then the expected number of infections caused by
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strain k increases to

1 �
Xn

j ¼ 1

j 6¼ k

qj

0

B
@

1

C
Acklk þ

Xk

j¼1

qj� 1cklk

akekwk
¼

1 �
Xn

j¼kþ1

qj

 !

cklk

akekwk
;

which is the same as Rk þ
qkcklk
akekwk

. This shows that a non vaccinated strain k infected individual
produces qkck

ð1� qÞckþ
Pk� 1

j¼1

qjck

� 100% more infections than a vaccinated strain k infected individual. If

on the other hand, everyone in the population is vaccinated (that is, q = 1), then the expected
number of infections caused by strain k significantly reduced to

Xk

j¼1

qj� 1cklk

akekwk
; k ¼ 1; 2; � � � ; n:

That is, a completely vaccinated population produces 1� q
1� qþQk

� 100% lesser infections than popu-
lation not completely vaccinated. These analyses show the importance of being vaccinated in the
population.

The reproduction number R0 for the system, which is defined as the expected number of sec-

ondary infections produced by a typical infected individuals over the course of its infectious

period, is calculated using the next generation matrix approach by van den Diessche et al. [52] as

R0 ¼ max
1�k�n

1 � qþ Qkð Þ
cklk

akekwk

� �

: ð14Þ

We shall later show that if R0 < 1, then we expect a typical infected individual to produce less

than one new infected individual, meaning all strains of the disease will eventually die out in the

population (in the presence of vaccination). Although it is well known that a value of the repro-

duction number greater than one means that epidemic will persist in the population [8, 52], we

shall later show that a strain with a reproduction number greater than 1 can still die out on the

long run if a newer emerging strain has a greater reproduction number. The value Rk on the

other hand, can be interpreted as the reproduction number for typical individual infected with

strain k of the disease, for k = 1, 2, � � �, n.

Remark 3. In the case where bk 6¼
�bk;j and gk 6¼ �gk;j such that bk >

�bk;j and gk > �gk;j for all
1� k, j� n due to some form of partial immunity as a result of vaccines, then the strain k repro-
duction number Rk and the reproduction number R0 in (11) and (14), respectively, are obtained
as

Rk ¼

ð1 � qÞcklk þ
Xk

j¼1

qj� 1ĉk;j� 1lk

akekwk
; k ¼ 1; 2; � � � ; n;

R0 ¼ max
1�k�n

ð1 � qÞcklk þ
Xk

j¼1

qj� 1ĉk;j� 1lk

akekwk

8
>>>><

>>>>:

9
>>>>=

>>>>;

;

ð15Þ
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where

ĉk;j ¼ ð1 � pÞak
�bk;j þ pwk�gk;j; j ¼ 1; � � � ; k � 1; ð16Þ

and we set ĉk;0 ¼ 0 8 k = 1, 2, � � �, n. It is easy to show that ck > ĉk;j in this case, so that the esti-
mates of the reproduction numbers given in (15) are greater than those given in (11) and (14),
respectively. This shows that the reproduction number reduces as vaccines reduce the infectivity
of the viruses (as expected).

Remark 4. The reproduction number R0 is for the case where some members of the popula-
tion are vaccinated against certain strain of the disease, that is, case with compartments V1,

V2, � � �, Vn in the population. As explained in Remark 2, the reproduction number, denoted Rc,

for a completely susceptible non-vaccinated population is given by

Rc ¼ max
1�k�n

cklk

akekwk

� �

: ð17Þ

2.4 Existence of equilibrium points

We discuss conditions under which equilibrium points of (1) exist. System (1) has many equi-

librium points. Let P = {1, 2, � � �, n} denotes set of indices representing order of existence of

new strain in the population, with 2P denoting the power set of P. Let Sr 2 2P denotes a subset

of 2P with r number of strains, r = 0, 1, � � �, n, with r = 0 representing disease-free case. We

study the existence conditions for the equilibrium point corresponding to the scenario where

only strains in Sr survives, r = 0, 1, � � �, n. The case r = 0 exists for the disease-free equilibrium

E0 case. The disease-free equilibrium is given in (6). For the case r = 1 representing case where

only one strain survives, we shall denote the strain by strain m, m = 1, 2, � � �, n, and the equilib-

rium referred to as the strain m equilibrium point and denoted Em. We study the conditions

under which such equilibrium point exists, and in general, we also study conditions under

which strains with indices in Sr survives, for r = 1, 2, � � �, n.

Theorem 2. The strain m unique equilibrium point, denoted Em, for the epidemic model (1)

exists in the feasible region T provided Rm > 1.

Proof. The strain m equilibrium point Em is obtained by solving the equation h(t) = 0 and

setting Ek = Ak = Ik = Rk = 0 for 1� k 6¼m� n, where h(t) is a vector in (4) containing the

right hand side of (1). It follows from the equation governing Am and Im that Am ¼
plm
am

Em and

Im ¼
ð1� pÞlm

wm
Em. Substituting these into the equations governing S, Vk, k = 1, 2, � � �, n, Em, and

Rm, we have

S ¼
ð1 � qÞm

mþ
cmlm

amwm
Em

;

Vk ¼

qkm

mþ
cmlm

amwm
Em

; if k < m;

qk; if k � m;

8
>>><

>>>:

Em ¼
1

cmlmem
mcmlmð1 � qÞ þ mcmlmQm � mamwmemð Þ;

Rm ¼
ð1 � pÞamym þ prmwm

mamwm
lmEm;
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where cm and �cm are defined in (5). If Rm > 1, the strain m equilibrium point Em is obtained as

Em ¼ fS�;V�1 ; � � � ;V
�
n ; E

�
1
; � � � ;E�n;A

�
1
; � � � ;A�n; I

�
1
; � � � ; I�n;R

�
1
; � � � ;R�ng; ð18Þ

where

E�m ¼
mamwm

cmlm
Rm � 1ð Þ;

S� ¼
ð1 � qÞ

Rm

V�k ¼

qk
Rm

; if k < m;

qk; if k � m;

8
>><

>>:

A�m ¼
plm

am
E�m;

I�m ¼
ð1 � pÞlm

wm
E�m;

R�m ¼
�cm

mamwm
lmE

�

m;

ð19Þ

and E�k ¼ A�k ¼ I�k ¼ R�k ¼ 0 for 1� k 6¼m� n. We can show that

S�; fV�kg
n
k¼1
;E�m;A

�
m; I

�
m;R

�
m 2 T by using (5) to show that

S� þ
Xn

k¼1

V�k þ E�m þ A�m þ I�m þ R�m ¼
ð1 � qÞm

mþ
cmlm

amwm
E�m
þ
Xm� 1

k¼1

qkm

mþ
cmlm

amwm
E�m
þ
Xn

k¼m

qk þ E�m

þ
pwm þ ð1 � pÞam

amwm
lmE

�

m þ
pwmrm þ ð1 � pÞamym

mamwm
lmE

�

m

¼ ð1 � qÞ þ
Xn

k¼1

qk þ E�m þ
pwm þ ð1 � pÞam

amwm
lmE

�

m

þ
pwmrm þ ð1 � pÞamym

mamwm
lmE

�

m �
em
m
E�m

¼ 1þ
lm

m
E�m þ E�m �

em
m
E�m

¼ 1:

Remark 5. Theorem 2 shows that strain m alone persists at equilibrium if the expected num-
ber of secondary infections produced by strain m infected individual is greater than one. We shall
later show in Theorem 8 that this equilibrium point is stable globally if Rk < 1 for 1� k 6¼m�

n (guaranteeing E�k ¼ A�k ¼ I�k ¼ R�k ¼ 0 for 1� k 6¼m� n) and Rm > 1. Theorem 2 is also
valid for the case where bk >

�bk;j and gk > �gk;j, j = 1, 2, � � �, k − 1. The proof of this is shown in
Theorems 17 and 18.
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Suppose S2 ¼ ft1; t2g with strain 1� τ1 < τ2� n, tj 2 Zþ [ f0g, j = 1, � � �, 2. We denote

the equilibrium point corresponding to the case where strains τ1, τ2 survive by ES2
. We give

theorem under which the equilibrium ES2
exists.

Theorem 3. The epidemic model (1) has an equilibrium point ES2
in the feasible region T

provided

Rt1
> Rt2

> 1þ
Rt1
� 1

1þ Qt2
� Qt1

� � Rt1

1 � qþ Qt1

ð20Þ

Fig 2. Schematic diagram for the epidemic model (35). The circle compartments represent group of individuals.

https://doi.org/10.1371/journal.pone.0271446.g002
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Proof. Condition (20) implies that Rt1
> Rt2

> 1. The equilibrium point ES2
is obtained as

ES2
¼ fSþ;Vþ

1
; � � � ;Vþn ;E

þ
1
; � � � ;Eþn ;A

þ
1
; � � � ;Aþn ; I

þ
1
; � � � ; Iþn ;R

þ
1
; � � � ;Rþn g; ð21Þ

where

Eþ
t1
¼

m

et1

Rt1
� Rt2

Rt1

1 � qþ Qt1

�
Rt2

1 � qþ Qt2

;

Eþ
t2
¼

m

et2

1 � qþ Qt2

R2

� �
Rt2

1 � qþ Qt2

þ Qt2
� Qt1

� � Rt1

1 � qþ Qt1

Rt2

1 � qþ Qt2

�
Rt1

1 � qþ Qt1

Rt1

1 � qþ Qt1

�
Rt2

1 � qþ Qt2

;

Sþ ¼
ð1 � qÞm

mþ
X2

j¼1

ctjltj
atjwtj

Eþ
tj

 ! ¼
1 � q
Rt1

;

Vþk ¼

qkm

mþ
X2

j¼1

ctjltj
atjwtj

Eþ
tj

 ! ; if k � t1 � 1;

qkm

mþ
ct2lt2
at2wt2

Eþ
t2

; if t1 � k < t2;

qk; if k � t2;

8
>>>>>>>>>>><

>>>>>>>>>>>:

Aþ
tk
¼

pltk
atk

Eþ
tk
; k ¼ 1; 2;

Iþ
tk
¼
ð1 � pÞltk

wtk

Eþ
tk
; k ¼ 1; 2;

Rþ
tk
¼

�ctkltk
matkwtk

Eþ
tk
; k ¼ 1; 2;

ð22Þ

and Eþk ¼ Aþk ¼ Iþk ¼ Rþk ¼ 0 8 k 6¼ t1; t2 if Rt1
> Rt2

> 1þ
Rt1
� 1

1þ Qt2 � Qt1ð Þ
Rt1

1� qþQt1

. If

Rt1
> Rt2

> 1þ
Rt1
� 1

1þ Qt2 � Qt1ð Þ
Rt1

1� qþQt1

, then

Eþ
t1
¼

m

et1

Rt1
� Rt2

Rt1

1 � qþ Qt1

�
Rt2

1 � qþ Qt2

> 0;

Eþ
t2
¼

mat2wt2

ct2lt2

Rt2

1 � qþ Qt2

þ Qt2
� Qt1

� � Rt1

1 � qþ Qt1

Rt2

1 � qþ Qt2

�
Rt1

1 � qþ Qt1

Rt1

1 � qþ Qt1

�
Rt2

1 � qþ Qt2

¼
m

et2

1

Rt2

1

Rt1

1 � qþ Qt1

�
Rt2

1 � qþ Qt2

1þ Qt2
� Qt1

� � Rt1

1 � qþ Qt1

1 � qþ Qt2

0

B
B
B
@

1

C
C
C
A

Rt2
� 1 �

Rt1
� 1

1þ Qt2
� Qt1

� � Rt1

1 � qþ Qt1

0

B
B
B
@

1

C
C
C
A
> 0:
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The result follows.

