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Introduction

Male factor infertility can be a health issue for males and is 
primarily responsible for inability to conceive a child after 1 
year of regular, unprotected intercourse [1]. Particularly, male 
factor infertility affects nearly 50% of infertile couples world-
wide who want a child and who require empirical therapy [2]. 
In a fertility clinic, physiologically abnormal spermatozoa are 
the prime target for male fertility evaluation and are tested 
for each step of successful conception, such as movement, 
fertilization, embryonic progress, and pregnancy. For these 
evaluations, distinct aspects of semen analysis such as sperm 
concentration, motility, morphology, acrosomal integrity, DNA 
damage, chromatin stability, oxidative stress, and genomic 
and proteomic composition have been thoroughly investi-
gated. Nonetheless, the present understanding of abnormal 
sperm functions including their different physiological and 
pathological aspects remains limited and not well defined. 
Therefore, more extensive evaluation techniques are required 
to clarify the associations among certain diagnostic strategies 
and their evaluation of fertilizing capacity for males. Con-
ventional semen analysis has been considered as the initial 
choice for fertility assessment and commonly tailored by more 
intensive and comprehensive sperm function tests. Recently, 
concerns have arisen to establish tests for selecting mature 

spermatozoon containing regular number of chromosomes. 
Thus, SpermSlow, sperm aneuploidy analysis, proteomic and 
genomic investigations are getting more attention, which 
could provide highly accurate assessment of male fertility by 
determining the true fertilizing potential of spermatozoa. 
However, both comprehensive and conventional sperm func-
tion tests still lack accuracy and reproducibility. Successive 
introduction of intracytoplasmic sperm injection (ICSI), intra-
cytoplasmic morphological sperm injection (IMSI), and physi-
ological intracytoplasmic sperm injection (PICSI) for successful 
reproductive outcome encouraged to go for newer tests 
which should expect the successful fertilization in vitro and in 
vivo.
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Sperm biology

Spermatogenesis is a differentiation process that transforms a 
spermatogonial stem cell into spermatozoa within 74 days in 
the seminiferous tubules of the testes [3]. Over 1 mitotic and 
2 meiosis divisions, the spermatogonial cell is transformed 
through subsequent proliferation and differentiation into a 
primary spermatocyte, secondary spermatocyte, spermatid, 
and finally a spermatozoon. This spermatogenesis process is 
controlled by follicle-stimulating hormone. However, at the 
end of the spermatogenesis process, spermatozoa move for-
ward from the lumen of the seminiferous tubule to the proxi-
mal end of the epididymis [4]. During the next journey from 
the proximal to distal end of the epididymis, spermatozoa un-
dergo a process where they acquire maturity, motility, and fer-
tilizing capacity. Eventually, matured spermatozoa are stored 
in the epididymis tail until ejaculation. After ejaculation, sper-
matozoa undergo the capacitation process in the female re-
productive tract. During capacitation, spermatozoa undergo a 
series of biochemical and physiological modifications through 
which they gain fertilizing ability [5]. Subsequently, capacita-
tion triggers hyperactivated motility. Once spermatozoa reach 
an oocyte, they start the acrosome reaction (AR) before pen-
etrating the zona pellucida. Fertilization occurs through sub-
sequent zygote formation and development. Any abnormality 
that could befall spermatozoa during movement from testes 
to oocyte can lead to infertility.

