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High accuracy machine learning 
identification of fentanyl‑relevant 
molecular compound classification 
via constituent functional group 
analysis
Mengyu Xu1,4, Chun‑Hung Wang2, Anthony C. Terracciano3,4, Artem E. Masunov2,5,6,7,8 & 
Subith S. Vasu3,4*

Fentanyl is an anesthetic with a high bioavailability and is the leading cause of drug overdose death 
in the U.S. Fentanyl and its derivatives have a low lethal dose and street drugs which contain such 
compounds may lead to death of the user and simultaneously pose hazards for first responders. Rapid 
identification methods of both known and emerging opioid fentanyl substances is crucial. In this 
effort, machine learning (ML) is applied in a systematic manner to identify fentanyl-related functional 
groups in such compounds based on their observed spectral properties. In our study, accurate infrared 
(IR) spectra of common organic molecules which contain functional groups that are constituents of 
fentanyl is determined by investigating the structure–property relationship. The average accuracy 
rate of correctly identifying the functional groups of interest is 92.5% on our testing data. All the IR 
spectra of 632 organic molecules are from National Institute of Standards and Technology (NIST) 
database as the training set and are assessed. Results from this work will provide Artificial Intelligence 
(AI) based tools and algorithms increased confidence, which serves as a basis to detect fentanyl and its 
derivatives.

Fentanyl (N-phenyl-N-[1-(2-phenylethyl)piperidin-4-yl]propionanilide)1 is a synthetic opioid with extensive 
medical applications in acute analgesia. Fentanyl is an agonist for the μ-opioid receptor with higher potency than 
morphine, exhibiting an effective dose (ED95) of 0.45–0.60 μg/kg in dilation and curettage owe able in part to its 
92% bioavailability2,3. Once in the human body, metabolizing fentanyl begins with N-oxidative dealkylation and 
is eventually excreted within the urine4,5. Fentanyl can be administered via inhalation, ingestion, oral exposure, 
injection, or transdermal means6. Fentanyls which are primarily powdered crystalline substances, typically white, 
obtained outside of a pharmaceutical setting may exist as a white powder form mixed with heroin and cutting 
agents, or pressed into counterfeit opioid prescription pills7. Fentanyl may even be weaponized and formed into 
an aerosol8. Such widespread use of fentanyl as either a primary compound chemical weapon or adulterating 
substance within other drugs poses a significant threat for officers the public at large, officers responding to 
incidents, and others given its fentanyls ample means of exposure9.

OPEN

1Statistics and Data Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL  32816, 
USA. 2NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, 
USA. 3Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, 
FL 32816, USA. 4Center for Advanced Turbomachinery and Energy Research, University of Central Florida, 4000 
Central Florida Blvd, Orlando, FL 32816, USA. 5School of Modeling, Simulation, and Training, University of Central 
Florida, 3100 Technology Parkway, Orlando, FL  32816, USA. 6Department of Chemistry, University of Central 
Florida, 4111 Libra Dr., Orlando, FL 32816, USA. 7South Ural State University, Lenin pr. 76, Chelyabinsk 454080, 
Russia. 8National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow  115409, Russia. *email: 
subith@ucf.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-70471-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:13569  | https://doi.org/10.1038/s41598-020-70471-7

www.nature.com/scientificreports/

A comprehensive review of fentanyl and its analogs has been done in by Armenian et al.10. Carfentanil11, 
sufentanil12, alfentanil13, and remifentanil14 are fentanyl analogs with more potency than fentanyl for medicinal 
use. These and other fentanyls all exhibit some common key functional groups.

One promising method of identifying fentanyl and its analogues is through the fingerprinting of their unique 
infrared (IR) spectral properties (reflectivity, absorptivity, or transmissivity) as this technique can reveal charac-
teristics of the numerous intramolecular bonds15. However, identifying fentanyls in practice is difficult. Clandes-
tine production often exhibits variations in products between batches and as previously stated there are numerous 
formulations of fentanyl and carfentanil. As can be seen in Figs. 1 and 2, fentanyl, carfentanil, and their analogues 
exhibit varying functional groups and simultaneously may have conformers for the same composition which 
are denoted by a * at a particular bond. These structural variations can result in significantly different infrared 
spectral properties. Despite these differences, there are structural similarities enabling the compound to bind to 
receptors within the body and perform a similar function.