Remark 6 Since Rt1
is non-negative, condition (20) implies that Rt1

> Rt2
> 1. This seems

to suggest that the system is already in endemic state with strain τ1 before the emergence of strain
τ2 caused an endemic. This is also confirmed in the work of Fudolig et al [10] where an SVIR

model is used to analyze the transmission of the multistrains of the COVID-19 virus. Condition
(20) is equivalent to

Rt1
> Rt2

>
bRt1

aþ ðb � aÞRt1

; ð23Þ

where a ¼ 1 � qþ Qt1
and b ¼ 1 � qþ Qt2

. We analyze the condition geometrically in Appen-
dix B in S1 Appendix. It shows that for only strains τ1 and τ2 to remain in the system on the long
run, the number of infection Rt2

produced by strain τ2-infected individuals must be more than
bRt1

aþðb� aÞRt1

but not up to the number Rt1
produced by strain τ1-infected individuals. Once Rt2

falls

outside this region, then only strain τ1 or τ2 remains in the system on the long run. For instance,
if Rt2

<
bRt1

aþðb� aÞRt1

< Rt1
, it follows from (22) that the compartmental equilibrium value Eþ

t1
> 0

and Eþ
t2
< 0, so that the values Iþ

t1
, Aþ

t1
, and Rþ

t1
are positive but Iþ

t2
, Aþ

t2
, and Rþ

t2
are negative,

showing that only strain τ1 remains on the long run. In the same sense, we can show that only
one strain remains in the system on the long run if Rt2

> Rt1
> 1. This endemic region is shown

graphically in Appendix B in S1 Appendix.

Also, it can be shown that

Sþ þ
Xn

k¼1

Vþk þ
X2

j¼1

ðEþ
tj
þ Aþ

tj
þ Iþ

tj
þ Rþ

tj
Þ ¼ 1:

Suppose Sr ¼ ft1; t2; . . . ; trg with strain 1� τj − 1 < τj� n, j = 2, � � �, r, and

t1; t2; . . . ; tr 2 Zþ. We denote the equilibrium point corresponding to the case where strains

τ1, τ2, � � �, τr survive by ESr
. We give theorem under which the equilibrium ESr

, r = 2, � � �, n,

exists.

Theorem 4. The epidemic model (1) has an equilibrium point ESr
in the feasible region T

provided

Rtk� 1
> Rtk

>

1 � qþ Qtk

� �
Qtkþ1

� Qtk� 1

� � Rtk� 1

1 � qþ Qtk� 1

Rtkþ1

1 � qþ Qtkþ1

Qtkþ1
� Qtk

� � Rtkþ1

1 � qþ Qtkþ1

þ Qtk
� Qtk� 1

� � Rtk� 1

1 � qþ Qtk� 1

; for k ¼ 2; 3; � � � ; r � 1;

Rtr
> 1þ

Rtr� 1
� 1

1þ Qtr
� Qtr� 1

� � Rtr� 1

1 � qþ Qtr� 1

:

ð24Þ

Proof. Condition (24) implies that Rt1
> Rt2

. . . > Rtr
> 1. The equilibrium point ESr

is

obtained as

ESr
¼ fSþ;Vþ

1
; � � � ;Vþn ;E

þ
1
; � � � ;Eþn ;A

þ
1
; � � � ;Aþn ; I

þ
1
; � � � ; Iþn ;R

þ
1
; � � � ;Rþn g; ð25Þ
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where

Eþ
t1
¼

m

et1

Rt1
� Rt2

Rt1

1 � qþ Qt1

�
Rt2

1 � qþ Qt2

;

Eþ
tk
¼

m

etk

Qtk
� Qtk� 1

� � Rtk� 1

1 � qþ Qtk� 1

Rtk

1 � qþ Qtk

� Qtkþ1
� Qtk� 1

� � Rtk� 1

1 � qþ Qtk� 1

Rtkþ1

1 � qþ Qtkþ1

þ Qtkþ1
� Qtk

� � Rtk

1 � qþ Qtk

Rtkþ1

1 � qþ Qtkþ1

Rtk� 1

1 � qþ Qtk� 1

�
Rtk

1 � qþ Qtk

 !
Rtk

1 � qþ Qtk

�
Rtkþ1

1 � qþ Qtkþ1

 ! ; k ¼ 2; 3; � � � ; r � 1;

Eþ
tr
¼

matrwtr

ctrltr

Rtr

1 � qþ Qtr

þ Qtr
� Qtr� 1

� � Rtr

1 � qþ Qtr

Rtr� 1

1 � qþ Qtr� 1

�
Rtr� 1

1 � qþ Qtr� 1

Rtr� 1

1 � qþ Qtr� 1

�
Rtr

1 � qþ Qtr

;

Sþ ¼
ð1 � qÞm

mþ
Xr

j¼1

ctjltj
atjwtj

Eþ
tj

 !

Vþk ¼

¼
qkm

mþ
Xr

j¼l

ctjltj
atjwtj

Eþ
tj

 ! ; if tl� 1 � k � tl � 1; l ¼ 1; 2 � � � ; r; t0 ¼ 1;

qk; if tr � k � n;

8
>>>>><

>>>>>:

Aþ
tl
¼

pltl
atl

Eþ
tl
; l ¼ 1; 2 � � � ; r;

Iþ
tl
¼
ð1 � pÞltl

wtl

Eþ
tl
; l ¼ 1; 2 � � � ; r

Rþ
tl
¼

�ctl
m

ltl
atlwtl

Eþ
tl
; l ¼ 1; 2 � � � ; r

ð26Þ

and Eþk ¼ Aþk ¼ Iþk ¼ Rþk ¼ 0 for 1� k 6¼ τ1, τ2, � � �, τr� n if condition (24) is satisfied. If con-

dition (24) is satisfied, then

Eþ
t1

> 0;

Eþ
tr
¼

m

etr

1

Rtr

1

Rtr� 1

1 � qþ Qtr� 1

�
Rtr

1 � qþ Qtr

1þ Qtr
� Qtr� 1

� � Rtr� 1

1 � qþ Qtr� 1

1 � qþ Qtr

0

B
B
B
@

1

C
C
C
A

Rtr
� 1 �

Rtr� 1
� 1

1þ Qtr
� Qtr� 1

� � Rtr� 1

1 � qþ Qtr� 1

0

B
B
B
@

1

C
C
C
A
> 0;

and for k = 2, 3, � � �, r − 1,
Rtk� 1

1� qþQtk� 1

>
Rtk

1� qþQtk
, and Eþ

tk
> 0.

Remark 7. Condition (24) implies

Rt1
> Rt2

> Rt3
> � � � > Rtr

> 1:

That is, the system is already in endemic state with strain τi before the emergence of strain τi + 1,

i = 1, 2, � � �, r − 1, caused an endemic. Theorem 4 shows that if only strains τ1, τ2, � � �, τr survive,
then the system (without these strains) must converge to the disease-free equilibrium state.

2.4.1 Endemic equilibrium. The result for the endemic equilibrium can be calculated

from Theorem 4 by extending the set Sr to Sn. We state the result without proof in the next

theorem.
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Theorem 5. The epidemic model (1) has an endemic equilibrium point ESn
given by

Eþ
1
¼

m

e1

R1 � R2

R1

1 � q
�

R2

1 � qþ Q2

;

Eþk ¼
m

ek

Qk � Qk� 1ð Þ
Rk� 1

1 � qþ Qk� 1

Rk

1 � qþ Qk
� Qkþ1 � Qk� 1

� � Rk� 1

1 � qþ Qk� 1

Rkþ1

1 � qþ Qkþ1

þ Qkþ1 � Qk

� � Rk

1 � qþ Qk

Rkþ1

1 � qþ Qkþ1

Rk� 1

1 � qþ Qk� 1

�
Rk

1 � qþ Qk

� �
Rk

1 � qþ Qk
�

Rkþ1

1 � qþ Qkþ1

� � ; k ¼ 2; 3; � � � ; n � 1;

Eþn ¼
manwn

cnln

Rn

1 � qþ Qn
þ Qn � Qn� 1ð Þ

Rn

1 � qþ Qn

Rn� 1

1 � qþ Qn� 1

�
Rn� 1

1 � qþ Qn� 1

Rn� 1

1 � qþ Qn� 1

�
Rn

1 � qþ Qn

;

Sþ ¼
ð1 � qÞm

mþ
Xn

j¼1

cjlj

ajwj
Eþj

 !