Conventional semen analysis

Spermatogenesis and maturation processes can be affected 

by fluctuations in hormones, temperature, dietary balance, 
and exposure to toxins due to habits or environmental pol-
lutants (i.e., smoking, alcohol, cadmium, lead, radiation, 
pesticide, endocrine disruptor chemicals) [6-9]. Eventually, 
these factors can affect semen quality and result in abnor-
mal spermatozoa. Conventional semen analysis is commonly 
used to define semen quality and to predict only quantita-
tive values. Semen samples should be tested twice after an 
abstinence period of 2–7 days. After collection, the sample 
should be liquefied at room temperature and analyzed 
within 1 hour. Particularly, the number of spermatozoa pres-
ent in each ejaculate, the percentage of motile spermatozoa 
or progressive motility, and the proportion of morphologi-
cally normal spermatozoa are evaluated based on standard 
reference values proposed by the World Health Organization 
(WHO) (Table 1) [10]. A large study was performed to evalu-
ate male fertility based on sperm concentration, motility, and 
morphology among 765 males of infertile couples and 696 
males of fertile couples. In that study, significant overlap was 
found between the fertile and infertile groups in all param-
eters (sperm concentration, motility, and morphology) [11]. 
Despite of the inaccuracy of these conventional semen analy-
ses to evaluate male fertility was acknowledged in the mid-
1980s [12], these are corner stone of infertility evaluation. 
Several recent studies have focused on establishing effective 
reference values for clinical use of semen analysis [13-15]. In 
1998, Bonde et al. [16] proposed that sperm count and mor-
phology were correlated with conception. Although a range 
of semen analysis methods are commonly used throughout 
the fertility clinics and laboratories across the world, the cur-
rent quality assessment tools of semen are unable to provide 
accuracy for predicting fertility status of a man [10,17-19]. 

Table 1. Standard reference values for semen characteristics World Health Organization (WHO) (2010) 

Volume 2 mL or more

pH 7.0–8.0

Sperm concentration 15 million or more/mL

Total No. of spermatozoa 39 million or more spermatozoa/ejaculate

Motility 40% or more progressive motility or 32% (a+b) (within 1 hour after ejaculation)

Morphology 4.0% or more (normal forms)

Viability 58% or more live spermatozoa

Leukocytes (106/mL) <1.0

Mixed antiglobulin reaction Less than 50% spermatozoa with adherent particle

Source: WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 5th edition. Geneva (Switzerland): 
World Health Organization; 2010.
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Therefore, lower reference limits for semen parameters have 
been modified several times (1987, 1992, 1999, 2010) in the 
WHO manual to increase the clinical value of these param-
eters for evaluating male fertility.

Sperm motion kinematics

Motile spermatozoa follow various specific movement pat-
terns that are attained based on the sperm’s functional 
requirement. Human spermatozoa ideally tend to generate 
propulsive forces, i.e., linear and progressive trajectories, dur-
ing cervical barrier penetration. Therefore, several specific 
movement attributes (average path velocity, straightness, 
and amplitude of lateral sperm head displacement) including 
conventional analysis criteria (sperm count and morphology) 
are considered features of semen quality that can facilitate 
cervical barrier penetration [20,21]. Consequently, computer-
assisted semen analysis (CASA) has been established for me-
chanical analysis of sperm kinematics of ejaculated semen [22]. 
Based on serial digital imaging, CASA determines the sperm 
head trajectory and movement by measuring the motion pat-
terns of the sperm head in 2 dimensions. Several researchers 
have suggested that quantitative evaluation of sperm kine-
matics using CASA can assess human sperm fertility under 
in vitro conditions, and that conventional semen analysis 
provides values of limited accuracy [23,24]. In addition, many 
studies have demonstrated that quantitative assessment of 
sperm motion kinematics has diagnostic value for evaluating 
unexplained infertility [25,26].

Although CASA was initially accepted as an important 
method for semen diagnosis, the individual motion kinematic 
value for fertility assessment remains questionable. Moreover, 
a wide range of errors due to object selection, setup proce-
dures, and different kinetic values among populations render 
this application unacceptable [27]. Hyperactivation is another 
form of spermatozoa movement defined by high velocity 
and asymmetrical flagellar waves. Hyperactivated motility is 
an indication of the capacitation process believed to facilitate 
the mechanical thrust from the tubal epithelium to penetrate 
the zona pellucida [28]. Although hyperactivated motility can 
have significant effect on sperm fertility, there is no estab-
lished value for the proportion of hyperactivated spermatozoa 
that should be present in each semen sample of a fertile male; 
as a result, the universal criteria for hyperactivation remain un-

known. Therefore, although a previous study has established 
a relationship between hyperactivated sperm percentage and 
successful fertilization in vitro, this quantitative parameter is 
not recommended for clinical use [29].