In analytical chemistry, IR spectroscopy tables16 had been widely used to identify compounds based on the 
correlations between IR absorption and common types of molecular bonds and functional groups. In this work, 
we aimed to answer the following question: can we identify constituent functional groups of fentanyl and its 
analogues from the IR absorption data?

Here we use a database containing 632 molecules, 591 of which have at least one of the functional groups 
found in the parent compound of fentanyl. The rescaled IR absorption spectra of these molecules are shown in 
Fig. 3. From these data we construct machine learning algorithms to identify molecules which are compromised 
from at least one of these functional groups.

A main challenge of learning from the spectral data is that the number of variables is the number of wave-
numbers where absorptive data is obtained. The analysis suffers from a curse of dimensionality. There has been 
a growing body of literature in chemometrics that study the identification of compounds from their spectral 
properties via data-driven algorithms. In most of the work, spectral properties measured at each wavenumber is 
treated as a predictor, and widely-used classification or clustering machine learning methods has been applied for 
analysis directly or after dimension reduction with methods such as principal component analysis, see Refs.17–24 
among others. In this work, we treat the underlying IR spectra as smooth functions and apply functional principal 
component analysis by approximating the data with a basis of a few orthogonal smoothed eigenfunction and then 
perform classification via functional generalized linear models. Comparing to the high-dimensional multivariate 
classification, the functional analysis is more interpretable. It associates the functional groups with features in 
the IR spectra in terms of the functional components along the whole range such as peaks and troughs. Results 

Figure 1.   Fentanyl and selected analogues. * denotes chiral center of ohmefentanyl, which is a stereoisomer. 
Images generated using ChemDraw tool (PerkinElmer).

Figure 2.   Carfentanil and selected analogues. Images generated using ChemDraw tool (PerkinElmer).
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from this work will provide Artificial Intelligence (AI) based tools and algorithms increased confidence, which 
serves as a basis to detect fentanyl and its derivatives.

Methodology
Let α1, α2, . . . ,αp be the wavenumbers at which absorbance are recorded, νi(α) be the underlying absorbance at 
any wavenumber α for the ith molecule and νi,j = νi(αj)+ ǫi,j, i = 1, 2, . . . , n, j = 1, 2, . . . , p be the observed 
absorbance. The goal of this study is to distinguish if a given molecule contains a certain functional group such 
as amide. Let yi = 1(molecule i contains the functional group), i = 1, 2, . . . , n be the binary observations. We 
establish a classification model with {νi,j}1≤i≤n,1≤j≤p as the predictor and {yi}1≤i≤n as the response, via a functional 
logistic regression with functional principal component basis.

Dataset.  The data set for both training and testing was obtained from the public database of National Insti-
tute of Standards and Technology (https​://www.nist.gov/), which provides spectral information of the selected 
632 compound molecules considered in this work., Such compounds can be categorized into one of the follow-
ing eight groups: (i) amide only, (ii) aniline only, (iii) benzene only, (iv) piperidine only, (v) amide and aniline 
simultaneously, (vi) amide and benzene simultaneously (vii) distinct aniline and benzene simultaneously, and 
(viii) none of the above constituent functional groups. The group information of the data is listed in Table 1 with 
the names of the compounds listed in the Supplementary Appendix A.

For each molecule, the discretization of the IR spectra is recorded with unaligned maximum wavenumbers 
ranges of 243 cm−1 to 4,000.7 cm−1 (7.28–119.94 THz), with the majority of the wavenumbers ranging from 500 
to 4,000.7 cm−1 (14.99–119.94 THz). Preprocessing of the discrete raw data consists of rescaling each absorbance 
function such that it has unit standard deviation and converting it to regularly spaced measurement via inter-
polation at the common wavenumbers 500–4,000 cm−1 (14.99–119.92 THz) with step size 4 cm−1 (0.12 THz), 

Figure 3.   IR spectral curves of compounds with identified functional groups within fentanyl. Black: 
compounds in the training set; red: compounds in the test set. Image generated using ChemDraw tool 
(PerkinElmer).

https://www.nist.gov/
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yielding a total of p = 876 discrete points. For compounds with a slope in the IR spectra, we apply a linear 
baseline correction to remove the linear trend between the lowest point and the right end in the IR spectra. 
No subsequent smoothing of the data is performed in preprocessing. It is assumed that spectra obtained from 
the NIST database are close enough to standard temperature and pressure to neglect broadening and thermal 
effects. The preprocessed dataset is decomposed into distinct training and testing sets, consisting of 506 and 126 
molecules, respectively, as shown in Table 1.