Vþk ¼

qkm

mþ
Xn

j¼kþ1

cjlj

ajwj
Eþj

 ! ; if j ¼ 1; 2; � � � ; n � 1;

qk; if j ¼ n;

8
>>>>><

>>>>>:

Aþk ¼
plk

ak
Eþk ; k ¼ 1; 2 � � � ; n;

Iþk ¼
ð1 � pÞlk

wk
Eþk ; k ¼ 1; 2 � � � ; n

Rþk ¼
�ck
m

lk

akwk
Eþk ; k ¼ 1; 2 � � � ; n;

ð27Þ

in the feasible region T provided

Rtk� 1
> Rtk

>

1 � qþ Qtk

� �
Qtkþ1

� Qtk� 1

� � Rtk� 1

1 � qþ Qtk� 1

Rtkþ1

1 � qþ Qtkþ1

Qtkþ1
� Qtk

� � Rtkþ1

1 � qþ Qtkþ1

þ Qtk
� Qtk� 1

� � Rtk� 1

1 � qþ Qtk� 1

; for k ¼ 2; 3; � � � ; n � 1;

Rtn
> 1þ

Rtn� 1
� 1

1þ Qtn
� Qtn� 1

� � Rtn� 1

1 � qþ Qtn� 1

:

ð28Þ

In the next section, we discuss the convergence of the system ~y in (4). We study conditions

under which all strain infections are eradicated in the population on the long run. We also dis-

cuss the condition under which certain strain of the disease persists.

3 Stability analysis

In this section, we discuss the convergence of system (1) under certain conditions. That is, we

study condition(s) under which the system converges to disease-free E0 or equilibriums ESr
,

r = 1, 2, � � �, n.
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3.1 Stability analysis of the disease-free equilibrium point

Theorem 6. The disease-free equilibrium E0 is locally asymptotically stable in the feasible region
T if R0 < 1.

Given the initial condition ~y0 2 T , Theorem 6 shows that if the system ~y satisfying (1) starts

near the initial point ~y0, then the system converges to the equilibrium point E0 (that is, all the

strain of infections are eradicated) provided the threshold R0 < 1. We use the idea presented

in [27] to prove Theorem 6.

Proof. Let In�n be the n × n identity matrix, y ¼ ~y � E0, β = {β1, � � �, βn}, γ = {γ1, � � �, γn},

the matrices UqðbÞ and UqðgÞ defined by

UqðbÞ ¼

0 q1
�b2;1 q1

�b3;1 q1
�b4;1 � � � q1

�bn;1

0 0 q2
�b3;2 q2

�b4;2 � � � q2
�bn;2

0 0 0 q3
�b4;3 � � � q3

�bn;3

..

. ..
. ..

. . .
. . .

. ..
.

..

. ..
. ..

. ..
. . .

.
qn� 1

�bn;n� 1

0 0 � � � 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; UqðgÞ ¼

0 q1
�g2;1 q1

�g3;1 q1
�g4;1 � � � q1

�gn;1

0 0 q2
�g3;2 q2

�g4;2 � � � q2
�gn;2

0 0 0 q3
�g4;3 � � � q3

�gn;3

..

. ..
. ..

. . .
. . .

. ..
.

..

. ..
. ..

. ..
. . .

.
qn� 1

�gn;n� 1

0 0 � � � 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

so that

G ¼ 01�n � ð1 � qÞUqðgÞ � ð1 � qÞUqðbÞ
� �

;

H ¼ 0n�n rIn�n yIn�nð Þ;

A ¼

MðeÞ � Mð~gÞ � Mð~bÞ

� pMðlÞ MðaÞ 0n�n

� ð1 � pÞMðlÞ 0n�n MðwÞ

0

B
B
B
@

1

C
C
C
A
;

where M is defined in (9). The linearization of the model (1) at the equilibrium point E0 is

derived as

y0 ¼ Ay; ð29Þ

where

A ¼

� m 01�n H 01�n

0n�1 � mIn�n G 0n�n

03n�1 03n�n � A 03n�n

0n�1 0n�n H � mIn�n

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

In order to show that the equilibrium point E0 is locally stable, we need to show that the maxi-

mum real part, s(A), of A is negative. From the structure of the matrix A, this reduces to show-

ing that the maximum real part of the eigenvalues of matrix � A is negative (or equivalently,
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sðAÞ > 0). The determinant detðAÞ of the matrix A is

detðAÞ ¼
Yn

k¼1

ð1 � RkÞ:

If R0 < 1, then detðAÞ > 0. Matrix A is a non-singular Z matrix that can be written in the

form

A ¼ LU; ð30Þ

where L and U are lower and upper diagonal matrices, respectively, with positive diagonals

obtained as

Li;j ¼
1

Dj

A1;1 A1;2 � � � A1;j

A2;1 A2;2 � � � A2;j

..

. ..
.

� � � ..
.

Aj� 1;1 Aj� 1;2 � � � Aj� 1;j

Ai;1 Ai;2 � � � Ai;j

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

; for i � j 6¼ 1; Li;1 ¼
jAi;1j

D1

for i ¼ 1; 2; :::; 3n; and 0 elsewhere;

U i;j ¼
1

Di� 1

A1;1 � � � A1;i� 1 A1;j

A2;1 � � � A2;i� 1 A2;j

..

. ..
. ..

. ..
.

Ai;1 � � � Ai;i� 1 Ai;j

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

; for 1 6¼ i � j; U1;j ¼ A1;j; for j ¼ 1; 2; :::; 3n; and 0 elsewhere;

where D0 :¼ 1, and Dj ¼

A1;1 A1;2 . . . A1;j

A2;1 A2;2 . . . A2;j

..

. ..
.

. . . ..
.

Aj;1 Aj;2 . . . Aj;j

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

for j = 1, 2, . . ., 3n, with

Dj ¼
Yj

k¼1

ek; if 1 � j � n;

Dnþj ¼

 
Yn

l¼1

el

!
Yj

k¼1

"

ak

 

1 � Rk þ ð1 � pÞ ð1 � qÞbk þ
Xk� 1

l¼1

�bk;lql

 !

aklk

!#

; if 1 � j � n;

D2nþj ¼
Yj

l¼1

ðalelwlð1 � RlÞÞ
Yn

k¼jþ1

"

akek

 

1 � Rk þ ð1 � pÞ

 

ð1 � qÞbk þ
Xk� 1

l¼1

�bk;lqlÞaklk

!#

; if 1 � j � n � 1;

D3n ¼
Yn

l¼1

alelwlð1 � RlÞ:

The diagonals Lj;j ¼ 1 and U i;j ¼ Dj=Dj� 1 > 0 if R0 < 1. Therefore, the matrix A is a non-sin-

gular M matrix, and hence, a P-matrix. It follows from Berman [54] and Plemmons [53] that

the maximum real part of the eigenvalues of � A is negative.
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Remark 8. Theorem 6 shows that if the population starts sufficiently close to �y0, then the sys-
tem �y converges to E0 if R0 < 1. That is, the proportion of the susceptible size converges to 1 − q,

the proportion of the size of the vaccinated class immune to strain k converges to the vaccination
rate qk of individuals with strain k of infection, and no infected class, hence no need of recovery
on the long run if R0 < 1.

We prove in the next theorem that the population, irrespective of where it starts from, con-

verges to the point E0 if R0 � 1.

Theorem 7. The disease-free equilibrium E0 is globally stable in the feasible region T if
R0 � 1.

Proof. Define the Lyapunov function V by

�V ¼ S � S0 � S0 ln
S
S0

� �

þ
Xn

k¼1

�φk Vk � V0

k � V0

k ln
Vk

V0
k

� �

þ
Xn

k¼1

�zkEk þ
�f kIk þ �g kAk

� �

where

�zk ¼ Rk;

�fk ¼ 1;

�f k ¼
1

wk
S0bk þ

Xk

j¼1

�f j� 1V
0

j� 1
bk

 !

�gk ¼
1

ak
S0gk þ

Xk

j¼1

�f j� 1V
0

j� 1
gk

 !

; for all k ¼ 1; 2; � � � ; n;

where ��0 ¼ 0. Let s = S/S0, vk ¼ Vk=V0
k . If Rk � 1, it follows that

d�V=dt ¼ ð1 � qÞm � mðS � S0Þ � mð1 � qÞS0=Sþ
Xn

k¼1

�fkmðqk þ V0

k Þ

þ
Xn

j¼1

ð�zj � 1ÞðbjIj þ gjAjÞS �
Xn� 1

k¼1

Xn

j¼kþ1

ð�fk � �zkÞðbjIj þ gjAjÞVk � m
Xn

k¼1

�fkðVk þ qkV
0

k=VkÞ

þ
Xn

k¼1

S0bk þ
Xk

j¼1

�f j� 1V
0

j� 1
bk �

�f kwk

 !

Ik þ
Xn

k¼1

S0gk þ
Xk

j¼1

�f j� 1V
0

j� 1
gk � �g kak

 !

Ak

þ
Xn

k¼1

ðð1 � pÞ�f klk þ p�gklk � �zkekÞEk

� � mS0 sþ
1

s
� 2

� �

�
Xn

k¼1

m�fkqk vk þ
1

vk
� 2

� �
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where

S0bk þ
Xk� 1

j¼1

�f jV
0

j
�bk;j �

�f kwk ¼ 0;

S0gk þ
Xk

j¼1

�f j� 1V
0

j� 1
gk � �gkak ¼ 0;

ð1 � pÞ�f klk þ p�gklk � zkek ¼
1

akwk
ð1 � qÞcklk þ

Xk

j¼1

fj� 1 qj� 1cklk

� �
� zkakekwk

 !

¼ ekðRk � zkÞ ¼ 0;

and

2ðmS0 þ
Xn

k¼1

m�fkqkÞ ¼ ð1 � qÞmþ mS0 þ
Xn

k¼1

�fkmðqk þ V0

k Þ ¼ 2m

using (6). Using the fact that the arithmetic mean of a list of non-negative real numbers is

greater than or equal to the geometric mean of the same list [55], it follows that if R0 � 1, then

d�V=dt � 0. Also, d�V=dt ¼ 0 if S = S0 = 1 − q, Ik = Ek = Rk = 0, Vk ¼ V0
k ¼ qk (or equivalently,

if s = 1, Ik = Ek = Rk = 0, vk = 1) for all k = 1, 2, � � �, n. Since E0 is the largest invariant set in the

subset of T where d�V=dt ¼ 0, its global stability follows by the LaSalle’s Invariance Principle

[56]

Remark 9. Theorem 7 shows that the susceptible class converges to a fraction 1 − q of the
entire population size (this is simply the population size without the vaccinated group), the vacci-
nated class immune to strain k converges to a fraction qk of population size, and no infected
class, hence no need of recovery on the long run if R0 � 1. This suggests the threshold for disease
eradication is the number R0.