Sperm morphology

Sperm morphology is an integral part of routine analysis of 
human semen. Kruger et al. [30] proposed strict criteria for 
evaluation of sperm morphology, where spermatozoa with 
any slight defect in the head, neck, body, and tail regions are 
considered to have abnormal morphology under the strict 
criteria. Eventually, these strict criteria were included in the 
latest WHO laboratory manual for the prediction of normal 
sperm morphology [31-38]. If more than 4% of sperm show 
a normal sperm morphology, the semen is considered within 
95% of the fertile reference range [32]. One recent study 
has shown that the percentage of morphologically normal 
spermatozoa influenced the time to pregnancy (TTP) [39]. 
After evaluating 501 couples, investigators reported that 
sperm head width and coiled tails were important predic-
tors of TTP [40]. In addition, percentage of morphologically 
normal spermatozoa independent of sperm concentration 
provided significant predictive value for couple fecundity 
as measured by TTP [40,41]. However, after 1987, studies 
revealed that sperm morphology is a vital indicator of male 
fertility, controversies are also increasing. A study evaluated 
the consequences for men with 0% morphologically normal 
spermatozoa to determine the relationship between sperm 
morphology and reproductive success independent of as-
sisted reproductive technologies (ART). Men with 100% 
abnormal spermatozoa achieved pregnancies in which only 
25% required in vitro fertilization (IVF). Therefore, to refine 
the evaluation process, additional functional tests have been 
developed to explain the unanswered questions pertaining 
to male fertility [42].

Sperm viability

Sperm viability is an evaluation parameter for investigating 
the percentage of viable spermatozoa in an ejaculate that 
contains <5%–10% motile spermatozoa. Ultrastructural 
defects in human spermatozoa produce dead or non-motile 
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spermatozoa. Moreover, sperm viability is used to identify via-
ble spermatozoa that are appropriate for ICSI. Correa and Za-
vos [43] proposed that a positive correlation between viable 
and motile spermatozoa percentage in human semen could 
predict sperm fertility. Two methods are commonly used 
for sperm viability testing, the hypo-osmotic sperm swell-
ing test (HOST) to differentiate dead or live sperm and flow 
cytometry to investigate sperm membrane integrity. The 
HOST procedure consists of placing spermatozoa into media 
with a lower osmotic potential than the spermatozoa. Thus, 
water enters the cytoplasm of live spermatozoa to achieve 
osmotic pressure equilibrium, which swells the spermatozoa 
tails. Supravital dyes (e.g., eosin or trypan blue) are also 
used to investigate sperm viability. Since the mixture of sper-
matozoa and supravital dye kills spermatozoa, the cells can-
not later be used for ICSI. Therefore, the HOST is considered 
more suitable and allows the spermatozoa to subsequently 
be used for ICSI. Flow cytometry is another technique used 
to investigate the viability of spermatozoa by examining the 
integrity of both the plasma and mitochondrial membranes 
[44]. According to the WHO (5th edition), HOST is normal 
for a semen sample if >58% of spermatozoa undergo tail 
swelling, indicating an intact membrane. Semen consist-
ing of <50% viable spermatozoa is considered abnormal. 
A recent study focused on both sperm viability and DNA 
fragmentation by testing 3,049 semen samples from 2008 
to 2013 and showed a strong negative correlation between 
sperm viability and DNA fragmentation rate. The study 
reported that men with sperm viability ≥75% or ≤30% do 
not require DNA fragmentation index (DFI) [45]. Therefore, 
sperm viability tests are a valuable cost-effective measure for 
investigating male fertility, while DNA fragmentation tests 
are expensive as a routine test. Although motile spermato-
zoa could be defined as viable, viable spermatozoa are also 
related to an undamaged plasma membrane since the plas-
malemma is essential for interactions between spermatozoa 
and oocyte. Therefore, sperm viability assay methods not 
only focus on cell viability, but also assess whether the plas-
malemma is intact.