Functional principal component analysis (functional PCA).  Denote ν(α) = n−1νi(α) as the mean 
function and σ(s, t) = (n− 1)−1

∑n
i=1 [νi(s)− ν(s)][νi(t)− ν(t)] as the covariance function of the sample. 

Functional PCA decomposes the underlying absorbance functional νi(α) as.

where φk(α), k = 1, 2, . . . , K are the functional principal components (PCs), and fik is the score of molecule i 
for principal component k. Cutting off at a finite integer K and estimate νi(α) according to

The functional PCs are the eigenfunctions of the covariance function, σ(s, t) , where φk(α) corresponds to the 
kth largest eigenvalue �k . The corresponding PC scores are fik = ∫φk(t)[νi(α)− ν(α)]dα, k = 1, 2, . . . , K . The 
number of PCs K can be selected such that the majority, e.g. 90%, of the variance is explained by (2).

The functional PCs are orthonormal, i.e., ∫φj(α)φk(α)dα = 0 if j  = k and 1 of j = k , and they explains the 
most proportion of variance in the data in descending order. In other words, the first PC score fi1, i = 1, 2, . . . n 
maximizes the sample variance among the inner products between the data and all functionals ξ ’s subject to the 
constraint ∫ ξ(α)2dα = 1 ; the second PC score fi2, i = 1, 2, . . . n maximizes the remaining variance among the 
inner products of the data and all functionals ξ ’s subject to the constraint ∫ ξ(α)2dα = 1 and ∫ ξ(α)φ1(α)dα = 0 , 
and so on. The proportion of variance that is explained by fik, 1 ≤ i ≤ n is �k/

∑∞
k=1 �k . In the estimation, we 

regularize the functional PCs and impose roughness penalty to the sample covariance function, measured by the 
norm of second-order derivative of the function. Details of functional PCA can be found in Ref.25.

Functional generalized linear model (functional GLM)..  Assume the binary response 
yi ∼ Bernoulli (pi) , where pi is the probability that the molecule i contains the functional group. Denote the logit 
function of pi as li = log

(

pi
1−pi

)

 and assume that li . is a linear function of νi(α) . That is

where the intercept β0 and the functional parameter β(α) are unknown quantity and coefficient functionals of 
interest. Represent β(α) =

∞
∑

k=1

βkφk(α) . According to (1), the above linear model can be written as

where the unknown coefficients β0,β1, . . . ,βK can be estimated by the maximum likelihood estimation (MLE) 
for the generalized linear model26. The above logistic regression can be extended to multiclass cases. Details are 
omitted and interested readers are referred to Ref.27.

For a new molecule with IR spectrum ν⋆(α) , the probability p⋆ can be estimated by p̂⋆ = exp(l̂
⋆
)

1+exp(l̂
⋆
)
 , where 

l̂
⋆
= β̂0 +

∑K
k=1 β̂kf

⋆
k , where β̂k is the MLE of βk , and f⋆k are the PC scores of the new molecule, k = 1, 2, . . . , K . 

If p̂⋆ exceeds a given threshold such as 0.5, the molecule is classified as having the functional group.
Comparing to the high-dimensional multivariate classification with p = 876 predictors, the functional GLM 

represents the absorbance by a small number of orthogonal basis functions enabling statistical and computational 
efficiency. More importantly, the GLM associates the functional groups with features in the IR spectra in terms 
of the functional components along the whole range, while the multivariate classification treats absorbance at 
each wavenumber as a predictor and trains the model by assuming conditions such as sparsity.

(1)ν(α) = ν(α)+

∞
∑

k=1

fikφk(α), i = 1, 2, . . . , n,

(2)ν̂i(α) = ν(α)+

K
∑

k=1

fikφk(α), i = 1, 2, . . . , n.

li = β0 + ∫β(α)
[

ν̂i(α)− ν(α)
]

dα,

(3)li = β0 +

K
∑

k=1

βkfik,

Table 1.   Number of molecules with the functional groups.

Amide only Aniline only Benzene only Piperidine only
Amide and 
aniline

Amide and 
Benzene

Aniline and 
Benzene

Benzene and 
Piperidine None Total

Training set 30 139 217 18 24 22 15 8 33 506

Testing set 7 35 54 5 6 5 4 2 8 126

Total 37 174 271 23 30 27 19 10 41 632
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Classification performance metrics.  In evaluating the performance of classification results we obtain 
the confusion matrix as shown in Table 2 by comparing the predicted labels against the ground truth from the 
test set.