3.2 Bound for the critical vaccination threshold

Herd immunity is a state where significant proportion of the population is immune to an

infection so that only few susceptible individuals can be infected and transmit the infection

[57]. Classical vaccine-induced herd-immunity threshold suggests that the spread of a disease

can be stopped by vaccinating certain fraction of the population. This might be invalid and

biased due to many factors such as emergence of multi variant strains of the virus/disease, the

dynamic nature of virus transmission, presence of immunity due to infection, changes in

implementation and adherence to public health measures, and uncertainties in vaccine effec-

tiveness and duration of immunity [57, 41]. These can cause the estimation of the Herd-immu-

nity threshold to be imprecise. In this section, we aim to estimate a bound for the minimum

proportion of the population that must be vaccinated in order for certain infection to die out

in the population.

Let Ej 2 (0, 1] denotes the proportion of vaccinated individuals against strain j who are pro-

tected by vaccines, for j = 1, 2, � � �, n. It follows from Remark 4 that we can write Rk in (14) in

terms of Rc;k in (17) as follows:

Rj ¼ ð1 � cjEjÞRc;j; ð31Þ

for some constant cj 2 (0, 1). If the vaccine is perfect and provides 100% immunity, then the

vaccine effectiveness Ej = 1, otherwise, Ej< 1 if it provides only partial immunity. According

to Theorem 7, the population reaches herd immunity with respect to strain j, with incidence of
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the infection declining, if Rj � 1. This yield

cj � 1 �
1

Rc;j

 !
1

Ej
:

The number

Hj ¼ 1 �
1

Rc;j

 !
1

Ej
ð32Þ

is the minimum proportion of a population infected that must be vaccinated to stop strain j
from spreading. This number is referred to as the herd immunity threshold [41]. In the pres-

ence of multiple vaccines for strains j = 1, 2, � � �, n with effectiveness E1, E2, � � �, En, respectively,

let Hm and HM denote the minimum min1�j�nHj and maximum max1�j�nHj herd immunity

thresholds for the strains j = 1, 2, � � �, n, respectively. The interval

½Hm;HM� ð33Þ

contains the maximum proportion of the population expected to be vaccinated to stop the

spread of the disease.

Remark 10. Caveats to the estimate
We note here that the bound in (33) is calculated for a population satisfying the dynamics

given in (1). The bound is expected to change in the emergence of a new strain of the virus.

Also, the bound is calculated without taking into consideration the proportion of those who

have immunity from the virus. These and more are some of the caveats to this estimates.

Sometimes new variants emerge and disappear. Other times, new variants persist. We study

conditions under which new variant, say strain m, persists in the population. In the next sec-

tion, we study the behavior of the system in the case where disease is not completely eradicated

in the system.

3.3 Stability analysis of strain m equilibrium

In the next theorem, we study how the population behaves on the long run if the number, Rm,

of new infections produced by infected individual with strain m is greater than one, while

Rk � 1 for 1� k 6¼m� n.

Theorem 8. The strain m equilibrium Em for the epidemic model (1) is globally stable in the
feasible region T if Rk � 1 for all 1� k 6¼m� n and Rm > 1.

Proof. According to Theorem 2, the strain m equilibrium Em exists and non-negative if

Rm > 1. Define the Lyapunov function V by

V ¼ S � S� � S� ln
S
S�

� �

þ zm Em � E�m � E�m ln
Em

E�m

� �

þ fm Im � I�m � I�m ln
Im
I�m

� �

þ gm Am � A�m � A�m ln
Am

A�m

� �

þdm Rm � R�m � R�m ln
Rm

R�m

� �

þ
Xn

k¼1

φk Vk � V�k � V�k ln
Vk

V�k

� �

þ
Xn

k¼1
k6¼m

zkEk þ fkIk þ gkAk þ dkRkð Þ
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where

zk ¼ φk ¼ dk ¼ 1;

fk ¼
1

wk
S�bk þ

Xk

j¼1

φj� 1
V�j� 1

bk

 !

;

gk ¼
1

ak
S�gk þ

Xk

j¼1

φj� 1
V�j� 1

gk

 !

; for all k ¼ 1; 2; � � � ; n;

with φ0 = 0. Let s = S/S
�

, vk ¼ Vk=V�k ,
P

m ¼ Em=E�m, tm ¼ Im=I�m, Dm ¼ Am=A�m. It follows that

dV=dt ¼ ð1 � qÞm � mðS � S�Þ � mð1 � qÞS�=Sþ zmemE�m þ
Xn

k¼1

φkmðqk þ V�k Þ þ fmwmI
�

m þ gmamA
�

m

þ
Xn

j¼1

ðzj � 1ÞðbjIj þ gjAjÞS �
Xn� 1

k¼1

Xn

j¼kþ1

ðφk � zkÞðbjIj þ gjAjÞVk � ð1 � pÞfmlmI
�

mEm=Im

� pgmlmA�mEm=Am � zmE�mððbmIm=Em þ gmAm=EmÞSþ
Xm� 1

k¼1

VkðbmIm=Em þ gmAm=EmÞÞ

� m
Xn

k¼1

φkðVk þ qkV
�

k=VkÞ þ
Xn

k¼1

ðS�bk þ
Xk

j¼1

φj� 1
V�j� 1

bk � fkwkÞIk þ
Xn

k¼1

ðS�gk þ
Xk

j¼1

φj� 1
V�j� 1

gk � gkakÞAk

þ
Xn

k¼1

ðð1 � pÞfklk þ pgklk � zkekÞEk

� � Z sþ
1

s
� 2

� �

� u
stm
Sm
þ
Sm

tm
þ

1

s
� 3

� �

� b
sDm

Sm
þ
Sm

Dm
þ

1

s
� 3

� �

�
Xm� 1

k¼1

sk
vktm
Sm
þ
Sm

tm
þ

1

vk
� 3

� �

�
Xm� 1

k¼1

φk

vkDm

Sm
þ
Sm

Dm
þ

1

vk
� 3

� �

�
Xn

k¼1

Uk vk þ
1

vk
� 2

� �

if Rm > 1 and Rk � 1 for 1� k 6¼m� n, where

ð1 � pÞfklk þ pgklk � zkek ¼
1

akwk
S�cklk þ

Xk� 1

j¼1

φjV
�

j �ck;jlk

� �
� akekwkzk

 !

(
¼ 0; if k ¼ m; using ð19Þ;

� ekðRk � 1Þ � 0; if Rk � 1; k 6¼ m;

Z ¼ mS�;

u ¼ zmbmI�mS
�;

b ¼ zmgmA�mS
�;

sk ¼ zmbmI�mV
�
k ; for 1 � k � m � 1

φk ¼ zmgmA�mV
�
k ; for 1 � k � m � 1

Uk ¼ mφkV
�
k ; for 1 � k � n
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and

2ðZþ
Xn

k¼1

UkÞ þ 3ðuþ bþ
Xm� 1

k¼1

ðsk þ φkÞÞ ¼ ð1 � qÞmþ mS� þ fmwmI�m þ gmamA�m

þzmemE�m þ m
Xn

j¼1

φkðqk þ V�k Þ

using (19). Using the fact that the arithmetic mean of a list of non-negative real numbers is

greater than or equal to the geometric mean of the same list [56], it follows that dV=dt � 0.

Equality holds if S = S
�

, Ik = Ek = Rk = 0 for all k 6¼m, Vk ¼ V�k for all k = 1, 2, � � �, n,

Im=I�m ¼ Em=E�m ¼ Rm=R�m ¼ 1. Since Em is the largest invariant set in the subset of T where

dV=dt ¼ 0, its global stability follows by the LaSalle’s Invariance Principle [56].

Remark 11. Theorem 8 shows that the system �y converges to Em on the long run if Rk � 1 for
1� k 6¼m� n and Rm > 1 irrespective of the starting point. That is, if the number, Rm, of new
infections is greater than one while Rk � 1 for 1� k 6¼m� n, then on the long run, the suscepti-
ble class converges to a fraction S� ¼ ð1� qÞ

Rm
< 1 � q of the entire population size, no exposure to

any strain other than strain m in the population (hence no infection other than those caused by
strain m, and no need for recovery), and before the existence of strain m (that is, k <m), the vac-
cinated class immune to strain k< m converges to a fraction V�k ¼

qk
Rm
< qk of the population

size. We see from Theorem 7 that if there is no endemic in the population, the susceptible popula-
tion S converges on the long run to (1 − q) × 100% of the population. This number reduces by

1 � 1

Rm

� �
� 100% in the presence of an emerging strain m. Also, from Theorem 7, the vacci-

nated class Vk converges to qk × 100% of the population size if there is no endemic in the popula-

tion. This number also reduces by 1 � 1

Rm

� �
� 100% in the presence of an emerging strain m. If

k> m on the other hand, since Rk � 1 for 1� k 6¼m� n, we have the vaccinated class immune
to strain k (k> m) converging to a fraction V�k ¼ qk of the population, no exposure to any strain
other than strain m in the population (hence no infection and no need for recovery).

3.4 Stability analysis of the equilibrium point ES2

We give the proof of the stability of the equilibrium point ES2
in the next theorem.

Theorem 9. The equilibrium point ES2
is globally stable in the feasible region T if Rk < 1 for

1� k 6¼ τ1, τ2� n and condition (20) is satisfied.

Proof. Assume Rk � 1 for all k =2 τ1, τ2 and condition (20) is satisfied. The existence of the
equilibrium point ES2

follows from Theorem 3. Define the Lyapunov function V2 by

V2 ¼ S � Sþ � Sþ ln
S
Sþ

� �

þ
X2

l¼1

ztl Etl � Eþ
tl
� Eþ

tl
ln

Etl
Eþ
tl

 !

þ
X2

l¼1

ftl Itl � Iþ
tl
� Iþ

tl
ln

Itl
Iþ
tl

 !

þ
X2

l¼1

gtl Atl
� Aþ

tl
� Aþ

tl
ln
Atl

Aþ
tl

 !

