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Abstract: While target-based drug design has proved successful in several therapeutic areas,
this approach has not yet provided compelling outcomes in the field of antibacterial agents.
This statement remains especially true for the development of novel therapeutic interventions
against tuberculosis, an infectious disease that is among the top ten leading causes of death globally.
Mycobacterial galactan is an important component of the protective cell wall core of the tuberculosis
pathogen and it could provide a promising target for the design of new drugs. In this review,
we summarize the current knowledge on galactan biosynthesis in Mycobacterium tuberculosis, including
landmark findings that led to the discovery and understanding of three key enzymes in this pathway:
UDP-galactose mutase, and galactofuranosyl transferases GlfT1 and GlfT2. Moreover, we recapitulate
the efforts aimed at their inhibition. The predicted common transition states of the three enzymes
provide the lucrative possibility of multitargeting in pharmaceutical development, a favourable
property in the mitigation of drug resistance. We believe that a tight interplay between target-based
computational approaches and experimental methods will result in the development of original
inhibitors that could serve as the basis of a new generation of drugs against tuberculosis.
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1. Introduction

Although much progress has been achieved in the global control of tuberculosis (TB) during
recent years, the disease remains one of the top causes of death worldwide and the leading cause of
death from a single infectious agent [1]. In 2018, an estimated 10 million people contracted TB, and
more than 1.4 million people lost their lives to this disease. Treatment of TB is difficult and lengthy.
According to current recommendations, patients with drug-susceptible TB require two months of
therapy with four antibiotics (ethambutol, isoniazid, rifampicin, and pyrazinamide), followed by at
least four months cure with two drugs (isoniazid, rifampicin). The treatment is complicated by the
emergence and spread of resistant strains of etiological agent of the disease, bacterium Mycobacterium
tuberculosis, which accounts for almost 3.4% of the new cases and 18% of the previously treated TB
cases [1]. Thus, the need for new, better anti-tuberculosis drugs and more effective drug regimens is
pressing. While all of the currently used TB drugs were discovered by phenotypic screening, the value
of computational methods and structure-based approaches in this field is becoming evident [2–4].
However, finding novel targets suitable for such an approach is challenging. On the basis of the review
of current TB drug targets, Kana et al. (2015) listed important issues that have to be considered in target
selection [5], which can help prioritize among about 4000 gene products present in M. tuberculosis [6].
They suggest several key properties of an “ideal” drug target, such as its essentiality for survival
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under different physiological states that M. tuberculosis encounters during infection, its low inherent
mutability, its capacity to serve as a “chokepoint” by affecting multiple processes in the cells, or its
essentiality for dormancy. Additionally, an optimal target should be “druggable”, assays should be
accessible to assess the catalytic activity and inhibition of the enzyme, and methods should be available
to evaluate if the drug remains on-target in whole cells [5].

One of the validated targets for this new class of anti-tuberculosis compounds, which fulfils
the aforementioned criteria, is mycobacterial cell wall construction. Indeed, two medicines of the
basic four-drug regimen, isoniazid and ethambutol, affect the biosynthesis of key components
of the cell wall core. Moreover, several TB drugs in development target cell wall synthesis
in the pathogen [7]. The unique feature of the mycobacterial cell wall is the presence of the
mycolyl–arabinogalactan–peptidoglycan (mAGP) complex, which forms an unusual lipidic and
extremely hydrophobic barrier that protects the pathogen against the immune system of the host
or against common antibiotics [8] (Figure 1). Isoniazid and ethambutol inhibit the production of
mycolates [9] and arabinan polymer [10], respectively; however, no current drugs target the synthesis
of the galactan core. Owing to the fundamental role of this polymer in keeping the integrity of the cell
wall [11], the enzymes that catalyze galactan biosynthesis should be considered as potential candidates
for novel drug development. In this review, we present the available information on the galactan
component of the mycobacterial cell wall in a historical context; its structural characterization, discovery
of the metabolic pathway, and the key enzymes involved in galactan polymerization, as well as a
summary of the efforts towards their inhibition. Our aim is to provide inspiration for state-of-the-art
target-based approaches [4], which were already successfully applied for the development of potent
inhibitors against selected enzymes from M. tuberculosis [12,13].
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2. Structure of the Galactan Component of the Mycobacterial Cell Wall Core: From History to
Current Understanding

One of the first reports describing the presence of galactose in the mycobacterial hydrolysates
dates back to the 1930s [14]. Later, it was proposed that galactose is a part of a so-called “lipoid-bound
polysaccharide” from M. tuberculosis [15]. These initial studies were followed by numerous attempts
to structurally characterize the basic polysaccharide components in mycobacteria (reviewed in [16]).
Among them is the report by Misaki et al. (1966) [17], who fractionated Mycobacterium bovis BCG
with a series of organic solvents and obtained an insoluble residue containing alanine, glutamate,
diaminopimelic acid, glucosamine and muramic acid, as well as neutral sugars glucose, galactose,
and arabinose. On the basis of a thorough analysis of this material, they concluded that the
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main polysaccharide of the mycobacterial cell wall is a highly branched arabinogalactan (AG),
which is covalently linked to peptidoglycan (PG) [17]. Identification of the d-arabinose-5-mycolate
in various mycobacteria by different research groups led Kanetsuna (1968) to propose that “the
mycolic acid–arabinogalactan–mucopeptide complex may be a common structure of mycobacterial
cell walls” [18]. The key findings towards understanding the primary structure of this peculiar
macromolecular assembly emerged from seminal studies conducted in the late 1980s and in the
early 1990s by Brennan, McNeil, and their collaborators. They discovered the nature of the
linkage between the AG and PG formed by a disaccharide composed of l-rhamnose (Rha) and
N-acetyl-d-glucosamine-1-phosphate (GlcNAc-1-P), which joins the galactan region with C-6 of
N-glycolyl/N-acetyl muramic acid residues of PG [19]; they confirmed that both arabinose (Ara)
and galactose (Gal) are in their furanoid form [20] and defined the basic structural features of the
galactan and arabinan motifs, including the mode of the attachment of mycolic acids to the arabinan
domain [21–23]. Technological development over the last 15 years allowed further clarification of
the remarkable features of mAGP, including the localization of minor, but physiologically important
substituents, succinate and N-acetyl–galactosamine, on the arabinan chains [24–27]. Today, it is
anticipated that the mycobacterial cell wall is a dynamic structure, which is constantly remodelled
during the infection process [28,29]. However, changes in the cell envelope organization, under
different physiological states, were also reported under laboratory conditions [30]. The latest revised
model of the primary structure of AG in M. tuberculosis describes the galactofuran polymer composed
of an estimated 22 alternating β-(1→5)- and β-(1→6)-linked-d-galactofuranosyl (d-Galf ) residues [25],
while previously reported values ranged from 30 to 40 galactofuranoses [23,24]. Two arabinofuran
chains consisting of highly branched Ara17 motifs (with Ara residues linked by α-(1→5), α-(1→3),
or β-(1→2) glycosidic bonds, as shown in Figure 1) are attached to C-5 of the β-(1→6)-linked d-Galf
residues, close to the reducing end, through a variably long (up to 14 units) linear interior region of the
arabinan composed of α-(1→5)-d-arabinofuranosyl (d-Araf ) residues [25]. About two-thirds of the
available sites (C-5 positions of the last and penultimate Araf residues) are esterified by mycolic acids,
always forming clusters of four mycolates per terminal branched pentaarabinoside motif [22] (Figure 1).
The current view on the structure of the mycobacterial cell envelope, based on cryomicroscopic
studies, suggests the presence of periplasm between the plasma membrane and an outer membrane, or
mycomembrane, composed of mycolic acids covalently attached to arabinogalactan and a range of
extractable cell wall lipids [31,32].