Acrosomal integrity

Evaluation of acrosomal status in human spermatozoa is an-
other method to predict male fertility. Ionophore A23187-

induced AR (acrosome reaction to ionophore challenge [ARIC]) 
is a good indicator of male fertility [46]. An infertile male 
who undergoes the ARIC test shows a significantly reduced 
number of acrosome-reacted spermatozoa. A study of 86 
males with good fertilization rate (≥30%) and 39 males with 
poor fertilization rate (<30%) undergoing IVF and embryo 
transfer was conducted to verify the efficacy of the ARIC test. 
Significant reduction in induced AR rate and ARIC value was 
found in the poor fertilization group. Using the cutoff value 
of 8.5 for the ARIC test, sensitivity, specificity, positive predic-
tive value, and negative predictive value were 83.7%, 92.3%, 
96.0%, and 72.0%, respectively [47]. When using the ARIC 
test with ionophore A23187, clinicians can determine the dif-
ference between complete acrosome-reacted spermatozoa 
with and without treatment [48]. This percentage difference 
provides the evaluative value; a difference ≤5% indicates male 
infertility. If the acrosome-reacted spermatozoa represent 
5%–10% of a given sample, high fertility and reproductive 
outcomes might be indicated [49]. Thus, this evaluative pa-
rameter could be useful to explain male infertility if a couple 
fails IVF, but is not yet suitable for assessing male infertility as 
the primary stage.

Hemizona assay

Sperm-zona binding triggers the AR in mammalian spermato-
zoa. Therefore, during IVF, imperfect binding and penetration 
of spermatozoa with the zona pellucida result in unsuccessful 
fertilization. Overstreet and Hembree [50] introduced an as-
say for assessing human sperm-oocyte interactions. Because 
sperm-zona binding is a species-specific event, the bioavail-
ability of this assay is limited [51]. However, 2 available assays 
are used to assess sperm-zona binding ability, the hemizona 
assay and the sperm–zona binding ratio. Human oocytes are 
used to isolate zona pellucida, which is divided in half during 
the hemizona assay. One half of the zona pellucida is incu-
bated with a fertile male’s spermatozoa (control group), and 
the other half is incubated with the patient’s spermatozoa 
(evaluated group).

The binding ratio of patient spermatozoa to that of a fertile 
donor is evaluated; a ratio <30% is considered abnormal/
infertile [51]. In addition, the sperm-zona binding ratio is an-
other method to assess male fertility. The patient and fertile 
male spermatozoa are labeled with 2 distinct fluorochromes. 
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After incubation with intact oocytes, the total number of 
bound spermatozoa is counted [49]. The lower binding ratio 
of spermatozoa with the zona pellucida has been correlated 
with lower fertilization rates during IVF. Therefore, these tests 
are beneficial mainly for male patients that have failed stan-
dard IVF and have limited utility in cases of primary infertility. 
However, the use of human oocytes raises ethical issues for 
these tests, while intra- and inter-assay variability during test-
ing are 2 major factors that affect the assay efficiency.

Sperm penetration assay 

In an earlier study, basic semen analysis showed a large per-
centage of false data with low accuracy to predict fertility po-
tential in terms of both spontaneous and assisted conception 
[21]. Therefore, to obtain more efficient assessment tool, re-
searchers focused on the ability of spermatozoa to penetrate 
an oocyte. Hence, sperm penetration assay (SPA) introduced 
by Yanagimachi [52] in 1976 is considered the most reliable 
bioassay for explaining non-defined male infertility [53,54]. 
Subsequently, this assay was utilized due to the reduced false 
data results and high accuracy [53,54]. However, hamster egg 
retrieval, semen sampling and liquefaction, sperm washing 

and preincubation, insemination, sperm-egg coincubation, as 
well as the protein source in the media are the main factors 
that affect the SPA test [55]. Various protein sources and their 
different concentrations have significant effects on SPA test 
results (Fig. 1) [56]. Several factors such as period of absti-
nence, sperm concentration during coincubation, media con-
stituents, trypsinization, and clinician experience have been 
reported as inter and intra- assay variables those can influence 
SPA accuracy [57]. Therefore, several studies have been done 
to optimize and standardize SPA test using other mammalian 
animal trials [56,58,59]. In the early stage of SPA, several stud-
ies have focused on the correlation (positive/negative) among 
quantitative parameters and SPA. Additionally, SPA combined 
with other tests, including strict sperm morphology criteria 
and the ARIC test, can provide more accurate values regard-
ing fertilizing capacity [60]. Nonetheless, SPA is still difficult to 
standardize due to variation of culture condition. Moreover, 
this is a cumbersome, costly, time consuming method, which 
had lost its clinical usefulness after introducing ICSI.

