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Abstract

Cellular senescence is a typical tumor‐suppressive mechanism that restricts the pro-

liferation of premalignant cells. However, mounting evidence suggests that senes-

cent cells, which also persist in vivo, can promote the incidence of aging‐related
disorders principally via the senescence‐associated secretory phenotype (SASP),

among which cancer is particularly devastating. Despite the beneficial effects of the

SASP on certain physiological events such as wound healing and tissue repair, more

studies have demonstrated that senescent cells can substantially contribute to

pathological conditions and accelerate disease exacerbation, particularly cancer resis-

tance, relapse and metastasis. To limit the detrimental properties while retaining the

beneficial aspects of senescent cells, research advancements that support screening,

design and optimization of anti‐aging therapeutic agents are in rapid progress in the

setting of prospective development of clinical strategies, which together represent a

new wave of efforts to control human malignancies or mitigate degenerative compli-

cations.
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In response to various intrinsic and/or extrinsic stimuli, cells enter an

essentially irreversible senescent state, which is regulated and main-

tained by the p53/p21CIP1 and p16INK4a/pRB pathways to prevent

the occurrence of sporadic events, particularly transformation.

Senescent cells display several distinct features including a flattened

and enlarged morphology, DNA segments with chromatin alterations
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reinforcing senescence (DNA SCARS), nuclear heterochromatin foci

and senescence‐associated β‐galactosidase (SA‐β‐Gal) activity (Ozcan

et al., 2016). However, senescent cells are frequently implicated in

multiple disorders, mainly through secretion of numerous bioactive

molecules, a distinctive phenomenon found a decade ago and ter-

med as the senescence‐associated secretory phenotype (SASP;

Acosta et al., 2008; Coppe et al., 2008; Kuilman et al., 2008). The

full SASP spectrum comprises a myriad of soluble factors including

pro‐inflammatory cytokines, chemokines, growth factors and pro-

teases, whose functional involvement can be classified into several

aspects including but not limited to extracellular matrix formation,

metabolic processes, ox‐redox events and gene expression regulation

(Ozcan et al., 2016). The SASP promotes embryonic development,

tissue repair and wound healing, serving as an evolutionarily adapted

mechanism in maintaining tissue and/or organ homeostasis (Davaapil,

Brockes, & Yun, 2017; Demaria et al., 2014; Jun & Lau, 2010;

Munoz‐Espin et al., 2013; Storer et al., 2013). Senescent cells com-

municate with their surrounding environment by expressing the

SASP, with the potential to boost immune surveillance by mounting

specific inflammatory responses including those mediated by CD4+ T

cells against antigens expressed in senescent cells, particularly those

observed in premalignant lesions (Georgilis et al., 2018; Kang et al.,

2011; Toso et al., 2014). Although the SASP is beneficial to several

health‐associated events, more evidence has showed that it actively

contributes to the formation of a pro‐carcinogenic tumor microenvi-

ronment (TME). Long‐term secretion of the SASP factors by senes-

cent cells can impair the functional integrity of adjacent normal cells

in the local tissue, serving as a major cause of chronic inflammation

which drives aging‐related degeneration of multiple organs (He &

Sharpless, 2017). Thus, senescent cells and their unique phenotype,

the SASP, can be defined as a form of antagonistic pleiotropy, a

property that is beneficial in early life and during tissue turnover,

but deleterious over time with advanced age, making both mechanis-

tic investigation and therapeutic intervention of paramount signifi-

cance in current era of precision medicine.

As the SASP can generate contrasting pathophysiological conse-

quences, substantial interest has been sparked in recent years to

achieve an accurate and thorough understanding of this cell‐non‐au-
tonomous phenotype. In cancer patients, the most frequently

observed formats of cellular senescence encompass oncogene‐in-
duced senescence (OIS) and therapy‐induced senescence (TIS) (Sie-