3. Biosynthesis of Mycobacterial Galactan: Discovery of the Metabolic Pathway

A hypothetical scheme of mAGP biosynthesis was suggested by McNeil and Brennan in 1991
(Figure 2). The authors claimed the following [16]: “The postulated synthetic routes for biogenesis
of cell wall is, of course, highly speculative. None of the enzymes have been purified, and few of
the postulated intermediates have been identified in mycobacteria. Nevertheless, elucidation of such
pathways is of paramount importance if new effective, tailored, antimycobacterial drugs are to become
a reality. The nucleotide sugars involved in arabinogalactan biosynthesis need to be identified, and
their biosynthetic pathways need to be elucidated; the presence of the postulated key lipid intermediate
Rha-GlcNAc-P-P-decaprenol must be demonstrated; how Galf residues are added to the putative
Rha-GlcNAc-P-P-decaprenol, whether singularly from a sugar nucleotide donor, or via its own lipid
intermediate, must be established. Similar information is lacking about the question of the origins of
the Araf residues”.
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Figure 2. A biosynthetic pathway for the assembly of the arabinogalactan in M. tuberculosis.
The intermediates and steps 1–4 in red color correspond to those in the original proposal by
McNeil and Brennan (1991) [16]. GL1–4—glycolipids 1–4; PRPP—5-phophoribose-1-pyrophosphate;
DPRP—decaprenylphosphoryl ribose-5-phosphate; DPR—decaprenylphosphoryl ribose; DPX—
decaprenylphosphoryl 2′-keto-β-d-erythro-pentofuranose, DPA—decaprenylphosphoryl arabinose.

This proposal was based on the recognition of structural similarities in the linkage unit connecting
mycobacterial AG and PG with the junction between PG and cell wall polysaccharides or teichoic acids
of Gram-positive bacteria and the key role of these units in the biosynthesis of cell wall structures [33].
It can be stated that today, almost 30 years later, most of the issues raised in this original pathway
proposal were resolved (Figure 2). Critical roles in these efforts can be attributed to the publication
of the complete genome of M. tuberculosis H37Rv by Cole et al. already in 1998 [6], as well as the
development of techniques that enable genetic manipulation of mycobacterial species, including the
isolation of transformable Mycobacterium smegmatis mc2155 strain [34–36].

The first clue suggesting that the hypothetical pathway is likely correct emerged from experiments
in which the putative metabolites glycolipid 1 (GL1, polyprenyl-P-P-GlcNAc) and glycolipid 2
(GL2, polyprenyl-P-P-GlcNAc-Rha) (Figure 2) were identified as products of the mycobacterial
membranes, reacting with the radioactive substrate UDP-[14C]GlcNAc [37]. These metabolites were
extracted from reaction mixtures with organic solvents and analysed by thin layer chromatography
(TLC) followed by autoradiography. Sensitivity of these molecules to mild acid analysis and their
stability in mild alkali conditions suggested that they are the polyprenol-P-based compounds [38,39].
To verify the presence of Rha in GL2, TDP-[14C]Rha was synthesized (because this substrate was not
commercially available) and used in reaction with UDP-GlcNAc and mycobacterial membranes. The
lipids extracted from the reaction mixture were migrated with [14C]GlcNAc-labeled lipids and, indeed,
production of [14C]Rha-labeled GL2 was confirmed. Synthesis of both glycolipids was severely inhibited
by tunicamycin, which is known to interfere with the transfer of GlcNAc-1-P from UDP-GlcNAc
to polyprenol phosphates giving rise to polyprenol-P-P-GlcNAc [40]. Addition of UDP-d-Galp and
the enzyme fraction containing the mycobacterial cell wall into the reaction mixture resulted in the
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production of even more polar lipids. It was thus concluded that GL2 serves as a basis for galactan
polymerization [37]. This was next confirmed in experiments where UDP-d-[14C]Galp was used as
a tracer. The radioactive substrate was an effective precursor for the polymerization of galactose on
the lipid carrier—GL2 [41]. The true donor substrate for this reaction is, in fact, UDP-d-Galf, which is
produced from UDP-d-Galp by the action of UDP-galactopyranose mutase (UGM) [42,43]. This enzyme
was later included in the reaction mixture, resulting in a substantial increase in the incorporation of
radioactive galactose into the polymeric material [41].

Characterization of the lipid-linked galactan polymer turned into a rather challenging task.
For obtaining of this material from the reaction mixture, a protocol including several “washing
steps” (0.9% NaCl in 50% methanol, 50% methanol, methanol) and extraction of the reaction
products with polar solvents TT3 (CHCl3–CH3OH–H2O; 10:10:3) and E-soak (H2O–ethanol–diethyl
ether–pyridine–concentrated ammonia, 15:15:5:1:0.017) was developed [41]. The lipid-linked galactan
polymers were analysed by SDS-PAGE followed by blotting to nitrocellulose membrane and
autoradiography. Similar to GL1 and GL2, the extractable galactan polymers were stable in mild alkalic
conditions and cleaved in mildly acidic conditions. Mild acid hydrolysis of the [14C]-galactan polymers
and subsequent gel filtration showed different sizes of products extracted with solvents TT3 and E-soak.
The same material was radiolabeled with UDP-[14C]GlcNAc, TDP-[14C]Rha, and phospho-[14C]ribosyl
pyrophosphate (P-[14C]RPP, arabinose precursor), which indicated that galactan polymerization
occurred on GL2 and that arabinosyl residues are likely part of the molecule. This was further proved
by showing the presence of 5,6-linked galactose in the radiolabeled galactan polymer. These experiments
verified that the obtained products are true intermediates of AG biosynthesis [41]. In further work,
our group (at Comenius University in collaboration with colleagues from Colorado State University)
confirmed that Rv3782 is an initiating galactofuranosyl transferase and Rv3808 is a polymerizing enzyme.
We named them GlfT1 and GlfT2, respectively [44].