Let

The Receiver Operating Characteristic Curve (ROC) is a curve plotting 1-FNR (a.k.a., sensitivity) against 
the FPR (a.k.a., 1-specificity). For each classification model we report the Area Under the Curve (AUC) and use 
AUC as an evaluation metric of the algorithm performance.

Results and discussion
In this study, we train functional GLM models and evaluate its capability to fingerprint the functional groups 
including amide, aniline, benzene and piperidine in the IR spectrum of a molecule. Parameters for the GLM are 
estimated from the IR spectral data and functional groups information of the training set to train the model. The 
constructed model is then used to predict the functional groups from only IR spectra data of a testing dataset. 
We evaluate the accuracy of the models by comparing the prediction with the ground truth in the testing set. 
The functional data analysis is implemented using the R package fda.usc28 and the ROC curve and AUC are 
obtained from R package pROC29.

We investigate two scenarios. Scenario one considers potential interactions which may arise from the simul-
taneous existence of multiple functional groups reflected by distinct IR spectral patterns. We classify the testing 
molecules into 8 nonoverlapping groups. Whereas in scenario two, the model is trained to predict if a molecule 
contains the constituent functional groups, where compounds with simultaneous presence of multiple functional 
groups is also counted.

Feature representation: functional PCA.  We first construct the regularized functional PCs basis from 
the training set. The mean function and the leading PCs are presented in Fig. 4.

From Fig. 4, one can see the following. First, as shown in Fig, 3, the IR spectral data in each group is very 
diverse and has various patterns. Accordingly, in panel (c) of Fig. 4, the proportion of variance explained by the 
functional PCs increases slowly as more PCs are considered, where the first functional PC explains nearly 20% of 
the overall variance, with the second describing 10%. Over 80% of the total variance may be considered with the 
first 22 PCs. In addition, in panel (d) to (f) we present the leading 4 PC scores of compounds with no more than 
one functional groups of interest. The first four PC scores alone does not partition the four groups; however, we 
can observe a general trend in which, compounds with amide tend to have small scores of PC1, PC2 and PC4, 
and high scores in PC 3; anilines tend to have high scores in PC2, while piperidine containing compounds are 
clustered within a narrow range of PC2 and PC4 with high PC1 scores.

Prediction for appearance of functional groups from IR spectra.  Four functional GLMs are con-
structed to predict the following responses from the IR spectra data and are assigned as a specific model respec-
tively.

Model 1	� whether the molecule has an amide functional group.
Model 2	� whether the molecule has an aniline functional group.
Model 3	� whether the molecule has a benzene functional group.
Model 4	� whether the molecule has a piperidine functional group.

In constructing the functional GLM models, we take K = 22 , which is the minimum number of PCs such 
that at least 80% of variance is explained. In Model 4, because the response is imbalanced with only 10 piperidine 
out of 478 training molecules, we perform an oversampling adjustment before estimating the model. That is, the 
10 observations in the training set are resampled and reused such that there are 100 molecules in the training 
set are piperidine. The ROC curves for Model 1 to Model 4 are presented in the area under the ROC curve on 
Fig. 5 are shown in the Table 5.

We present the confusion matrices from the testing set of Models 1–4 (AUCs presented in Table 3) in Tables 4, 
5, 6, 7 respectively, with a threshold probability of 0.5. The rates of correctly identifying the corresponding 
functional groups are 96.03%, 90.48%, 87.3%, and 96.03% respectively, with an average accuracy rate of 92.5%.

FPR =
FP

FP + TN
, FNR =

FN

FN + TP
.

Table 2.   Confusion matrix of a classification problem.

Ground truth

True False

Prediction
True True positive (TP) False positive (FP)

False False negative (FN) True negative (TN)
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Figure 4.   Functional PCA results: (a) the mean function of the rescaled absorbance; (b) the first five functional 
principal components; (c) the cumulative proportion of variance explained by the first 50 functional PCs; (d) the 
3D plot of PC1, PC2 and PC4 scores of the compounds consisting of at most one functional groups of interest; 
(e) PC1 and PC2 scores of the compounds consisting of at most one functional groups of interest; (f) PC1 and 
PC2 scores of the compounds consisting of at most one functional groups of interest .
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Figure 5.   ROC curves for models 1.1 to 1.4.

Table 3.   AUC of models 1–4.