þ
Xn

k¼1

φk Vk � Vþk � Vþk ln
Vk

Vþk

� �

þ
Xn

k ¼ 1
k=2t1; t2

zkEk þ fkIk þ gkAk þ dkRkð Þ
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where

zk ¼ φk ¼ dk ¼ 1;

fk ¼
1

wk
Sþbk þ

Xk

j¼1

φj� 1
Vþj� 1

bk

 !

;

gk ¼
1

ak
Sþgk þ

Xk

j¼1

φj� 1
Vþj� 1

gk

 !

; for all k ¼ 1; 2; � � � ; n;

ð34Þ

with φ0 = 0. The derivative of V2 computed along the solution of (1) is

dV2=dt ¼ ð1 � qÞm � mðS � SþÞ � mð1 � qÞSþ=Sþ
X2

j¼1

�

ztj etjE
þ

tj
þ ftjwtj

Iþ
tj
þ gtj atjA

þ

tj

�

þ
Xn

k¼1

φkmðqk þ Vþk Þ

þ
Xn

j¼1

ðzj � 1ÞðbjIj þ gjAjÞS �
Xn� 1

k¼1

Xn

j¼kþ1

ðφk � zkÞðbjIj þ gjAjÞVk � ð1 � pÞ
X2

j¼1

ftjltj I
þ

tj
Etj=Itj

� p
X2

j¼1

gtjltjA
þ

tj
Etj=Atj

�
X2

j¼1

ztjE
þ

tj

�

ðbtj Itj=Etj þ gtjAtj
=EtjÞSþ

Xtj � 1

k¼1

Vkðbtj Itj=Etj þ gtjAtj
=EtjÞ

�

� m
Xn

k¼1

φkðVk þ qkV
þ

k =VkÞ þ
Xn

k¼1

 

Sþbk þ
Xk� 1

j¼1

φjV
þ

j bk � fkwk

!

Ik þ
Xn

k¼1

 

Sþgk þ
Xk� 1

j¼1

φjV
þ

j gk � gkak

!

Ak

þ
Xn

k¼1

ðð1 � pÞfklk þ pgklk � zkekÞEk

It follows from (34) and Remark 6 that Rt1
> Rt2

> 1 and

Sþbk þ
Xk� 1

j¼1

φjV
þ

j bk � fkwk ¼ 0;

Sþgk þ
Xk� 1

j¼1

φjV
þ

j gk � gkak ¼ 0;

ð1 � pÞfklk þ pgklk � zkek ¼
1

akwk
Sþcklk þ

Xk� 1

j¼1

φjV
þ

j cklk

� �
� akekwkzk

 !

(
¼ 0; if k 2 S2; using ð22Þ;

� ekðRk � 1Þ � 0; if Rk � 1; k =2 S2;

Let s = S/S+, vk ¼ Vk=Vþk ,
P

tl
¼ Etl=E

þ
tl

, ttl ¼ Itl=I
þ
tl

, Dtl
¼ Atl

=Aþ
tl

. Define

Z ¼ mSþ;

utj ¼ ztjbtj I
þ
tj
Sþ;

btj ¼ ztjgtjA
þ
tj
Sþ;

sk;tj
¼ ztjbtj I

þ
tj
Vþk ; for 1 � k � tj � 1;

φk;tj
¼ ztjgtjA

þ
tj
Vþk ; for 1 � k � tj � 1;

Uk ¼ mφkV
þ
k ; for 1 � k � n:
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We have

dV2=dt � � Z sþ
1

s
� 2

� �

�
X2

j¼1

utj
sttj
Stj

þ
Stj

ttj
þ

1

s
� 3

 !

�
X2

j¼1

btj
sDtj

Stj

þ
Stj

Dtj

þ
1

s
� 3

 !

�
X2

j¼1

Xtj � 1

k¼1

sk;tj

vkttj
Stj

þ
Stj

ttj
þ

1

vk
� 3

 !

�
X2

j¼1

Xtj � 1

k¼1

φk;tj

vkDtj

Stj

þ
Stj

Dtj

þ
1

vk
� 3

 !

�
Xn

k¼1

Uk vk þ
1

vk
� 2

� �

;

where

2

 

Zþ
Xn

k¼1

Uk

!

þ 3
X2

j¼1

 

utj þ btj þ
Xtj � 1

k¼1

ðsk;tj
þ φk;tj

Þ

!

¼ ð1 � qÞmþ mSþ þ
X2

j¼1

ztj etjE
þ

tj
þ m
Xn

j¼1

φkðqk þ Vþk Þ

þ
X2

j¼1

ðftjwtj
Iþ
tj
þ gtj atjA

þ

tj
Þ

using (22). It follows that dV2=dt � 0. Equality holds if S = S+, Ik = Ek = Rk = 0 for all k =2 S2,

Vk ¼ Vþk for all k = 1, 2, � � �, n, Itj=I
þ
tj
¼ Etj=E

þ
tj
¼ Rtj=R

þ
tj
¼ 1. Since ES2

is the largest invariant

set in the subset of T where dV2=dt ¼ 0, its global stability follows by the LaSalle’s Invariance

Principle [56].

3.5 Stability analysis of the equilibrium point ESr

Theorem 10. For r = 3, 4, � � �, n, the equilibrium point ESr
is globally stable in the feasible region

T if Rk � 1 for all k =2 Sr and condition (24) is satisfied.

Proof. The proof of Theorem 10 is similar to that of Theorem 9 by extending S2 to Sr, r = 3,

4, � � �, n.

Remark 12. Theorem 10 can be extended to a case where Sr ¼ Sn.

4 Model for re-infected recovered and vaccinated population

There have been confirmed cases of the COVID-19 reinfections around the world [38, 40, 42].

In this section, in addition to assuming that individuals vaccinated against strain k can gets

infected with emerging strains j> k, we also discuss the case where individuals who recovered

from strain k can be infected with emerging strains j> k. For this additional assumption, we
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extend (1) to the form

dS ¼

 

ð1 � qÞm � S
Xn

j¼1

ðbjIj þ gjAjÞ � mS

!

dt; Sðt0Þ ¼ S0;

dVk ¼

 

qkm � Vk

Xn

j¼kþ1

ðbjIj þ gjAjÞ � mVk

!

dt; Vkðt0Þ ¼ Vk0; k ¼ 1; 2; � � � ; n � 1

dVn ¼

 

qnm � mVn

!

dt; Vnðt0Þ ¼ Vn0;

dE1 ¼ ðSðb1I1 þ g1A1Þ � ðmþ l1ÞE1Þ dt; E1ðt0Þ ¼ E10;

dEk ¼

 

SðbkIk þ gkAkÞ þ
Xk� 1

j¼1

VjðbkIk þ gkAkÞ þ
Xk� 1

j¼1

RjðbkIk þ gkAkÞ � ðmþ lkÞEk

!

dt; Ekðt0Þ ¼ Ek0; k ¼ 2; 3; � � � ; n

dAk ¼ ðplkEk � ðmþ rkÞAkÞ dt; k ¼ 1; 2; � � � ; n Akðt0Þ ¼ Ak0; k ¼ 1; 2; � � � ; n

dIk ¼ ðð1 � pÞlkEk � ðmþ ykÞIkÞ dt; Ikðt0Þ ¼ Ik0; k ¼ 1; 2; � � � ; n;

dRk ¼

 

ykIk þ rkAk � Rk

Xn

j¼kþ1

ðbjIj þ gjAjÞ � mRk

!

dt; Rkðt0Þ ¼ Rk0; k ¼ 1; 2; � � � ; n � 1

dRn ¼ ðynIn þ rnAn � mRnÞ dt;Rnðt0Þ ¼ Rn0;

ð35Þ

The schematic diagram of model (35) is given in Fig 2.

4.1 Validity of the epidemic model (35)

In this section, we discuss the validity of the proposed epidemic model (35).

Theorem 11. If S0 > 0, Vk0 > 0, Ek0 > 0, Ak0 > 0, Ik0 > 0, Rk0 > 0, then there exist a positive
unique solution of (35) in the feasible region T for all t� 0.

Proof. The proof is similar to Theorem 1.

4.2 Existence of equilibrium points for model (35)

The disease-free equilibrium of the system (35) is the same as that of the system (1), and given

by

E0 ¼ fS0 ¼ 1 � q;V0
1
¼ q1; � � � ;V0

n ¼ qn;E0
1
¼ 0; � � � ;E0

n ¼ 0;A0
1
¼ 0; � � � ;A0

n ¼ 0; I0
1
¼ 0; � � � ; I0

n ¼ 0;R0
1
¼ 0; � � � ;R0

n ¼ 0g: ð36Þ

4.3 Reproduction number for model (35)

It can also be shown in a similar manner that model (35) has the same reproduction numbers

Rk and R0 as that of model (1). This shows that the number of infection in a population where

every individual who recovered from strain k is immune to all possible strains is the same for

the population where individuals who recovered from strain k can still be infected with emerg-

ing strains j> k. Hence, for strain k infected individual, the expected number, Rk of new infec-

tions produced by individual with strain k in a susceptible population satisfying (35) is the
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same as (11). Likewise, the reproduction number R0 for the system (35) is obtained in a similar

manner to (14).

4.4 Existence of endemic equilibrium points for model (35)

Theorem 12. The strain m unique equilibrium point Em for the epidemic model (35) exists in the
feasible region T provided Rm > 1. The value of Em is the same for models (1) and (35) and
obtained in Theorem (2).

Remark 13. Theorem 12 shows that the existence of a single strain endemic (strain m in this
case) does not depend on whether the recovered class is immune to the strain or not. Regardless of
the immunity status of the recovered strain k-class to the strain, the equilibrium point of the sys-
tem will be Em if Rm > 1.

Define

�Rtk
¼ 1 � qþ Qkð Þ

�ctkltk
atk etkwtk

; k ¼ 1; 2; � � � ; n: ð37Þ

It can be shown that �Rtk
< 1 � qþ Qk. Conditions for existence of other equilibrium points

are given in Theorem 13.