ben, Sturmlechner, Sluis, & Deursen, 2018) (Figure 1). Indeed, both

modalities are initially tumor suppressive, but later tend to manifest

a pro‐tumorigenic capacity by substantially activating the DNA dam-

age response (DDR), which once perceived irreparable by the dam-

aged cells can potently induce the SASP (Rodier et al., 2011). It is

now clear that regulation of the initiation and development of the

SASP involves multiple signaling pathways, including those mediated

by p38MAPK, Jak2/Stat3, the inflammasome, mTOR, GATA4,

macroH2A1, ATM and mitochondrial sirtuins (Ito, Hoare, & Narita,

2017). Although some SASP effectors appear to act post transcrip-

tionally, most SASP regulators converge on two transcription factors,

NF‐кB and C/EBPβ, which co‐regulate many SASP components (Di

Mitri & Alimonti, 2016). Furthermore, some interleukins (ILs) are

encoded by the SASP but can reciprocally modulate the SASP by

feedback mechanisms, such as IL6, IL‐8 and IL‐1α (Di Mitri & Ali-

monti, 2016). Although activation of DNA damage response (DDR) is

essential for the induction and maintenance of senescence (Rodier

et al., 2009, 2011 ), the precise regulatory mechanism directly linking

the DDR events to the SASP development remains largely unclear

F IGURE 1 Oncogene‐ and therapy‐induced cellular senescence. (a) oncogene‐induced senescence (OIS) represents a cell responsive
program provoked upon aberrant activation of specific oncogenes such as Ras, Raf, Akt, Cyclin E and c‐Myc (Acosta & Gil, 2012; Ko et al.,
2018; Warnier et al., 2018). OIS results from the enforcement of a DDR triggered by DNA hyper‐replication induced by oncogene expression,
a process that is initially transient but ultimately ends with the permanent establishment of cellular senescence (Di Micco et al., 2006). In such
a case, persistent DDR events are observed in senescent cells, and molecules such as ATM/ATR, Nbs1 and Chk2 are actively engaged in DDR‐
associated signaling. Regulation of the SASP is subject to multiple intracellular pathways including but not limited to p38MAPK, Jak2/Stat3 and
mTOR (Freund, Patil, & Campisi, 2011; Laberge et al., 2015; Toso et al., 2014), which inevitably converge on transcription factors such as
NF‐кB, C/EBPβ and AP‐1 (Han et al., 2018; Ito et al., 2017). Recent studies revealed that GATA4 is an upstream modulator of NF‐кB signaling
in senescent cells, while the chromatin reader protein BRD4 dynamically binds to super‐enhancer elements adjacent to the genes encoding
SASP factors (Kang et al., 2015; Tasdemir et al., 2016). As different cell types show different responses to oncogenic stress, the relevant
mechanisms dictating the sensitivity or resistance to a specific oncogene remain to be elucidated by future investigations. (b) Therapy‐induced
senescence (TIS) can be typically induced in normal, immortal or transformed, and cancer cells by anticancer compounds or ionizing radiation.
Although generally considered tumor suppressive, TIS has recently been demonstrated by multiple studies to be able to enhance cancer
resistance, relapse and metastasis by causing diverse cytotoxicity‐related side effects including an in vivo form of the SASP (Chen et al., 2018;
Kim et al., 2017; Mikula‐Pietrasik et al., 2016; Wieland et al., 2017; Zhang et al., 2018). Furthermore, experimental data suggested that TIS
induced by genotoxic chemotherapy promotes cancer metastasis from primary sites to distant organs (Demaria et al., 2017). It is imaginable
that similar consequences could be observed in cancer clinics, a process driven by senescent cells with the tendency to promote malignant
progression in the post‐treatment stage, particularly cancer metastasis. We also raise the possibility of assaying typical SASP factors in
peripheral blood of cancer patients for appraisal of treatment outcome and prognosis of disease exacerbation, a significant and innovative
strategy of the SASP‐based pathological assessment that may be realized in future medicine. Abbreviations and notes: A/B/C, oncogenes
alternative to those exemplified (c‐Myc and Ras) in (a); ER, endoplasmic reticulum; SASP, senescence‐associated secretory phenotype; SA‐β‐Gal,
senescence‐associated β galactosidase; DDR, DNA damage response; TME, tumor microenvironment; GATA4, GATA binding protein 4; BRD4,
bromodomain containing 4; dashed lines in (b), potential metastatic sites of disseminating cancer cells driven by the impact of TIS in patients
that have undergone anticancer therapy
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until emergence of recent data, which revealed the implication of a

cGAS‐STING (cGMP‐AMP synthase‐stimulator of interferon genes)

pathway. Briefly, cGAS is a highly conserved cytosolic DNA sensor,

which can be activated once bound by double‐stranded DNA

released from genome instability‐induced micronuclei, a process that

engages a second messenger cGMP‐AMP (cGAMP), which subse-

quently triggers the adaptor protein STING to recruit TANK‐binding
kinase 1 (TBK1) and IκB kinase to activate IFN regulatory factor 3