4. UGM, GlfT1, and GlfT2—The Three Key Enzymes with Unexpected Properties

4.1. UDP-Galactopyranose Mutase and the Origin of Mycobacterial Galactofuranose

Biosynthesis of galactofuranose was first characterized in Escherichia coli K-12 strain in 1996 [42].
Examination of the rfb region responsible for production of an O-antigen with the repeat unit containing
β-d-galactofuranose led to the identification of orf6 as a gene encoding the putative enzyme responsible
for synthesis of this monosaccharide. Furthermore, it was proposed that UDP-Galp could be the
substrate for this enzyme [45]. Development of a radiometric assay based on HPLC analysis of the
deproteinized reaction mixture treated with phosphodiesterase allowed the monitoring of enzyme
activity in cell extracts (as described in Section 5.1). The recombinant protein was purified to
homogeneity and the activity test proved that a single enzyme is responsible for catalyzing the
conversion of UDP-d-Galp to UDP-d-Galf. Accordingly, the gene encoding this enzyme was designated
as glf [42]. A similar assay was used in the search for the biosynthetic origin of Galf in mycobacteria [43],
both in the forward direction, as well as in the reverse direction. The latter approach was preferred
because the equilibrium established between UDP-d-Galp and UDP-d-Galf by the enzyme favors
the pyranose moiety by over 90% [42]. The homology search based on E. coli glf, which allowed
identification of a sequence corresponding to the part of an M. tuberculosis gene in the MycDB database,
was followed by the characterization of a full glf gene found on the specific cosmid from a library
prepared from M. tuberculosis H37Rv DNA. The recombinant protein was produced, and its activity was
confirmed by a radiometric HPLC assay [43]. Subsequently, it was found that rv3809c gene encoding
Glf belongs to a possible AG biosynthetic gene cluster, ranging from rv3779 to rv3809c [46].

Examination of the nucleotide sequence of glf revealed the presence of a nucleotide binding
domain, which was then confirmed experimentally. Indeed, the protein was yellow during purification,
and after thermal denaturation, it released FAD [42]. At the time, the role of this cofactor was enigmatic
because it was not clear how an oxidation-reduction could be involved in the pyranose-to-furanose
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interconversion. The structure of E. coli UDP-galactopyranose mutase (UGM), solved in 2001 by
Sanders et al., revealed the position of the flavin nucleotide in the cleft containing the active site [47].
The isoalloxazine ring of the cofactor was placed close to the sugar of the UDP-Galp substrate, and it was
established by the enzyme assays that the protein is active only when flavin is reduced [47]. Numerous
substrate and cofactor analogs were examined in order to understand how UGM acts (reviewed in [48]).
Finally, the role of FAD in the unique catalytic mechanism of UGM was discovered in 2004 by Kiessling
and co-workers [49]. They proposed that N-5 of the reduced flavin serves as a nucleophile, which
attacks the anomeric carbon of galactose causing UDP release and formation of a flavin-iminium ion
that facilitates sugar ring opening and contraction (Figure 3). To verify this mechanism, they treated
radiolabeled UDP-[6-3H]Galp with reduced UGM and sodium cyanoborohydride, which would
theoretically “trap” the putative intermediate in the enzyme. Subsequent isolation and characterization
of a covalent adduct of flavin-galactose confirmed the proposed nucleophilic mechanism [49], recently
specified as SN2-type [50].
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Figure 3. Catalytic mechanism of UDP-galactopyranose mutase (UGM) action. A covalent
flavin-galactose intermediate is formed after the nucleophilic attack of the reduced flavin N-5 nitrogen
to the anomeric C-1 galactose carbon employing an SN2 process. Interconversion between pyranose
and furanose forms occurs via iminium ion.

Numerous structures of UGM both from prokaryotic and eukaryotic organisms have been reported
to date [51]. The first structure of UGM from M. tuberculosis (UGMMtb) in an inactive oxidized state
was reported in 2005 by Naismith’s group [52] and, about ten years later, the whole spectrum of the
structures, including UGMMtb with bound UDP-d-Galp and both oxidized and reduced flavin, as well
as the first structure with bound UDP-d-Galf analog (dideoxy tetrafluorinated UDP-F4-Galf ), was
published by Sanders and co-workers [53]. A typical feature of all UGMs, including the M. tuberculosis
enzyme, is a three-domain architecture (Figure 4). Domain 1 with the Rossmann fold contains the
FAD cofactor; the α-helical domain 2 with a mobile loop that reacts to the substrate attachment, binds
the uridine group of the substrate; and domain 3, formed from a bundle of six antiparallel β-sheets,
contains key residues responsible for interaction with the pyrophosphate. All of the obtained UGMMtb
structures, liganded or nonliganded and oxidized or reduced, were highly similar to each other and to
other prokaryotic UGM structures, with the main difference conferred by ligand binding, which results
in active site closure [51,53].
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4.2. GlfT2—Processive Bifunctional Galactofuranosyltransferase with One Active Site

Early attempts to identify galactosyltransferases involved in AG synthesis through the comparison
of the mycobacterial genome with different galactopyranosyl transferase families [54] have failed.
We thus turned our attention to rv3808c as a candidate gene encoding the potential Galf -transferase,
because its product had features typical to other known β-glycosyl transferases in hydrophobic
cluster analysis [55], and it overlapped with the glf gene (rv3809c), encoding UGM, by the first four
nucleotides [41].

In order to determine the function of the rv3808c gene product, we constructed a plasmid for
constitutive expression of this gene in M. smegmatis mc2155. The time course of galactan polymerization
in reactions containing enzyme fractions prepared from a recombinant strain producing Rv3808c
was compared to that of the control strain. We found that the incorporation of the radiolabel
from UDP-[14C]Galp into lipid-linked polymers was significantly increased in the case of the
recombinant strain. Consequently, we suggested that Rv3808c is a processive galactosyl transferase
catalysing the formation of both β-(1→5) and β-(1→6) glycosidic bonds in galactan synthesis [41].
However, the definite confirmation of the dual activity of Rv3808c was presented by Kremer et al. [56].
Synthetic acceptors β-d-Galf -(1→5)-β-d-Galf -O-C10:1 and β-d-Galf -(1→6)-β-d-Galf -O-C10:1 were
extended by one or two galactosyl residues by the membrane fractions prepared from an E. coli strain
that produces recombinant protein Rv3808c. The reaction products were thoroughly characterized by
state-of-the-art mass spectrometry, which confirmed the alternating β-(1→5) and β-(1→6) glycosidic
bonds [56].