Reactive oxygen species

In recent years, oxidative stress has been recognized as one 

Fig. 1. Effects of sperm treatment based on TEST-yolk buffer (TYB), Biggers-Whitten-Whittingham (BWW), and human serum albumin (HSA) 
on the outcome of the sperm penetration assay (SPA). (A) Effect of TYB and BWW on the outcome of SPA tests. (B) Human serum albumin 
concentrations in fertilization media. (C) Human serum albumin concentration in swim up method. The figure has been modified, and citing the 
original source published by Oh et al. [59]. PI, penetration index; PR, plasticity range.
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of the main factors affecting sperm functions [52,53]. In the 
male reproductive system, production of antioxidant scaven-
gers and reactive oxygen species (ROS) is required to maintain 
equilibrium; low ROS levels regulate capacitation, and elevat-
ed ROS levels affect sperm physiology by increasing oxidative 
stress [61]. Elevated ROS levels such as superoxide anions, 
hydrogen peroxide, and hydroxyl radicals or decreased anti-
oxidant levels are the main factors for sperm malfunctions by 
affecting the sperm cell membrane lipid peroxidation, sperm 
motility, and DNA integrity [62]. Since human spermatozoa 
are very sensitive, these dysfunctions impair their fertilizing 
ability. To assess ROS levels in semen, the chemiluminescence 
assay is used [63], and total antioxidant capacity is detected 
using the colorimetric assay [64]. A recent study proposed an 
optimal cutoff value to differentiate between controls and in-
fertile males of 102.2 relative light unit/s/106 sperm, showing 
76.4% sensitivity and 53.3% specificity [65]. However, the 
accuracy of this method to evaluate male fertility is not well-
established. Further investigations are required to establish 
highly accurate ROS cutoff values in both fertile and infertile 
patients.

Sperm DNA damage

DNA damage is responsible for causing apoptosis in sper-
matozoa and loss of embryo development and pregnancy. A 
considerable number of studies have shown the number of 
DNA-damaged spermatozoa is higher in infertile than fertile 
males [66]. Therefore, DNA damage is an important factor 
for sperm quality evaluation that correlates with both in vivo 
and in vitro development of an embryo [67]. DNA dam-
age can be assessed by several assays including single-cell 
electrophoresis assay, terminal deoxynucleotidyl transferase-
mediated deoxyuridine triphosphate nick end-labeling as-
say, alkaline gel electrophoresis, sperm chromatin structure 
assay (SCSA), and quantitative polymerase chain reaction of 
nuclear and mitochondrial DNA. Previous studies have indi-
cated that sperm DNA damage affects male fertility potential 
and has a higher predictive value for reproductive outcome 
in natural fertility [66,68,69] In addition, poor results after 
intrauterine insemination (IUI) are associated with a high per-
centage of damaged DNA in a group of spermatozoa; how-
ever, the factors affecting fertilization rate or pregnancy can 
be avoided by ICSI [70,71]. Study results have indicated that 

SPA optimized with a sperm head chromatin pattern was 
highly accurate [72], showing 96% sensitivity and 56% spec-
ificity, which could be useful for evaluating infertile males. 
Moreover, results from ICSI or routine IVF demonstrated that 
a DFI value <30% can decrease fertility success in infertile 
couples by 1.6-fold [73]. Conversely, a recent meta-analysis 
confirmed a minor but statistically significant relationship 
between sperm DNA damage and pregnancy rate in IVF and 
ICSI cycles, although the clinical utility of sperm DNA dam-
age has not been determined [74].