(IRF3) and NF‐κB, respectively, causing the production of type I

interferons and expression of numerous SASP factors (Dou et al.,

2017; Gluck et al., 2017; Mackenzie et al., 2017; Yang, Wang, Ren,

Chen, & Chen, 2017). However, how the cGAS‐STING pathway is

functionally connected with other SASP modulators including but

not limited to p38MAPK, Jak2/Stat3 and GATA4, remains an open

question that merits future exploration. Given the remarkable com-

plexity of the SASP signaling, further experimental inputs are essen-

tial to achieve new insights and to present optimal molecules for

therapeutic targeting of such a distinctive phenotype.

In clinical medicine, anticancer agents not only triggers significant

apoptosis of cancer cells but also causes substantial damage in the

TME and induces typical TIS of the resident stromal cells, which

cause therapeutic resistance via secretion of the SASP factors (Chen

et al., 2018; Sun et al., 2012, 2016 ). Interestingly, damage‐provoked
SASP can also be restrained to preserve tissue homeostasis and pre-

vent chronic inflammation, as suggested by recent study that

revealed PI3K/Akt/mTOR pathway as a molecular rheostat to control

the SASP progression (Bent, Gilbert, & Hemann, 2016). Indeed, a

TME‐specific stress response is engaged promptly upon cellular dam-

age particularly those induced by genotoxic insults, and stromal cells

exhibit an acute stress‐associated phenotype (ASAP) characterized

by subsequent secretion of a small handful of soluble factors includ-

ing IL‐6 and Timp 1 (Gilbert & Hemann, 2010). In contrast to the

ASAP as a rapid response mainly involving the ATM‐TRAF6‐TAK1
axis, the SASP is a relatively chronic process governed by key signal-

ing nodes such as TAK1, a central kinase that functionally mediates

phenotypic transition from the ASAP to the SASP and holds remark-

able potential as an optimal therapeutic target to manipulate the

SASP with a higher efficacy than that of p38‐ or mTOR‐oriented
suppression (Zhang et al., 2018).

A new function of the SASP was recently discovered, which is

linked with increased expression of stem cell markers and ker-

atinocyte plasticity upon short term exposure of cells to the SASP

in vitro and liver regeneration of a treatment‐inducible OIS mouse

model in vivo, thus raising the possibility that transient therapeutic

delivery of senescent cells could be harnessed to promote tissue

regeneration (Ritschka et al., 2017). Interestingly, another study used

agent‐inducible senescence animal models targeting trimethylation of

lysine 9 at histone H3 (H3K9me3) or p53 to simulate spontaneous

escape from cellular senescence, and found that cells released from

senescence can re‐enter cell cycle with pronouncedly enhanced

stemness and Wnt‐dependent growth potential compared to identi-

cal cell populations exposed to same chemotherapy but without

experiencing senescence (Milanovic et al., 2018). Thus, senescence‐

associated reprogramming promotes cancer stemness (senescence‐
associated stemness, or SAS), a distinct property that has profound

implications for cancer therapy and presents new mechanistic

insights into cancer cell plasticity. Partially resembling cancer cells

which pose substantial threat to human lifespan, senescent cells are

functionally involved in tumor progression and can be viable targets

for some reasons. First, senescent cells share common biochemical

features, allowing use of a single therapeutic agent to eliminate them

from the tissue microenvironment. Second, new protocols targeting

senescent cells could practically synergize with hitherto established

or proposed anticancer programs, which are frequently based on a

presenescence scenario (Acosta & Gil, 2012). Given that many

chemotherapeutics induces collateral senescence in the TME, phar-

maceutical agents targeting senescent cells can be a key component

of advanced anticancer arsenal (Childs et al., 2017). However, is

there a way to radically remove senescent cells in the damaged or

aged tissue rather than merely inhibition of the SASP, so that long‐
term drug administration can be circumvented?