The properties of GlfT2 were further investigated after the high-level expression of a
soluble recombinant protein in E. coli and its successful purification by Lowary and co-workers
in 2006 [57]. Activity of the purified enzyme was tested on a range of synthetic acceptors,
which confirmed its bifunctional activity and its preference for longer trisaccharide substrates
[β-d-Galf -(1→6)-β-d-Galf -(1→5)-β-d-Galf -O-C8 and β-d-Galf -(1→5)-β-d-Galf -(1→6)-β-d-Galf -O-C8]
compared with disaccharide ones. MALDI mass spectra of the reaction products with these acceptors
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revealed the presence of tetrasaccharides, as well as longer products (up to four added residues) and
pointed to the faster β-(1→6) Galf transferring activity relative to β-(1→5) activity [57].

Interestingly, when the lipid portion of theβ-d-Galf -(1→6)-β-d-Galf containing synthetic acceptors
was exchanged to more hydrophobic phenoxy-terminated alkenyl chains of various lengths [–(CH2)1–16–
between the alkenyl and phenoxy moiety], the enzyme was able to catalyze further extension of
galactan, up to 48 added galactoses in the case of –(CH2)16– analog [58]. Surprisingly, even the
d-Galf monosaccharide attached to a –(CH2)9– analog allowed a similar extent of GlfT2 catalysed
polymerization, while thed-Galp version of this molecule was completely inactive [58]. The disaccharide
series of these acceptor substrates were used to determine the processive character of GlfT2 [59].
The results of these experiments led to a proposed tethering mechanism for galactan length control
by Kiessling with co-workers in 2009. The model predicted the existence of a specific site on the
enzyme, distal from the active site, which interacts with the lipid portion of the acceptor substrate.
The strength of this interaction was proposed to affect the size of the polymer [59]. In follow-up
experiments, isotopically labelled acceptor substrate was used to discriminate between the distributive
and processive mechanism in a newly developed mass spectrometry assay, which confirmed that GlfT2
is a processive polymerase, that is, staying in contact with the acceptor to perform numerous cycles of
catalysis [60].

Recognition of the dual β-(1→5) and β-(1→6) Galf -transferring activities of GlfT2 led to
experiments designed to reveal if one or two active sites are engaged in the catalysis. The affinity
of the enzyme towards two possible trisaccharide acceptor substrates containing d-Galf linked with
alternatingβ-(1→5) andβ-(1→6) glycosidic bonds was examined by saturation transfer difference NMR
titration, which pointed to a competition of these substrates for a single active site [61]. This conclusion
was supported by identification of the GlfT2 putative active site by homology modelling, in which
two conserved DXD motifs characteristic for divergent glycosyl transferases were recognized [62].
The model predicted that GlfT2 belongs to a family of GT-A glycosyltransferases and that both identified
motifs of GlfT2, Asp256-Asp257-Asp258, and Asp371-Asp372-Ala-373 play important and distinct roles
in catalysis. The former motif was suggested to be involved in the binding of a divalent cation, which
is required for the GT-A glycosyltransferases. Mutating the latter motif led to a complete abolishment
of both β-(1→5) and β-(1→6) transferring activities, which indicated that it is critical for both catalytic
activities of GlfT2 [62]. The crystal structure of GlfT2 resolved in 2012 confirmed that these motifs are,
indeed, part of the active site, and that their roles were correctly assigned [63].

GlfT2 crystallized in both free and UDP-bound forms and these structures are highly similar,
revealing an expected GT-A domain. Modelling of the trisaccharide acceptor substrates with alternating
β-(1→5) and β-(1→6) Galf residues and UDP-Galf into the obtained structure explained the dual
activity of the enzyme using a single active site. It was proposed that the position of the terminal Galf
of the acceptor substrate in the active site affects the production of the next linkage. If the substrate
ends with a β-(1→6) Galf, the structure is extended; the last residue is positioned deeper into the active
site and directs the new bond in the β-(1→5) position. On the contrary, a shorter length of a β-(1→5)
terminated acceptor places the terminal Galf less deep into the active site, which favors the production
of a β-(1→6) bond (Figure 5) [63]. The hybrid QM/MM molecular dynamics simulations of the of GlfT2
reaction mechanism suggest that the two reactions proceed in a comparable way and that UDP-d-Galf
substrate adopts similar transition states structures [64].

Interestingly, the protein forms a rather large oligomeric structure, a symmetric homotetramer with
a central funnel-shaped pore. The C-face of the tetramer contains hydrophobic and positively charged
residues, which were proposed to provide the means for the attachment of the enzyme to the membrane
(Figure 6) [63]. These unique structural features of GlfT2 led Wheatley et al. to propose that galactan
length is controlled by the volume of the central cavity within the tetramer. In fact, it was estimated
that the cavity could accommodate about 100–150 Galf residues, which corresponds to the appropriate
galactan size of about 25–37 residues per GlfT2 monomer [63]. This model also predicts that most of the
lipid portion of the natural acceptor substrate is buried in the membrane rather than interacting with the
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GlfT2, as proposed for the tethering mechanism for length control [59,63] (Figure 6). Nevertheless, it was
suggested that length control is an intrinsic property of a specific GlfT2 enzyme. A recent study by the
Kiessling group revealed that the GlfT2 homolog from Corynebacterium diphtheriae produces significantly
shorter galactan polymers compared with that of its M. tuberculosis counterpart in assays containing
purified enzymes and alkene-phenoxy acceptor substrates under identical reaction conditions [65].
This finding was explained by the smaller size of galactan in corynebacteria. Nonetheless, on the
basis of recent estimates, the galactan size in M. tuberculosis [25] approaches that of Corynebacterium
glutamicum [66].
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Figure 6. Structure of GlfT2. (a) A model of the GlfT2 tetrameric structure sitting on the membrane
(PDB ID: 4FIY, bio assembled structure). Approximate schematic position of the UDP-Galf (red circle)
and β-d-Galf -(1→5)-β-d-Galf -(1→4)-α-l-Rhap-(1→3)-α-d-GlcpNAc-decaprenyl-pyro-phosphate during
galactan synthesis is shown (Galf —brown, Rhap and GlcpNAc—light green, pyrophosphate—yellow, and
decaprenol—dark pink rectangle). The GlfT2 protein tetramer surface is colored using the electrostatic
potential (red—negatively charged, white—neutral, blue—positively charged). The approximate size
of the internal cavity is visualized by the black pentagon. (b) Sliced view of the GlfT2 tetramer from
bottom showing the internal cavity made by quartery structure. Slice is made close to the UDP-d-Galp
binding site and the position of the bound UDP-d-Galp is highlighted by black circles.