1—Amide 2—Aniline 3—Benzene 4—Piperidine

AUC​ 0.9815 0.9336 0.9019 0.9712

Table 4.   Confusion matrix for Model 1—predicting appearance of amide.

1—Amide

Prediction

False True

Ground truth
False 107 1

True 4 14

Table 5.   Confusion matrix for Model 2—predicting appearance of aniline.

2—Aniline

Prediction

False True

Ground truth
False 74 7

True 5 40

Table 6.   Confusion matrix for Model 3—predicting appearance of benzene.

3—Benzene

Prediction

False True

Ground truth
False 58 6

True 13 50
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Joint classification into non‑overlapping groups..  We combine the four binary classification results 
described in Tables 4, 5, 6,  7 and group the data as shown in Table 1. The confusion matrix obtained from predic-
tion in the 126 testing molecules is summarized in Table 8.

From Table 8 one can find that, out of the 126 predicted molecules, 100 are classified exactly correctly, with an 
accuracy rate of 79.37%. Among the misclassified 26 molecules, 12 are classified with partial mistakes by incor-
rectly including or excluding a functional group while correctly identify another, 4 are misclassified by missing 
the correct functional group, 3 is misclassified by identifying a wrong functional group and 7 are misclassified 
by both missing the truth and identify a false. The misclassified molecules are listed in Table 9.

Table 9 shows a relatively high error rate in distinguishing simultaneously appeared functional groups from 
the cases where only one of the functional groups of interest is present. The algorithm also has a relatively high 
error rate in distinguishing the aniline group and benzene, due to fact that these functional groups share com-
mon structure.

Summary
Today, synthetic opioid analogues such as, fentanyl, have been the cause of many accidental deaths across the 
world, and thus the detection of low concentrations of these harmful substances at a distance via spectroscopic 
techniques is crucial for law enforcement. Unfortunately, new fentanyl related compounds are being created and 
distributed frequently with slight modifications to the functional groups present in them. Therefore, machine 
learning based intelligent detection schemes must be employed for intelligent detection of such molecules. Here, 
we applied a functional generalized linear model with smoothed functional principal component basis to classify 
functional groups of molecules from their IR absorption data. The result serves as a basis of the identification 
of fentanyl and its derivatives, which could be accomplished in future. This effort demonstrated the efficacy of 
a functional data analysis to identify molecules containing one or more specific functional groups from their 
infrared absorption spectra. The accuracy rate of classification into the 9 distinct classes is 79.4%. The average 
rate of accurately identifying the four functional groups is 92.5%. Continued efforts on this model will seek to 
also expand the utility from gas phase compound analysis to solid phase, with spectral properties of fentanyl 
and its analogues included. Such expansions will require additional consideration.

Table 7.   Confusion matrix for Model 4—predicting appearance of piperidine.

4—Piperidine

Prediction

False True

Ground truth
False 115 4

True 0 8

Table 8.   Confusion matrix of the classification in the testing set.

Prediction

Amide only Aniline only Benzene only
Piperidine 
only

Amide and 
aniline

Amide and 
benzene

Aniline and 
benzene

Benzene and 
piperidine None

Ground truth

Amide only 5 0 0 1 1 0 0 0 0

Aniline only 1 32 1 0 0 0 1 0 0

Benzene only 0 3 49 0 0 0 1 0 1

Piperidine only 0 0 0 4 0 0 0 0 1

Amide and 
aniline 1 0 0 0 3 1 0 0 1

Amide and 
benzene 1 1 0 0 1 1 0 0 1

Aniline and 
benzene 0 3 0 0 0 0 1 0 0

Benzene and 
piperidine 0 0 1 1 0 0 0 0 0

None 0 0 1 2 0 0 0 0 5
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Benzene, 1,3-difluoro- Benzene only Aniline only

Cyclohexanamine None Piperidine only

Nitrous oxide None Benzene only

Triethanolamine None Piperidine only

4-Piperidinol, 2,2,6,6-tetramethyl-, 1-oxide Piperidine only None
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Metazachlor Amide and aniline Amide and benzene

Acetamide, N-(2,6-dimethylphenyl)- Amide and aniline Amide only
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Dibucaine amide and Benzene Aniline only

Acetanilide, 4′-fluoro- Amide and benzene Amide and aniline

p-Butoxybenzylidene p-butylaniline Aniline and benzene Aniline only

p-Hexyloxybenzylidene p-butylaniline Aniline and benzene Aniline only

2(o-Aminophenyl)-benzimidazole Aniline and benzene Aniline only
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