Several recent studies provided a series of pilot evidence in

specific clearing senescent cells, including single or dual treatment of

senescent cells with quercetin/dasatinib, and pan‐BCL inhibition with

ABT‐263/ABT‐737 (Chang et al., 2016; Yosef et al., 2016; Zhu et al.,

2015). Frequently detected in fruits and vegetables, quercetin is nat-

ural product and beneficial against aging, as evidenced by its capac-

ity in attenuating premature senescence of human mesenchymal

stem cells (hMSCs) in Hutchinson‐Gilford progeria syndrome and

postponing physiological‐aging of hMSCs in Werner syndrome (Geng

et al., 2018). Dasatinib is a suppressor of Src kinase family and has

showed prominent efficacy for some cancer types including chronic

myeloid leukemia and colon cancer (Benthani et al., 2018; Naqvi

et al., 2018). The senolytic cocktail consisting of dasatinib and quer-

cetin reduces the number of naturally occurring senescent cells in

explants of human adipose tissue, while intermittent oral administra-

tion of senolytics to either senescent cell‐implanted young animals

or naturally aged mice can alleviate physical dysfunction and extend

post‐treatment survival (Xu et al., 2018). However, both compounds

(dasatinib and quercetin) were considered to be nonspecific among

types of senescent cells and can display cell type‐dependent effects
(Zhu et al., 2015). Given the prominent efficacy of the senolytic

cocktail in controlling aging‐related symptoms as demonstrated in

multiple lines of experimental mice including those of an immunode-

ficient or immunocompetent background, and in human adipose tis-

sue explants (Ogrodnik et al., 2017; Schafer et al., 2017; Xu et al.,

2018), a comprehensive and practical use of these compounds as

clinical senolytics upon systemic evaluation is intriguing for future

medicine. In addition, BCL inhibitors or BH3 mimetic drugs appeared

to be an alternative group of agents against senescent cells by

specifically targeting multiple BCL family members including BCl‐2,
BCL‐xl, and BCL‐w (Chang et al., 2016; Yosef et al., 2016). Specifi-

cally, ABT263 (also navitoclax) reduces viability of senescent human

lung fibroblasts (IMR90), human umbilical vein epithelial cells

(HUVECs) and murine embryonic fibroblasts (MEFs), but not human

primary preadipocytes, thus is senolytic in some, but not all types of
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TABLE 1 Small molecule agents that hold potential as SASP inhibitors or senolytics in cancer clinics

Agent Target (s) Target class Development status References

ABT‐263 BCL‐2/BCL‐XL Pro‐survival
or anti‐
apoptotic

factors

Preclinical animal models/Clinical
trials (phase I/II (NCT00406809 for

leukemia and lymphoma/NCT00445198 for

lung cancer), phase I (NCT00743028 for

leukemia and lymphoma/NCT00982566 for

lymphoma and solid tumors), and

phase II (NCT02591095 for ovarian

cancer/NCT01557777 for leukemia))

Chang et al. (2016)

ABT‐737 BCL‐w/BCL‐XL Pro‐survival
or anti‐
apoptotic

factors

Preclinical animal models/Ex vivo

evaluation of ovarian tumor (NCT01440504)

Yosef et al. (2018)

Dasatinib Pan‐receptor tyrosine kinases Receptor

tyrosine

kinases

Clinical trials (Phase I/II (NCT00597038 for

melanoma/NCT00550615 for lymphoma),

Phase I (NCT00652574 for

mesothelioma/NCT01744652 for

advanced cancers), Phase II (NCT02744768

for leukemia/NCT00429949 for myeloma),

Phase III (NCT02013648 for leukemia),

Phase IV (NCT03216070 for leukemia))

Xu et al. (2018) and

Zhu et al. (2018)

Metformin The IKK complex and/or NF‐κB The SASP Approved for type II diabetes/Clinical
trials for cancer (Phase I/II (NCT02949700

for head and neck squamous cell carcinoma),

Phase II (NCT03137186 for prostate

cancer/NCT03398824 for Fanconi

Anemia/NCT02506777 for breast cancer)),

clinical trials for aging

(Phase IV (NCT02745886 for

aging/NCT02432287 for aging))

Oubaha et al. (2016)

Rapamycin Mechanistic target

of rapamycin kinase (mTOR)

The SASP Approved for immunosuppression/Clinical
trials for cancer (Phase I (NCT02724332

for liver cancer/NCT03014297 for

neuroendorine tumors))

Herranz et al. (2015)

and Laberge

et al. (2008)

RAD001 Mechanistic target

of rapamycin kinase (mTOR)

The SASP Approved for immunosuppression, clinical

trials for cancer (Phase I/II
(NCT00516165 for liver cancer/)，
Phase II (NCT00782626 for glioma

and astrocytoma/NCT01051791 for

head and neck squamous cell

carcinoma/NCT01152840 for

adenoid cystic cancer))

Zhang et al. (2017)