The first chemical synthesis of natural GlfT2 acceptor substrates containing pyrophosphate
and polyprenol moieties was only recently reported by Lowary with co-workers [67]. As revealed
previously [44], the natural acceptor-like molecules served as efficient GlfT2 substrates, allowing
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build-up of a galactan polymer, while their n-octyl analogs were extended only by one Galf [67].
The length of the prenyl chain, C55 or C15, had a minimal effect on GlfT2 activity. This study, in which
the activities of purified GlfT1 and GlfT2 were examined with natural-substrate-like acceptors for the
first time, provided additional support that GlfT2 serves as a polymerizing galactosyl transferase,
while GlfT1 acts as an initiating enzyme [67].

4.3. GlfT1—The Enzyme in the Shadow of its More Popular Twin

We initiated studies towards the characterization of the rv3782 gene product because of the
similarity between part of its amino acid sequence and the previously discovered galactosyltransferase
Rv3808c, its classification as an inverting nucleotide-sugar requiring glycosyltransferase from the
GT-2 family, and its localization in the AG biosynthetic gene cluster of M. tuberculosis [68]. In pilot
experiments, membrane and cell wall fractions prepared from an M. smegmatis strain overproducing
Rv3782 were used in a reaction containing UDP-GlcNAc and TDP-Rha for in situ formation of GL2
(decapenyl-P-P-GlcNAc-Rha) and UDP-d-[14C]Galp (as a precursor of UDP-d-[14C]Galf ). Analysis
of the reaction products showed increased synthesis of GL4 (decapenyl-P-P-GlcNAc-Rha-Galf -Galf )
compared with that of the control strain. Similar results were obtained with radioactive GL2
(decaprenyl-P-P-[14C]GlcNAc-Rha) and nonradioactive UDP-d-Galf supplied as the UDP-d-Galp and
UGM, or in a reaction mixture containing the enzyme fractions from the control strain supplemented
with partially purified Rv3782, in which UDP-d-[14C]-Galp was used as a tracer. Hence, the primary
product of the reaction was not GL3, which contains only one d-Galf residue, but GL4 with two
d-Galf residues. We concluded that Rv3782 is involved in catalyzing the initial steps of galactan synthesis.
However, under experimental conditions that employed the crude mycobacterial enzymes, it was not
possible to resolve, if Rv3782 catalyzes the conversion of GL2 to GL3, followed by immediate binding
of an additional d-Galf via the action of a second endogenous galactosyltransferase present in the
reaction mixture, or if the enzyme has a bifunctional activity and catalyzes attachment of both d-Galf
residues to the lipid carrier GL2 [68].

Further experiments were designed to accurately determine the functions of Rv3782 and Rv3808c
gene products in galactan biosynthesis [44]. At first, we prepared native lipid substrates, GL2-5,
radiolabeled with [14C]GlcNAc or [14C]Gal, respectively, by enzymatic reactions and purified them
by preparative TLC. Moreover, we employed synthetic lipid substrates Ac2-5, analogs of natural
acceptors containing an octyl chain in place of the decapenylpyrophosphate. Membranes prepared
from E. coli strains producing Rv3782 homolog from M. smegmatis (MSMEG_6367) and Rv3808c from
M. tuberculosis served as sources of enzymes. In these experiments, we clearly showed that rv3782
gene product initiates galactan biosynthesis on decapenyl-P-P-GlcNAc-Rha (GL2) acceptor harboring
dual β-(1→4) and β-(1→5) d-Galf transferase activity, while rv3808c gene product further extends GL4
to produce galactan polymer. Accordingly, we named the two enzymes GlfT1 and GlfT2 [44].

An interesting property of GlfT1 is its donor substrate promiscuity, which became clear
when derivatives of UDP-d-Galf modified at C-5 or C-6 (UDP-6-deoxy-6-F-α-d-Galf, UDP-β-l-Araf,
UDP-6-deoxy-α-d-Galf, UDP-5-deoxy-α-d-Galf ) were examined as potential inhibitors of the
enzyme [69]. Cell-free assays with mycobacterial membranes and cell wall fractions revealed that these
compounds are, in fact, efficient substrates of GlfT1, which leads to production of short “dead-end”
intermediates [69]. A similar property was later described for GlfT2 with UDP-6-deoxy-6-F-α-d-Galf
and UDP-5-deoxy-5-F-α-d-Galf substrate analogs [70].

Few publications describe successful, large-scale purifications of GlfT1. In 2008, the production
of GlfT1 from M. tuberculosis in E. coli C41(DE3) was reported using the pET23b expression system.
The enzyme transferred a single [14C]Galf from the radioactive precursor UDP-d-[14C]Galp (in the
presence of UGM from Klebsiella pneumoniae) on the n-octyl β-d-Gal-(1→4)-α-l-Rha acceptor [71].
In the next study published in 2014, a recombinant M. smegmatis His6-tagged GlfT1 was successfully
prepared using an acetamide-inducible mycobacterial expression system based on the pLAM12 vector.
The purity of the enzyme was documented by SDS-PAGE analysis [72]. Activity of this enzyme was
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tested with novel isoprenoid phosphonophosphate disaccharide acceptor substrates that contained
l-Rha-α-(1→3)-d-GlcNAc, which mimicks the natural substrate, GL2. The reaction products were
identified by MALDI-TOF analysis, which pointed to an extension of the acceptor substrate by two to
three Galf residues [72].

The availability of the natural acceptor substrate analogs of GL2 and GL3 that contain a
farnesyl chain instead of a decaprenyl chain allowed the kinetic characterization of purified GlfT1
enzymes from M. tuberculosis and M. smegmatis, both produced in M. smegmatis, with the use of a
spectrophotometric assay (described in Section 5.2) [67]. While each of the enzymes recognized both
substrates, the trisaccharide acceptor had an approximately two-fold smaller apparent Km compared
with that of the disaccharide acceptor. Remarkably, the products of an overnight incubation of GL2
and GL3 analogs with GlfT1Msm or GlfT1Mtb included not only the expected tetrasaccharide, but also
more extended oligomers (up to eight Galf residues in the case of the enzyme from M. tuberculosis
and GL2 analog). However, biological relevance of these observations is not currently apparent.
Kiessling with co-workers explained that a tetrasaccharide is the optimal structure efficiently used
by GlfT2 [72]. Although galactan disaccharides (or even a substrate with one galactose unit) work as
substrates for GlfT2, a kinetic lag phase was observed and attributed to the fact that not all substrate
binding subsites are occupied when a shorter acceptor is used. This lag phase was eliminated in
lipid-linked Galf -tetrasaccharides that were similar in length to the natural acceptor GL4, produced
by GlfT1 [60]. In consideration of these data, GlfT1 appears to play an important role in galactan
polymerization control.