Theorem 13. The epidemic model (35) has an equilibrium point ES2
satisfying

Eþ
t1
¼

m

et1

Rt1
� Rt2

Rt1

1 � qþ Qt1

�
Rt2

1 � qþ Qt2

1 �
�Rt1

1 � qþ Qt1

 ! ;

Eþ
t2
¼

m

et2

1 � qþ Qt2

Rt2

 !
Rt2

1 � qþ Qt2

þ Qt2
� Qt1

� � Rt1

1 � qþ Qt1

Rt2

1 � qþ Qt2

�
Rt1

1 � qþ Qt1

þ
Rt2

1 � qþ Qt2

�Rt1

1 � qþ Qt1

Rt1
� 1

� �

Rt1

1 � qþ Qt1

�
Rt2

1 � qþ Qt2

1 �
�Rt1

1 � qþ Qt1

 ! ;

Sþ ¼
1 � q
Rt1

;

Vþk ¼

qk
Rt1

; if k � t1 � 1

qkm

mþ
ct2lt2
at2wt2

Eþ
t2

; if t1 � k < t2;

qk; if k � t2;

8
>>>>>>>>>>><

>>>>>>>>>>>:

Aþ
tk
¼

pltk
atk

Eþ
tk
; k ¼ 1; 2;

Iþ
tk
¼
ð1 � pÞltk

wtk

Eþ
tk
; k ¼ 1; 2

Rþ
t1
¼

�ct1lt1
at1wt1

Eþ
t1

mþ
ct2lt2
at2wt2

Eþ
t2

;

Rþ
t2
¼

�ct2lt2
mat2wt2

Eþ
t2
;

ð38Þ
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Eþk ¼ Aþk ¼ Iþk ¼ Rþk ¼ 0 for k 6¼ τ1, τ2, in the feasible region T provided

Rt1
> Rt2

> 1þ
Rt1
� 1

1þ
Qt2
� Qt1

þ �Rt1

1 � qþ Qt1
� �Rt1

Rt1

ð39Þ

is satisfied.
Proof. The proof is similar to that of Theorem 4.

Remark 14 Unlike Remark 13, we see here that the existence of two endemic equilibrium
points depends on the immunity status of the recovered class. The exposed and infectious equilib-
rium points Eþ

tk
, Aþ

tk
, and Iþ

tk
for model (35) are greater compared to that of model (1). This is

because unlike model (1), model (35) suggests that the recovered population Rk is not fully
immune to emerging strains j> k, increasing the possibility of populating the exposed and
infected classes. In addition, condition (39) implies that Rt1

> Rt2
> 1. The condition is equiva-

lent to Rt1
> Rt2

>
bRt1

aþðb� aÞRt1

, where a ¼ 1 � qþ Qt1
� �Rt1

and b ¼ 1 � qþ Qt2
.

4.5 Global analysis of equilibrium points for model (35)

Theorem 14 The disease-free equilibrium E0 for model (35) is locally asymptotically stable in the
feasible region T if R0 < 1 and globally stable in the feasible region if R0 � 1.

Proof. The proof is similar to that given in Theorems 6 and 7.

Theorem 15. The strain m equilibrium Em for the epidemic model (35) is globally stable in
the feasible region T if Rk � 1 for all 1� k 6¼m� n and Rm > 1.

Proof. The proof is similar to the proof of Theorem 8.

Theorem 16. The equilibrium point ES2
for model (35) is globally stable in the feasible region

T if Rk < 1 for 1� k 6¼ τ1, τ2� n and condition (39) is satisfied.
Proof. The proof is similar to the proof of Theorem 9.

5 Results: Covid-19 data analysis

We apply models (1) and (35) to analyze the United States daily COVID-19 cases (number of

infection cases, recovery cases, and vaccination). The daily COVID-19 cases data are available

on the CDC website [58] for the COVID-19 periods 04/01/2020 till present. We analyze the

confirmed COVID-19 infection cases, and vaccination cases as reported by U.S. states, U.S.

territories, New York City, and the District of Columbia from the previous day. Since the two

recent variant of concerns (VOC) in the United States are the Delta and Omicron variants, we

consider the case where n = 2 using model (35), with the Delta variant as Strain τ1 = 1 and the

Omicron variant as strain τ2 = 2. Two analyses are performed in this section. The first analysis

is shown in Section 5.1 to confirm the validity of the results derived in this work. Using pub-

lished and estimated COVID-19 parameters, we confirm the stability results for the disease-

free equilibrium, strain 1 equilibrium, strain 2 equilibrium, and the endemic equilibrium ES2
.

In section 5.2, the real COVID-19 cases for the United States is analyzed using model (35).

5.1 Simulation results using published and estimated parameters

Using model (35), we confirm the existence, and stability of the disease-free equilibrium, strain

1 equilibrium, strain 2 equilibrium, and the endemic equilibrium ES2
for the case where strains

1 and 2 represent the Delta and Omicron variants, respectively. The CDC data for vaccination

shows that about 63% of the population of the United States are fully vaccinated (either taken

the two dozes of Pfizer or Moderna, or the single dose of Jannsen) as at January 25, 2022. For
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this reason, we chose q1 and q2 to be in the interval [0, 0.63]. In their paper, Saldana [59] shows

that about 80% of infection was asymptomatic with average incubation and recovery time of 5

and 10 days, respectively. Also, Hay et al. [37] shows that the mean duration of Delta and Omi-

cron’s infections is 10.9 days and 9.87 days, with 95% confidence intervals (8.83, 10.9) and

(9.41, 12.4), respectively. For this reason, we set r1, θ1 2 [1/10.9, 1/8.83] and r2, θ2 2 [1/12.4, 1/

9.41]. Based on the five COVID-19 Pandemic Planning Scenarios estimated by CDC, the num-

ber of infections that are asymptomatic is uncertain and in the interval [0.15, 0.7], with the

best estimate of 30%. We set μ = 0.0124. Bernal et al. [60] shows in their studies that the effec-

tiveness of two doses of BNT162b2 (Pfizer) vaccines was 88.0% (95% CI, 85.3 to 90.1) among

those with the delta variant. On November 16, 2020, the company Moderna announced that

their vaccine is more than 94% effective at preventing COVID-19, based on an analysis of 95

cases [61]. We use these estimates for the Herd immunity plot. Following results from Jing

et al, we select values for the incubation period to be between 2 days and 7 days, so that λ1, λ2

2 [1/7, 1/2]. The range of parameters used in the simulation is shown in Table 3.

Simulation result for the case where the population is free of disease on the long run is

shown in Fig 3.

Fig 4 shows simulation result for the case where only strain 1 endemic exists in the popula-

tion. Similarly, Fig 5 shows simulation result where only strain 2 endemic exists in the popula-

tion. In Fig 6, we answer the question as to whether it is possible to have an endemic with

more than one strain of the virus. The figure shows that this is possible if condition (39) is sat-

isfied. Fig 7 shows the importance of condition (39) by confirming that no two strains remain

in the population on the long run even if R1 > R2 > 1 but R2 < 1þ
R1 � 1

1þ
Q2 � Q1þ

�R1
1� qþQ1 �

�R1
R1

. Fig 8

shows the simulation result for the case where R2 > R1 > 1.

5.1.1 What happens if R1 > R2 > 1 but condition (39) is not satisfied?. We study

a case where R1 > R2 > 1 but condition (39) is not satisfied. Although the condition is simi-

lar to that in Fig 6, we see here that the system converges to the strain 1 equilibrium point.

That is, even though the reproduction numbers R1 and R2 are more than one, strain 2 still

gets eradicated from the system on the long run while strain 1 caused an endemic. This study

shows that the second inequality in condition (39) is necessary for the existence of endemic

with more than one strain.

Table 3. Model parameter values.

Parameter Units Range References

β1 day−1 [0.1, 1.4007] [37, 62–66]

β2 day−1 [0.1, 1.6761] Assumed

γ1 day−1 [0.07, 0.9567] [62, 63, 65, 66]

γ2 day−1 [0.07, 0.9567] Assumed

q1 day−1 [0, 0.63] CDC

q2 day−1 [0, 0.63] CDC

p day−1 [0.4, 0.6] CDC

λ1 day−1 [1/7, 1/2] [67]

λ2 day−1 [1/7, 1/2] [67]

r1 day−1 [1/10.9, 1/8.83] [37]

r2 day−1 [1/12.4, 1/9.41] [37]

θ1 day−1 [1/10.9, 1/8.83] [37]

θ2 day−1 [1/12.4, 1/9.41] [37]

https://doi.org/10.1371/journal.pone.0271446.t003
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5.1.2 What happens if R1 > R2 > 1. We study an interesting case where although the

reproduction number R1 for strain 1 is greater than 1, the strain still gets eradicated from the

system on the long run. This happens because a newer strain 2 caused an endemic with a

higher reproduction number R2 > R1 > 1. This case is analyzed geometrically in Appendix B

in S1 Appendix.

5.2 Real data: Analysis using the Delta variant cases for the period

10.09.2021 to 12.18.2021

The work done here is applied to real data using the overall SARS-CoV-2 weekly Variant Pro-

portions [68] for the United States collected from the Centers for Disease Control and Preven-

tion (CDC) for the period 10.09.2021 to 12.18.2021. The proportion of the Delta (B.1.617.2)

variant is collected and used together with the number of daily cases (collected from CDC

[58]) of all variants in the United States. Within this period, data shows that on the average,

the proportion of the Delta variant is about 95% of the total cases in the United State, suggest-

ing that the Delta variant is the dominating variant during the period. For this reason, we set

n = 1 in (35) and estimated the parameters in Table 4 using the Nelder-Mead simplex algo-

rithm as described in Lagarias et al. [69]. These parameters are estimated by minimizing the

sum of square error between the real Delta infection cases and the simulated cases, where the

Fig 3. Stability analysis for the disease-free equilibrium. Case where R1 < 1 and R2 < 1. Here, we set β1 = 0.07, β2 = 0.2, γ1 = 0.1, γ2 = 0.12, μ = 1/

80.3, q1 = 0.5, q2 = 0.4, λ1 = 1/5, λ2 = 1/4, r1 = 1/10.5, r2 = 1/9, θ1 = 0.09, θ2 = 0.1. The reproduction numbers R1 ¼ 0:08 and R2 ¼ 0:74 so that

R0 ¼ 0:74. On the long run, the susceptible population reduces to 10% of the population size while the population receiving vaccination against strains

1 and 2 increases to 50% and 40% of the population size, respectively, in this scenario. The exposed and infected population size converges to zero on

the long run. The disease-free equilibrium is calculated as E0 ¼ f0:1; 0:5; 0:4; 0; 0; 0; 0; 0; 0; 0; 0g.

https://doi.org/10.1371/journal.pone.0271446.g003
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real Delta infection case is generated by multiplying the weekly proportion of the Delta variant

by the weekly COVID-19 cases (generated from the daily cases [58]). We use N = 331893745

for the total population of the United States, with initial point ~y0 ¼ ðS0;V10; E10;A10; I10;R10Þ ¼

ð0:9076; 0:0125; 0:0001; 0:0001; 0:0019; 0:07Þ � N, and endemic equilibrium point

E1 ¼ ð0:5108; 0:0104; 0:2762; 0:0351; 0:1237; 0:0439Þ � N. The real and estimated weekly

COVID-19 cases for the United States for period 10.09.2021 to 12.18.2021 are given in Fig 9

and generated using model (35).