SCSA

The SCSA was proposed by Evenson et al. [75] in 1980 to 
investigate sperm DNA integrity. After its introduction, SCSA 
was considered a method that could potentially help with 
male factor infertility and obtain success in ART. SCSA is a 
flow cytometric method that tests the vulnerability of DNA 
to acid-induced denaturation by exposure to acridine orange 
media [76]. Double-stranded DNA binds with acridine orange 
and fluoresces green, while single-stranded DNA binds with 
acridine orange and fluoresces red. Using flow cytometry, 
the ratio of red to green fluorescence can be analyzed. The 
percentage of spermatozoa with red fluorescence as the ratio 
of red/red and green fluorescence is termed the DFI and can 
be visualized on a histogram. Conversely, spermatozoa with 
green fluorescence show the percentage of sperm with high 
DNA integrity (mature sperm). DNA damage in spermatozoa 
is considered to be associated with poor semen quality, which 
can lead to a lower preimplantation rate, higher abortion rate, 
and higher childhood cancer [77]. Combining the SCSA test 
with conventional sperm analysis can result in higher accuracy 
when assessing male fertility. If one of the traditional sperm 
parameters is abnormal, fertility is reduced, with a DFI >10%. 
Infertile males with a high DFI percentage have less potential 
for natural fertility and IUI outcome. However, ICSI does not 
consider DNA damage as a factor affecting the reproductive 
outcome [75,78].

ICSI, IMSI, and PICSI for male fertility 
assessment

Following all sperm function tests, the percentage of sperm 
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that bind and penetrate the zona pellucida in oocytes cannot 
explain the approximately 25% of male infertility worldwide 
[69]. For couples who suffer from a low fertilization rate over 
several IVF cycles, ICSI helps to alleviate male factor infertility 
[69,74]. However, the outcome of ICSI depends primarily on 
the quality of the oocyte, female age, and sperm morphol-
ogy. Although ICSI has been successful for overcoming un-
explained infertility, studies showed that sperm morphology, 
motility, sperm-zona pellucida binding, sperm-zona pellucida 
penetration, zona pellucida-induced AR, and sperm DNA 
damage are still useful predictors before patients commence 
ICSI treatment [79-81]. However, substantial incidence of 
failed (0%) and suboptimal (<50%) fertilization after ICSI 
remains a challenge due to morphological defects in sperma-
tozoa [82,83].

Motile sperm organelle morphology examination has pro-
vided an opportunity for intensive selection of spermatozoa 
for ICSI [84]. This examination offers improved morphological 
assessment of mitochondria, nucleus, acrosome, post-acroso-
mal region, neck, and tail of spermatozoa using high magni-
fication >6,000× [85]. Thus, the inclusion of this method into 
ICSI led to a new technique termed IMSI [86]. After introduc-
tion of IMSI, numerous comparative and randomized studies 
were conducted, although the comparison between IMSI and 
conventional ICSI provided controversial data. A wide range 
of factors can contribute to the efficiency of IMSI over con-
ventional ICSI such as dissimilar study design, lack of homog-
enous inclusion criteria, and non-classified high magnification 
sperm morphology [87]. However, a recent study showed that 
IMSI in infertile couples enhanced the reproductive outcomes 
compared with conventional ICSI by increasing implantation 
rate (3 times), pregnancy rate (2 times), and miscarriage re-
duction rate (70%) [87]. However, a meta-analysis of current 
trials determined that IMSI has no significant effects on clini-
cal pregnancy rate and live birth [88].

Using hyaluronic acid-containing media for selection of 
spermatozoa provided a new opportunity to sort mature 
spermatozoa with lower biological risk [89]. Binding ability of 
spermatozoa with hyaluronic acid depends on plasma mem-
brane maturity and fertilizing ability of spermatozoa. This nov-
el method of sperm selection based on the ability to bind with 
hyaluronic acid led to a new method termed PICSI [90,91]. 
Many recent studies have indicated that PICSI is effective for 
selecting spermatozoa by excluding fragmented DNA and ab-
normal nucleus [92,93]. However, conflicting results showed 

that PICSI does not improve the fertilization and cleavage rate 
after ICSI [94-97].