5. Search for Inhibitors of the Galactan Pathway

The three core enzymes involved in mycobacterial galactan assembly are all essential for the
survival of mycobacteria [11,73] and share the ability to use UDP-d-Galf as a substrate. Because this
form of galactose is not present in humans [74,75], these enzymes were repeatedly proposed as potential
targets for the development of novel antituberculosis drugs. An attractive option would be to target all
three enzymes with one inhibitor, which appears to be relevant owing to a putative common transition
state, as recently proposed by Vincent and colleagues [76] (Figure 7).
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5.1. UGM Assays and Inhibitors

Efforts towards the identification of UGM inhibitors arose soon after its discovery in mycobacteria.
The properties of the enzyme, for which the equilibrium favors the UDP-d-Galp substrate over the
UDP-d-Galf product by more than 90% [42], as well as the necessity to synthesize commercially
unavailable UDP-d-Galf for monitoring the reverse reaction, made the development of the assays
applicable for inhibitor screening rather challenging. Although access to sufficient amounts of
UDP-d-Galf was limited at the time of UGM discovery, in 2008, Lowary with co-workers published a
procedure that yields milligram quantities of UDP-d-Galf [57] by chemoenzymatic synthesis developed
by Field and co-workers [77].

The original UGM assay exploited a radioactively labeled UDP-[14C]Galp substrate [42].
The reaction mixture was treated with phosphodiesterase I and sugar phosphates released from
the substrate or the product, respectively, could then be efficiently separated by HPLC. The assay
was also used in the reverse direction, utilizing UDP-[14C]Galf substrate [42,43]. In addition, a direct
UGM assay that monitors intact sugar nucleotides and can be used with radioactive or non-radioactive
substrates was developed [78]. Again, the quantities of the UGM substrate and product were monitored
by HPLC, preferentially after the reaction proceeding in the reverse direction, from UDP-d-Galf to
UDP-d-Galp. This assay was used to assess the activity of pyrrolidine analogues of galactofuranose on
UGM from E. coli K12 [79] (Table 1, Entries 1–2).

Further attempts focused on the development of assays suitable for medium to high-throughput
screening of compound libraries to identify potential UGM inhibitors. In 2003, McNeil and co-workers
exploited the fact that periodate oxidation of UDP-d-[6-3H]Galf releases radioactive uncharged
formaldehyde after the cleavage of the C-5–C-6 bond, while UDP-d-[6-3H]Galp retains the radiolabel
after oxidation and remains negatively charged [80]. The radioactive neutral formaldehyde was
separated from the charged components of the reaction mixture by the Dowex-1 × 8 anion exchanger
and quantified by scintillation counting. The assay was adapted to the 96-well format and used for
the screening of a small chemical library of about 1,300 compounds. The most efficient inhibitor
was a uridine analog 320KAW73, with the half maximal inhibitory concentration (IC50) of about
6 µM. However, this activity did not translate into inhibition of the growth of M. tuberculosis (Table 1,
Entry 3) [80].

In a follow-up study, nitrofuranylamide inhibitor 1 with IC50 = 12 µg/mL, also identified in the
previously mentioned screen, was explored based on UGM inhibitory activity and a favourable minimal
inhibitory concentration (MIC) of 1.6 µg/mL against M. tuberculosis (Table 1, Entry 4). Structure–activity
relationships (SAR) were studied on 43 compounds of this series, but even the best UGM inhibitors,
10 and 11 (Table 1, Entries 5–6), had IC50 and MIC values comparable to the parent compound 1. Out of
the five compounds selected for in vivo testing based on the MIC, selectivity index, UGM inhibition,
CLogP, calculated solubility, and protein binding data, only compound 23 (Table 1, Entry 7) showed
activity in a mouse model. However, the authors concluded that, because of a high IC50 value, which
is in contrast with its low MIC, and a lack of activity on other mycobacterial species, the inhibitory
effect on M. tuberculosis growth originates from a different primary mode of action [81].

Inspired by the successful use of a fluorescent polarization assay for high-throughput
screening of inhibitors of glycosyltransferase MurG, which is involved in the biosynthesis of
peptidoglycan precursor Lipid II [82], Soltero-Higgin et al. prepared a fluorescent probe by coupling
uridine-5′-diphosphohexanolamine to fluorescein isothiocyanate, which was then used in a newly
developed UGM fluorescence polarization assay [83]. This assay measures changes in polarization to
monitor the displacement of a probe bound to the active site of an enzyme by a competitive inhibitor.
As the assay was originally developed for a K. pneumoniae enzyme, IC50 and affinity of the probe
against UGMMtb were first determined to confirm its efficacy for screening of M. tuberculosis enzyme
inhibitors (Table 1, Entry 8) [84].

A compound library containing 16,000 small, presumably cell permeable, molecules was
obtained from Chembridge, and an additional 20,000 compounds were purchased from ChemDiv.
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These molecules were then screened against UGMMtb with 0.3% and 0.15% hit rates, respectively [84].
One of the identified ligands, thiazolidinone derivative 6 from this screen (Table 1, Entry 9) was used as
a core scaffold to prepare a directed library of 18 compounds. This library was then evaluated against
UGM from K. pneumoniae and M. tuberculosis. Although a few molecules from the tested set showed
better Kd values compared with that of the original compound 6, the authors suggested that reactivity
with thiols complicates the performance of these compounds in biological studies [84]. Molecules with
such properties are currently classified as pan assay interference compounds (PAINS) [85].

In order to overcome this obstacle, Dykhuizen et al. (2008) proposed an alternative, 2-aminothiazole
scaffold, which is similar to thiazolidinones, but remains unreactive under physiologic conditions [86].
Within the 62 synthesized compounds from this family screened by fluorescent polarization assays
against UGM from K. pneumoniae and M. tuberculosis, 25 ligands of UGM were identified. Both active
(11 molecules) and inactive (3 molecules) compounds were evaluated by an agar disk diffusion assay.
Only compounds from the former group were shown to inhibit the growth of M. smegmatis mc2155,
and they did not influence the growth of E. coli. Five compounds with different inhibitory activities
against UGMMtb were chosen to determine MIC in M. smegmatis. The value for the most effective
inhibitor (Table 1, Entry 12) was 50 µM, but importantly, a correlation between MIC values and UGM
inhibitory potency was observed in the selection of five compounds, which suggests that growth
inhibition is related to the inhibition of galactan synthesis [86].