Fig 10 shows the estimated results for the population sizes S, V1, E1, A1, I1, and R1 for the

Delta variant.

Using 88% and 70% for the vaccine effectiveness of two doses of Pfizer vaccine among

those with Delta and Omicron variants, we calculate the Herd Immunity threshold bound to

be [97%, 1). We give a plot of the Herd immunity as a function of the measure of the effective-

ness of available vaccines in Fig 11.

5.3 Real data: Analysis using the Delta and Omicron variant cases for the

period 12.11.2021 to 01.15.2022

The World Health Organization (WHO) and CDC classified a new variant, B.1.1.529, as a

VOC and named it Omicron. The work done here is applied to real data using the SARS-CoV-

2 weekly Variant Proportions [68] for the United States collected by CDC. The proportion of

Fig 4. Stability analysis for the strain 1 equilibrium. Case where R1 > 1 and R2 < 1. This is a case where β1 = 1.2, β2 = 0.4, γ1 = 0.5, γ2 = 0.08, μ = 1/

80.3, q1 = 0.1, q2 = 0.5, λ1 = 1/5, λ2 = 1/4, r1 = 1/10.5, r2 = 1/9, θ1 = 0.09, θ2 = 0.1. A scenario where the population of those receiving vaccination against

strain 1 (with high transmission rate) dropped, leading to strain 1 endemic. In this case, R1 ¼ 2:81 and R2 ¼ 0:86 so that R0 ¼ 2:81. The strain 1

equilibrium is obtained as E1 ¼ f0:1422; 0:1000; 0:5000; 0:0151; 0; 0:0168; 0; 0:0118; 0; 0:2141; 0g:

https://doi.org/10.1371/journal.pone.0271446.g004
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the Delta (B.1.617.2) and the Omicron (B.1.1.529) variants shown in Fig 12 are collected and

used together with the number of weekly cases (collected from CDC [58]) of each variants in

the United States. Data suggests the existence of the two variants as VOC and that the infectiv-

ity of the Delta variant is slowing down while the infectivity of the Omicron variant is increas-

ing during the period 12.11.2021 to 01.15.2022. For this reason, we set n = 2 in (35) and

estimated the parameters b̂1, b̂2, ĝ1, ĝ2, m̂, q̂1, q̂2, p̂, l̂1, l̂2, r̂1, r̂2, ŷ1, and ŷ2 in Table 5 using the

Nelder-Mead simplex algorithm [69]. The Delta and Omicron infected data are generated by

multiplying the weekly proportion of the Delta variant by the weekly COVID-19 cases. We use

N = 331893745 for the total population of the United States, with initial point ~y0 ¼ ðS0;V10;

V20;E10;E20;A10;A20; I10; I20;R10;R20Þ ¼ ð0:6000; 0:0187; 0:0014; 0:0010; 0: 0050; 0:0010;

0:0050; 0:0023; 0:0002; 0:0070; 0:0070Þ � N. The real and estimated weekly COVID-19 cases

for the infected cases I1 and I2 for period 12.11.2021 to 01.15.2022 are given in Fig 13 and gen-

erated using model (35). The reproduction number R1 ¼ 0:0676 for the delta variant is less

than one. On the other hand, the infectivity of the Omicron variant in this period was so high

that the reproduction number obtained was R2 ¼ 5:9503. The strain 2 endemic equilibrium

point E1 ¼ ð0:1411; 0:0018; 0:1500; 0; 0:2864; 0; 0:0830; 0; 0:1274; 0; 0:2104Þ � N suggests

that the Delta variant’s infectivity and exposure will die out on the long run, while there is an

Omicron variant endemic. The proportion of the population vaccinated against the delta vari-

ant converges to 0.18% on the long run, and that of the Omicron variant converges to 15% on

Fig 5. Stability analysis for strain 2 equilibrium. Case where R1 < 1 and R2 > 1. In this case, we set β1 = 0.18, β2 = 0.9, γ1 = 0.1, γ2 = 0.4, μ = 1/80.3,

q1 = 0.5, q2 = 0.1, λ1 = 1/5, λ2 = 1/4, r1 = 1/10.5, r2 = 1/9, θ1 = 0.09, θ2 = 0.1. In this case, R1 ¼ 0:47 and R2 ¼ 4:41 so that R0 ¼ 4:41. The strain 2

equilibrium is obtained as E2 ¼ f0:0907; 0:1134; 0:1000; 0; 0:0330; ; 0; 0:0401; 0; 0:0294; 0; 0:5934g. This vector shows proportions that each of the

population sizes S, V1, V2, E1, E2, A1, A2, I1, I2, R1, R2 converge to on the long run.

https://doi.org/10.1371/journal.pone.0271446.g005
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the long run. The proportion of the susceptible, exposed, asymptomatic infected, symptomatic

infected, and recovered Omicron population converge to 14.1%, 28.64%, 8.30%, 12.74%, and

21.04% of the population size, respectively, on the long run.

The estimated results for all compartments are shown in Fig 14.

5.3.1 Sensitivity analysis. In this section, we study the impact of each epidemiological

parameters on the disease transmission and prevalence. We are interested in discovering the

parameters that have high impact on the basic reproduction number Rk, k = 1, 2, � � �, n. This

can be achieved using sensitivity analysis by calculating the sensitivity index of each parame-

ters on Rk. The normalized forward sensitivity index D
u
p of a variable F that depends differenti-

ably on a parameter u is defined as [71, 72]

D
F
u ¼

@F
@u
�
u
F
:

The analytic expression for the sensitivity index of Rk, k = 1, 2, � � �, n, with respect to the

Fig 6. Stability analysis for the equilibrium ES2
. Case where R1 > R2 > 1þ

R1 � 1

1þ
Q2 � Q1þ

�R1
1� qþQ1 �

�R1
R1

. In this case, we set β1 = 1.2, β2 = 0.9, γ1 = 0.5, γ2 = 0.4, μ = 1/

80.3, q1 = 0.1, q2 = 0.5, λ1 = 1/5, λ2 = 1/4, r1 = 1/10.5, r2 = 1/9, θ1 = 0.09, θ2 = 0.1. In this case, R1 ¼ 2:81 and R2 ¼ 2:45 so that R0 ¼ 2:81. We see in

this case that 1þ
R1 � 1

1þ
Q2 � Q1þ

�R1
1� qþQ1 �

�R1
R1

¼ 1:10 and R1 > R2 > 1þ
R1 � 1

1þ
Q2 � Q1þ

�R1
1� qþQ1 �

�R1
R1

, implying the existence of endemic with more than one strain. We see an

endemic with both strains 1 and 2 because the population is already in an endemic state with strain 1 before strain 2 caused an endemic, and the

number of secondary infection caused by strain 2 is more than 1þ
R1 � 1

1þ
Q2 � Q1þ

�R1
1� qþQ1 �

�R1
R1

but not up to that caused by strain 1. The endemic equilibrium in this

case is ES2
¼ f0:1422; 0:0416; 0:5000; 0:0034; 0:0136; 0:0038; 0:0165; 0:0027; 0:0121; 0:0203; 0:2439g:

https://doi.org/10.1371/journal.pone.0271446.g006
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parameters in (35) is obtained as

D
Rk
bk
¼
ð1 � pÞakbk

ck
;

D
Rk
gk
¼

pwkgk
ck

;

D
Rk
m
¼ �

1

ck
ð1 � pÞakbk

1

ek
þ

1

wk

� �

þ pwkgk
1

ek
þ

1

ak

� �� �

;

D
Rk
qj
¼ 0; j ¼ 1; 2; � � � ; k � 1;

D
Rk
qkþj

¼ �
1

1 � qþ Qk
; j ¼ 0; 1; � � � ; n � k;

D
Rk
p ¼

akwk

ck

gk
ak
�
bk

wk

� �

;

D
Rk
lk
¼

m

lkek
;

D
Rk
rk
¼ �

pwkgk
akck

;

D
Rk
yk
¼ �

ð1 � pÞakbk

wkck
:

Fig 7. Stability analysis for the case where R1 > R2 > 1 but condition (39) is not satisfied. In this case, we set β1 = 1, β2 = 0.05, γ1 = 0.5, γ2 = 0.4,

μ = 1/80.3, q1 = 0.1, q2 = 0.5, p = 0.6, λ1 = 0.2, λ2 = 0.25, r1 = 1/10.5, r2 = 1/9, θ1 = 0.09, θ2 = 0.1. The endemic equilibrium in this case is the strain 1

equilibrium E1 ¼ f0:1588; 0:1000; 0:5000; 0:0141; 0; 0:0158; 0; 0:0110; 0; 0:2003; 0g. Here, R1 ¼ 2:52, R2 ¼ 1:01, 1þ
R1 � 1

1þ
Q2 � Q1þ

�R1
1� qþQ1 �

�R1
R1

¼ 1:09 and

condition (39) is not satisfied since R1 > 1þ
R1 � 1

1þ
Q2 � Q1þR

1
1� qþQ1 � R

1

R1

> R2 > 1. This condition implies, from (38), that Eþ
1
> 0 and Eþ

2
< 0, so that the values Iþ

1
,

Aþ
1

, and Rþ
1

are positive but Iþ
2

, Aþ
2

, and Rþ
2

are negative. This shows that only strain 1 endemic exists on the long run. A similar analysis is presented in

Appendix B in S1 Appendix geometrically.