SpermSlow for assessment of 
spermatozoa

SpermSlow is used to decelerate the movement of sper-
matozoa to allow the selection of viable, mature, and non-
fragmented DNA-containing spermatozoon for ICSI [98]. This 
technique allows the selection of the most mature sperma-
tozoa during ICSI. A plastic culture dish with microdots of 
hyaluronic acid is used as a device for ICSI, and SpermSlow 
is used as a viscous media containing hyaluronic acid. A sig-
nificant enhancement of embryo quality was observed in a 
study when SpermSlow was used to select spermatozoon [98]. 
Controversy has increased because several studies did not find 
any significant difference in fertilization rate or embryo quality 
after injecting SpermSlow-selected spermatozoa compared to 
other physiologic ICSI treatments [99,100].

Sperm aneuploidy analysis for ICSI, 
IMSI, and PICSI

The presence of inadequate numbers of chromosomes in 
spermatozoa causes chromosomal abnormalities, defined as 
aneuploidy, reportedly occurring 3 times more frequently in 
spermatozoa of infertile males with azoospermia [99,101]. 
Notable improvements have been observed using ICSI, IMSI, 
and PICSI for infertility treatment in recent years since the 
treatments required spermatozoa without any cytogenetic 
abnormalities to ensure pregnancy and healthy live birth 
[102,103]. Therefore, to decrease aneuploid fertilization, 
combined HOST and fluorescence in situ hybridization (FISH) 
are used simultaneously as a cytogenetic assay to evaluate the 
rates of chromosomal abnormalities. Only a few studies report-
ed a significantly reduced aneuploidy frequency in spermatozoa 
with tail-tip swelling pattern (using HOST) and FISH [104,105]. 
Due to the increased rate of aneuploid fertilization during ICSI 
[106], FISH in functionally live spermatozoa is considered the 
most accurate evaluation tool for excluding unhealthy fertil-
ization in infertile men. Future studies are needed to evaluate 
both the HOST and FISH for consideration as routine tests of 
cytoplasmic abnormalities in human spermatozoa.
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Future diagnostic tests for male 
fertility: omics

Recently, more advanced research methods have provided an 
opportunity to investigate new prediction techniques based 
on genomics, proteomics, transcriptomics, and metabolomics. 
Combination of the current omics and conventional semen 
analysis could provide new methods for exploring potential 
predictors of male fertility [101]. Research focuses on the dif-
ferentially expressed proteins and genes found under different 
conditions including fertility/infertility [107,108]. During the 
past decade, protein biomarkers have been the subject of ex-
tensive research for diversified diseases as well as male fertil-
ity. Several seminal plasma proteins have already been evalu-
ated as potential biomarkers for genital duct patency. For 
example, a current study showed that the cysteine-rich secre-
tory protein level in seminal plasma is a predictable proteomic 
biomarker that can identify fertile and infertile men with 85% 
specificity and 92% sensitivity [109]. Another study proposed 
that the level of lipocalin-type prostaglandin D synthase is 
significantly lower in infertile men with obstructive azoosper-
mia compared to men with normal semen parameters [110]. 
However, intensive proteomic analysis of both semen and 
sperm is discovering functionally important proteins, protein-
protein interactions during the path to the oocyte, and other 
various altered proteins associated with the fertilization 
process. Similarly, transcriptional profiling of spermatozoa is 
also a valuable method for males with unexplained infertility 
problems, and further studies are required to establish a true 
fertility/infertility predictor by investigating omics of human 
semen.

Conclusion

Conventional semen analysis is considered as the initial step to 
investigate semen quality and male factor infertility; however, 
this method cannot always provide valid information regard-
ing specific defects of sperm physiology. Therefore, novel pre-
dictors are needed for assessing semen quality to determine 
the reason for non-pregnancy in infertile couples. The current 
assays can determine specific imperfections based on sperm 
physiology, but newer predictive tests might reveal the precise 
reason for male infertility. Thus, the addition of new predic-
tive methods can aid researchers to better understand sperm 

potency. Implementation of such evaluation procedures might 
help clarify the unknown characteristics of spermatozoa to 
maximize successful reproduction.
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