The activity of this compound (Table 1, Entries 12, 15) in several mycobacterial species was further
evaluated by Borelli et al. (2010), who concluded that it does not inhibit the growth of M. tuberculosis
up to 100 µg when examined by the disk sensitivity assay [87]. On the contrary, pyrazole compound
(Table 1, Entry 14) designed as a potential inhibitor of M. tuberculosis growth by computational
methods [88,89], which was examined in the same manner in this study, was active against the
pathogen and showed dose-dependent inhibition zones in the tested range of 2.5 µg to 20 µg. MICs of
this molecule were more than 100 µg/mL for Bacillus subtilis, Micrococcus luteus, and Moraxella catarrhalis,
and greater than 200 µg/mL for E. coli. Meanwhile, the values for M. bovis BCG and two strains
of M. smegmatis were below 7 µg/mL, indicating a specificity of the molecule against mycobacteria.
However, toxicity of both of the tested compounds against mammalian cells (THP1-monocytes) was
relatively high. The 50% lethal dose (LD50) of the pyrazole compound was 50 µg/mL and even higher
for the 2-aminothiazole compound [87].

The intriguing observation that the probe employed for the fluorescent polarization assay binds
to UGM more efficiently than UDP (Kd values for UGMMtb were 0.16 µM and 15 µM, respectively),
led Kiessling and co-workers to examine the possibility of the secondary-binding site on the enzyme [90].
They have carefully evaluated the contribution of the fluorescein-UDP linker length and chemical
composition to UGM binding, as well as affinities of fragments of the parent compound, containing
only the linker-UDP, or fluorescein-linker, and a molecule in which fluorescein was exchanged to
naphthyl group. On the basis of these studies, the authors concluded that the secondary binding
site relevant for enzyme inhibition is, indeed, present in UGM. Afterwards, they designed a novel
compound based on the previously identified 2-aminothiazole scaffold [86] that aimed to exploit
the secondary binding site. In fact, this compound proved to be one of the most efficient UGMMtb
inhibitors at the time (Table 1, Entry 13) [90].

The question of the second inhibitor binding site on UGM was recently raised by Shi et al. (2016),
who experimentally and computationally analysed the binding of the pyrazole compound (Table 1,
Entry 14) with UGMMtb. They identified a putative allosteric site within the enzyme by molecular
docking and verified its relevance through mutagenesis of the selected amino acids followed by kinetic
analyses [91].

The results from a fluorescence polarization assay-based screen of more than 320,000 compounds
from the Broad Institute identified only one UGMMtb inhibitor with IC50 > 250 µM (PubChem AID
504439) [92]. This result motivated Kiessling and co-workers to apply computational methods to
virtually screen 4.6 million commercially available compounds against the UGMKp structure in the
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substrate-bound, flavin-reduced conformation. A total of 13 highly ranked molecules with docking
scores in the top 0.01% of the library were selected for experimental evaluation by an HPLC assay with
the same enzyme. Based on a set of criteria, the triazolothiadiazine compound 6 (Table 1, Entry 16)
was chosen as the basis for the selection of the next 11 commercially available molecules. Among these,
compound 22 was identified as an efficient competitive inhibitor of UGMKp, although its activity against
the M. tuberculosis enzyme and other UGM homologues was lower (Table 1, Entry 17). Nevertheless,
co-crystallization of this molecule with the UGM from Corynebacterium diphtheriae successfully resulted
in the first structure of the UGM in a complex with a small nonsubstrate-like inhibitor. On the basis of
careful examination of compound 22′s mode of binding to the enzyme, five additional commercially
available “second generation” analogs were proposed and their activity against UGMKp was tested in
both fluorescent polarization and HPLC assays. The best inhibitor 30 (Table 1, Entry 18), which caused
complete inhibition of UGMKp at a 100 µM concentration, was also active against other UGM homologs,
including the enzyme from M. tuberculosis. Consequently, the most efficient UGM inhibitors were
evaluated for their ability to inhibit bacterial growth. Compound 30 inhibited M. smegmatis with MIC
20 µM (9.7 µg/mL), as determined by a microbroth dilution assay. Compound 30 was also the most
efficient in the disk diffusion assay against M. tuberculosis. Meanwhile, none of the tested compounds
killed B. subtilis or E. coli. The cytotoxicity of this compound with HEK293 cells (LD50∼100 µM or
47.5 µg/mL) was explained by an elevated aggregation at higher concentrations [92].

In an effort to further improve the properties of the 2-aminothiazole [86] and triazolothiadiazine [92]
series, Kiessling with co-workers focused on the carboxylate part of these molecules and argued
that carboxylate replacement with a non-charged functional group surrogate would lead to better
mycobacterial penetration. Indeed, 2-aminothiazole compounds modified with N-acylsulfonamide
showed similar potency at inhibiting UGMMtb, but were more efficient inhibitors of mycobacterial
growth compared with the original molecule (Table 1, Entry 12 vs. Entries 19–26) [93]. Furthermore,
the concentration of 2-aminothiazole derivative 2 (Table 1, Entry 19) in M. smegmatis, as determined by
LC-MS, was about 14-times higher compared with its carboxylate counterpart (Table 1, Entry 12) [93].

The attractive approach for drug design is to develop transition state analogs. The UGM catalytic
mechanism (Figure 3) indicates the possible presence of an oxocarbenium ion in the transition state.
Hence, Pinto and co-workers synthesized two mimics carrying a permanent positive charge, 2-deoxy
d-arabinitol derivatives containing sulfonium and selenonium ions with an appended polyhydroxylated
side chain (Table 1, Entries 29–30) [94]. Similarly, Vincent and co-workers designed analogs of UDP-d-Galf
that emulate the transition state of this sugar nucleotide within the active sites of UGM, GlfT1, and
GlfT2 (Table 1, Entries 31–32) [76]. However, none of these molecules appeared to efficiently inhibit
UGM from M. tuberculosis.

Several recent studies screened libraries of natural products and related compounds to identify
further candidate UGM inhibitors. Additional optimization of these molecules through chemical
modification [95] or novel compound development through dynamic combinatorial chemistry
approaches [96], translated to molecules that cause only moderate inhibition of mycobacterial growth
(Table 1, Entries 33–36).
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Table 1. Inhibitors of mycobacterial UDP-galactopyranose mutase (UGM).

Entry Year Compounds Origin Structure [Reference] Compound Id 1 Assay, Inhibitory Activity Growth Inhibition

1997 [79] HPLC reverse 2

1 structure-based
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E. coli [84]. 5 M. smegmatis ATCC 700,084 and M. smegmatis ATCC 607 were used. 
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5.2. GlfT1 and GlfT2 Assays and Inhibitors

The first compounds reported to inhibit biosynthesis of mycobacterial galactan were pyrollidine
analogues of galactofuranose (Table 1, Entries 1–2). The incorporation of radioactive galactose from
UDP-[14C]Gal into the polymer catalysed by the crude mycobacterial membrane/cell wall enzyme
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fraction was determined by descending paper chromatography, in which the polymerized product
remained at the start. Compounds 1 and 2 caused 63% and 56% inhibition of galactan polymerization
at 200 µg/mL [79]. As the compounds also inhibited UGM from E. coli, the authors concluded that they
likely act through the inhibition of mycobacterial UGM. A radioactive crude enzyme assay was used
to test the next set of iminosugars, which were designed as transition state analogs. None of these
compounds caused efficient inhibition of galactan polymerization (Table 2, Entries 1–4) [97,98].