LY2228820 p38MAPK The SASP Clinical trials for cancer

(Phase I (NCT01393990 for

advanced cancer), Phase I/II (NCT01663857

for ovarian cancer, NCT02364206

for glioblastoma)

Freund et al. (2011)

LY3007113 fp38MAPK The SASP Clinical trials for cancer

(Phase I (NCT01463631 for

advanced cancer))

Freund et al. (2011)

Quercetin Lipoprotein lipase (LPL)

and potassium voltage‐gated
channel subfamily E regulatory

subunit 2 (KCNE2)

Antioxidant

enzymes

Phase II clinical trial (NCT02848131)

for chronic kidney disease

Zhu et al. (2018)

FOXO4‐DRI Interaction between FOXO4 and p53 Pro‐survival
or anti‐
apoptotic

factors

Preclinical animal models Baar et al, (2017)

5Z‐7‐Oxozeaenol Transforming growth

factor‐β1‐activated kinase‐1 (TAK1)

The SASP Preclinical animal models Zhang et al, (2017)
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senescent cells (Zhu et al., 2016). ABT263 has been extensively

applied with success in treatment of human malignancies including

lymphoma and multiple solid tumors; while another BCL inhibitor

ABT737 has experienced an ex vivo evaluation in ovarian tumor sam-

ples (Lheureux et al., 2015). Unfortunately, a major drawback of

BCL‐targeting agents merits attention, which predominantly results

from their pronounced cytotoxicity, especially BCL‐2 inhibitors such

as ABT263 and ABT199 (also venetoclax), the strong apoptosis

inducers that pose a substantial risk to most cell types. Although

applicable for immediate life‐threatening conditions including

advanced malignancies, off‐target damage should be avoided inten-

tionally for cancer patients and those at high age. Despite the antise-

nescence potential of these agents, future studies should be able to

address whether further optimization is technically feasible or more

selective agents can be designed, the latter ideally targeting intracel-

lular molecules/pathways that are specifically up‐ or down‐regulated
in senescent cells and are inherently correlated with their survival.

To date, several senolytic molecules have been identified that show

promising potency and selectivity such as a D‐retro inverso (DRI)

peptide that perturbs FOXO4 interaction with p53 and causes pro-

nounced apoptosis of senescent cells (Baar et al., 2017). Further-

more, utilization of these “first‐generation” senolytic strategies in

preclinical models is disease‐minimizing, presumably through attenua-

tion of the SASP. This implies that diseases associated with senes-

cent cells, such as cancer, may be amenable to senotherapy

mediated by agents that are in currently ongoing clinical trials but

have the potential to be exploited as modulators or eliminators of

senescent cells (Table 1).

Cellular senescence occurs throughout lifespan, and senescent

cells are beneficial to certain physiological and pathological pro-

cesses including embryonic patterning, tissue repair, wound healing

and immune surveillance. However, as address above, a steady accu-

mulation of senescent cells in the tissue has adverse consequences,

ultimately enhancing clinical morbidity. Thus, the abundance of

senescent cells in vivo may serve as a “molecular” marker for disease

occurrence and guide patient stratification (Demaria et al., 2017), a

novel approach for clinical advancement which can be correlated

with benefit of senotherapy.

Despite all the recent findings from senescence and cancer

research, there are several caveats before we move forward. Agents

targeting senescent cells, especially SASP inhibitors, should be inves-

tigated meticulously to ensure continued maintenance of cell cycle

arrest, as bypassing the crisis can inevitably promote carcinogenesis.

As senescent cells also have certain health‐promoting functions,

identification of the beneficial components of the SASP could lead

to development of optimal strategies that preserve vital factors while

depleting their detrimental counterparts derived from senescent

cells. As a technical issue, achieving the balance between deleterious

and beneficial impact of senolytics in cancer patients requires careful

and rational design of administration regimens such as classic

chemotherapy followed by senolytic treatment, each provided in

metronomic cycles to minimize in vivo toxicity but enhancing overall

efficacy. Such a therapeutic modality is desirable and holds the

potential to enhance patient treatment efficacy while reducing

adverse side effects that can be observed upon administration of

each agent in a single dose. Finally, targeting senescent cells while

simultaneously promoting tissue regeneration represents an optimal

solution to remove senescent cells from individuals particularly those

with advanced diseases or at later stage in life. In doing so, we are

getting even closer to achieving the goal of a real “healthy” therapy

against human cancer and aging.
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