https://doi.org/10.1371/journal.pone.0271446.g007
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The positive sensitivity index with respect to βk, γk, and λk shows that an increase in the value

of the strain k’s symptomatic, asymptomatic transmission rates, and the latency rate leads to

an increase in the basic reproduction number, Rk, as expected. Likewise, the negative sensitiv-

ity index for μ, ql, l = k, k + 1, � � �, n, rk, and θk shows that an increase in the natural death

rate, vaccination rate, symptomatic and asymptomatic recovery rates, respectively, leads to a

decrease in Rk, as expected. Also, the zero value for the sensitivity index for ql, l = 1, 2, � � �,

k − 1, shows that being vaccinated against predecessor strains l = 1, 2, � � �, k − 1 does not have

any impact on the current and future strains j� k infection count. The sensitivity index D
Rk
p is

positive if
gk
ak
>

bk
wk

. That is, an increase in the fraction of infection cases that are asymptomatic

will lead to an increase in the basic reproduction number, Rk, if the total number of infection

caused by an asymptomatic strain k infectious individual is more than that caused by a symp-

tomatic strain k individual. The magnitude of the sensitivity of Rk to changes in these parame-

ters can be calculated by evaluating D
Rk
u for each parameter estimates u in Tables 4 and 5 for

Fig 8. Stability analysis for the case where R2 > R1 > 1. In this case, we set β1 = 0.9, β2 = 1.0, γ1 = 0.4, γ2 = 0.45, μ = 1/80.3, q1 = 0.12, q2 = 0.1, p = 0.8,

λ1 = 0.21, λ2 = 0.2, r1 = 1/9, r2 = 1/10.5, θ1 = 0.1, θ2 = 0.09. Here, R1 ¼ 3:09 and R2 ¼ 4:49 so that R0 ¼ 4:49. The endemic equilibrium in this case is

{0.1739, 0.0267, 0.1000, 0, 0.0410, 0, 0.0609, 0, 0.0160, 0, 0.5815}.

https://doi.org/10.1371/journal.pone.0271446.g008

Table 4. Parameter estimates for model (35) with n = 1.

Parameter b̂1
ĝ1 m̂ q̂1 p̂ l̂1

r̂1 ŷ1

Estimate 1.3800 0.6000 0.2045 0.01037 0.3 0.1500 0.1500 0.0300

https://doi.org/10.1371/journal.pone.0271446.t004
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case where n = 1 and n = 2, respectively. For a particular parameter u, a higher value of D
Rk
u

suggests that Rk is more sensitive to u. The sensitivity index of Rk to each parameters esti-

mated in Table 5 for model (35) is given in Table 6 for k = 1, 2.

6 Summary and discussion

In this work, a multi-variant epidemic model for analyzing the emergence and dissemination

of viral multi-strains of an infectious disease in a population that is assumed to be completely

susceptible to n different strains of the disease is developed and analyzed. A major assumption

on the viral strains is that those who are vaccinated and recovered from a specific strain k� n
are immune to that strain and its predecessors but can still be infected by newer emerging

strains. A study of how well-poised the model is is carried out by showing the existence of

non-negative solution of the derived model. The model compares the cases where the force of

infection on the susceptible vaccinated and unvaccinated populations are different and the

same. The reproduction number for each specific strains j = 1, 2, � � �, n is obtained and ana-

lyzed. We show that the reproduction number for the system where individuals who recovered

Fig 9. Real (blue) and estimated (red) COVID-19 weekly cases for the Delta variant in the United States.

https://doi.org/10.1371/journal.pone.0271446.g009
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from certain strain can be infected by emerging strain is the same for the system where such

individuals cannot be re-infected by emerging strain. In order to shed more light on the possi-

bility of an endemic with more than one strain of the virus, global stability analysis is obtained

for different equilibrium points ESr
, r = 0, 1, 2, � � �, n, of the system, with ES0

denoting the dis-

ease-free equilibrium. It was shown with respect to model (35) that for an endemic with strains

τ1� n and τ2� n (where τ1 < τ2) to occur, it must be that the reproduction number

Rt1
> Rt2

> 1þ
Rt1
� 1

1þ
Qt2 � Qt1þ

�R1

1� qþQt1 �
�R1

Rt1

. This condition shows that for an endemic with strains τ1� n

and τ2� n to occur, the population must have been in an endemic state with the first emerged

strain τ1 and the number of secondary infection caused by strain τ1 must be greater than that

of strain τ2, with a necessary condition that Rt2
> 1þ

Rt1
� 1

1þ
Qt2 � Qt1þ

�R1

1� qþQt1 �
�R1

Rt1

. The importance of this

necessary condition is emphasized numerically by showing that a system that only satisfies the

condition Rt1
> Rt2

> 1 does not converge to the endemic equilibrium ES2
with strains τ1

and τ2, but instead converges to strain τ1 equilibrium Et1
. The later condition reduces to

Rt1
> Rt2

> 1þ
Rt1
� 1

1þ
Qt2 � Qt1
1� qþQt1

Rt1

for the case where individuals who recovered from certain strain

cannot be infected by emerging strain. A general condition is obtained for the case where

endemic with strains τ1, τ2, � � �, τr (with τ1 < τ2 < � � �< τr) exists in the population. Our

Fig 10. Estimated trajectory path for S, V1, E1, A1, I1, and R1 for the Delta variant. The analysis suggests that the trajectories of the population of

those receiving vaccination against the delta variant and those recovering from the variant are decreasing, while the susceptible, exposed and

asymptomatic populations are increasing in the time period 10.09.2021 to 12.18.2021. The symptomatic population decreases from 10.09.2021 to

10.23.2021, after which it started increasing until the end of the analysis in 12.18.2021. The reproduction number R0 for the variant, using (14), was

calculated to be 1.94.

https://doi.org/10.1371/journal.pone.0271446.g010
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analysis shows that for an endemic with strains τ1, τ2, � � �, τr to exist, the population must first

be in endemic with strain τ1, followed by τ2, � � �, τr, so that condition (24) satisfied. Also, we

showed numerically that a strain with a reproduction number greater than 1 can still die out

on the long run if a newer emerging strain has a greater reproduction number. The effect of

vaccines on the population is also analyzed. The herd immunity for each strain j = 1, 2, � � �, n is

computed as a function of the effectiveness of vaccines against the strain. A threshold for the

herd immunity for the case where there is endemic of more than one strain of the virus is also

calculated. The result is applied to analyze real COVID-19 data for the Delta and Omicron var-

iants in the United States. The reproduction numbers for the Delta and Omicron variants

cases for the period 12.11.2021 to 01.15.2022 suggest that the Delta variant cases is dying

down, while there is an endemic of the Omicron variant. Using model (35), possible trajecto-

ries for the susceptible, vaccinated, exposed, infected and recovered population are plotted by

first estimating the parameters in the model. The parameters are estimated by minimizing the

Fig 11. Herd immunity as a function of the measure of the effectiveness of vaccines for the Delta variant in the United States.

https://doi.org/10.1371/journal.pone.0271446.g011
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sum of square error between the real and estimated infection cases using the Nelder-Mead

simplex algorithm [69]. Further research on the COVID-19 cases is ongoing and the results of

the research will be made known once it is available. In the future, we plan to modify the

model to fit emerging characteristics of the virus and extends limitations in the model to a

more general case.

Fig 12. Proportion of the Delta (a) and the Omicron (b) variant for the period 12.11.2021 to 01.15.2022 in the United States collected from

CDC2.

https://doi.org/10.1371/journal.pone.0271446.g012

Table 5. Parameter estimates for model (35) for the Delta and Omicron variants with n = 2.

Parameter b̂1 b̂2
ĝ1 ĝ2 m̂ q̂1 q̂2 p̂ l̂1 l̂2

r̂ 1 r̂ 2 ŷ1 ŷ2

Estimate 0.0397 2.1614 0.2157 5.6282 0.1500 0.0105 0.1500 0.3946 0.2550 0.2204 0.9987 0.1500 0.2972 0.1500

https://doi.org/10.1371/journal.pone.0271446.t005

Fig 13. Real (dotted blue) and estimated (red) COVID-19 weekly cases for the Delta variant and the Omicron variant for the period 11.27.2021 to

01.15.2022 in the United States.

https://doi.org/10.1371/journal.pone.0271446.g013
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Fig 14. Estimated results for the Delta and Omicron variants. The result shows that the number of Delta exposure and infection cases is decreasing

(slowing down) while the number of Omicron exposure and infection cases is increasing (speeding up) between December 11, 2021 and January 15,

2022. These bring about a decrease in the population of those who are vaccinated against the Delta variant and an increase (at a slowing pace) in the

number of those vaccinated against the Omicron variant. The number of those susceptible to the variants rises between the period 12.11.2021 to

01.01.2022, after which it started falling until 01.15.2022. The population of those who recovered from the Delta variant is speedingly descreasing while

the count of those who recovered from Omicron variant is increasing at a speeding pace. The result of the trajectory of the estimated Delta and

Omicron cases is similar to the plot shown in the work of Nyberg et al. [70].

https://doi.org/10.1371/journal.pone.0271446.g014

Table 6. Sensitivity index of Rk to parameters generated in Table 5 for model (35).

Parameters u

D
Rk
u

βk γk μ qk pk λk rk θk
k = 1 D

R1

u
0.4204 0.5796 −3.9138 −1.1912 0.7744 1.4524 −0.5046 −0.9401

k = 2 D
R2

u
0.3707 0.6293 −5.0312 −1.1765 0.9823 1.8374 −2.0975 −1.2358

Analysis suggests that changes in the asymptomatic transmission rate contribute more to the changes in the reproduction number Rk than the symptomatic

transmission rate for the Delta (k = 1) and Omicron (k = 2) variants. Also, Rk is more sensitive to changes in the infection rate λk than the transmission rates and the

fraction pk of cases that are asymptomatic. For the Delta variant, the reproduction number R1 is more sensitive to the recovery rate θ1 of the symptomatic class than r1.

Likewise for the Omicron variant, the asymptomatic recovery rate r2 has much influence over R2 than the symptomatic recovery rate θ2.

https://doi.org/10.1371/journal.pone.0271446.t006
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64. Niño-Torres D., Rı́os-Gutié rrez A., Arunachalam V., Ohajunwa C., Seshaiyer P. Stochastic modeling,

analysis, and simulation of the COVID-19 pandemic with explicit behavioral changes in Bogotá: A case
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