A set of 14 compounds, originally developed as transition state analogs of E. coli MurG through
docking, were tested against GlfT2 in the assay that exploits the crude mycobacterial cell wall fraction,
β-d-Galf -(1→6)-β-d-Galf -O-C8 acceptor and UDP-[14C]Galp [99]. In the assay, first described by
Kremer et al. in 2001 [56], the neutral reaction products (extended acceptor) are separated from the
charged substrate by the strong anion exchange cartridge. Subsequently, the dried eluate is partitioned
between n-butanol and water. The organic phase that contains the radiolabelled reaction products is
then quantified by scintillation counting and further analysed by TLC and autoradiography. The tested
molecules were designed as mimics of the oxonium ion formed during the GlfT2 reaction and contained
a uridine nucleoside linked through variable spacers to the functionalized proline. One of the tested
compounds showed 80% inhibition of the tested enzyme activity at 0.5–1 mM concentration (Table 2,
Entry 5) [99].

The successful purification of GlfT2 allowed further modification of the radiometric assay [57].
A trisaccharide substrate β-d-Galf -(1→5)-β-d-Galf -(1→6)-β-d-Galf -O-C8 was identified as an effective
acceptor for an assay with the purified GlfT2 and UDP-[6-3H]Galf substrate produced in situ from
UDP-[6-3H]Galp and purified UGM mutase. Separation of the radiolabeled products from the sugar
nucleotide substrate was carried out by reverse-phase chromatography on C18 cartridges [57].

Access to purified GlfT2 and sufficient amounts of UDP-d-Galf led to the development of the
spectrophotometric high-throughput assay with β-d-Galf -(1→5)-β-d-Galf -(1→6)-β-d-Galf -O-C8 used
as an acceptor substrate [100]. In this assay, the release of UDP over the course of the GlfT2 reaction is
quantified by monitoring NADH consumption linked to coupling reactions catalysed by pyruvate
kinase (PK; UDP + phosphoenol pyruvate → UTP + pyruvate) and lactate dehydrogenase (LDH;
pyruvate + NADH→ lactate + NAD+). The assay was adapted for a 384-well format and the kinetic
parameters obtained for this trisaccharide acceptor corresponded well to the values measured by the
radiometric assay [57,100].

Adaptation of this assay for purified GlfT1 involved the exchange of the trisaccharide
acceptor β-d-Galf -(1→5)-β-d-Galf -(1→6)-β-d-Galf -O-C8 for the analog of the natural substrate, GL2,
containing farnesol instead of decaprenol [76]. Alternatively, the activity of GlfT1 was monitored
spectrophotometrically in the assay with isoprenoid phosphonophosphate disaccharide acceptor
substrate containing l-Rha-α-(1→3)-d-GlcNAc, mimicking GL2. In this case, UDP production was
linked to a luciferin/luciferase reaction [72].

The efforts towards the identification of GlfT1 and GlfT2 inhibitors focused primarily on the
design of transition state or substrate mimics [76,101–105] (summarized in Table 2). The most active
among these compounds was fluorinated exo-glycal analogue of UDP-Galf with IC50 180 µM (Table 2,
Entry 8), established by a radiometric assay with crude cell wall enzyme fraction from M. smegmatis
and O-alkyl β-d-Galf -(1→6)-β-d-Galf acceptor [102]. Although it is not possible to compare the values
obtained by the different assays used in the separate studies, clearly, none of the listed compounds is
an efficient inhibitor of the tested enzymes.

The latest efforts to find GlfT2 inhibitors and to evaluate their properties by molecular docking,
3D-QSAR, and in silico ADMETox studies identified as a potential best candidate thiazolidinone
derivative [106], related to the series examined as UGM inhibitors (Table 1, Entry 9), which proved to
be PAINS [84,85].
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Table 2. Compounds designed as substrate mimics or transition state analogs for GlfT1 or GlfT2.

Entry Year Target Enzyme Structure [Reference] Compound Id 1 Assay Inhibitory Activity

2004 GlfT2 [97] Radiometric 2

1
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6. Conclusions

Galactan biosynthesis has remained an appealing target for novel tuberculosis drug developments
since the characterization of this pathway at the turn of this millennium [41,43]. In the early 2000s,
conventional belief maintained that an efficient enzyme inhibitor could be developed to the drug by
a rational design. Since then, it has become evident, especially in the field of antimicrobials, that
this approach is ineffective [107]. In fact, nearly all tuberculosis medications currently in clinical
development or recently approved (bedaquiline, delamanid, pretomanid) were discovered by whole-cell
screens [7,108]. Despite their commonality, whole-cell screens are limited by the chemical diversity
available in the commercial or proprietary libraries and, in the case of UGMMtb, this shortcoming can
be exemplified by the results of experimental and in silico screening of available compound collections.
Nevertheless, we imagine that recent technological advances, both computational and experimental, in
the field of tuberculosis drug development [4,12,109–113] provide a promising avenue for therapeutic
innovation. Moreover, critical information concerning the galactan biosynthesis pathway has been
delineated, including the structures of UGMMtb [53] and GlfT2Mtb [63]. Furthermore, current assays are
able to support structure–activity studies. Our summary clearly indicates that only a few candidate
compounds were tested in M. tuberculosis for growth inhibition (Table 1). Further galactan synthesis
inhibitor development should include this information, along with the results of experiments that
evaluate whether the drug remains on target in whole cells. These analyses are missing in the
previous reports. Varying approaches are currently available for such studies, including the use of
overproducers or hypomorphs in the target enzymes. Simple microscopy could also provide the
capacity to examine whether the galactan pathway is affected by candidate drugs. Genetic depletion
of GlfT2 leads to a specific “lemon-shape” phenotype [114], which could be expected also at target’s
chemical inhibition. Alternatively, “old-fashioned” monitoring of cell wall lipid and carbohydrate
compositions by metabolic labelling can be applied [10].

Despite the question posed within the title of our review, we believe that, given the attractive
possibility of multitargeting of UGM, GlfT1, and GlfT2 by compounds developed as transition state
analogs, these enzymes should not be left behind in current efforts towards the development of novel
therapeutic interventions against tuberculosis.
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