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Abstract: Concrete production by replacing cement with green materials has been conducted in recent
years considering the strategy of sustainable development. This study researched the topic of com-
pressive strength regarding one type of green concrete containing blast furnace slag. Although some
researchers have proposed using machine learning models to predict the compressive strength of con-
crete, few researchers have compared the prediction accuracy of different machine learning models
on the compressive strength of concrete. Firstly, the hyperparameters of BP neural network (BPNN),
support vector machine (SVM), decision tree (DT), random forest (RF), K-nearest neighbor algorithm
(KNN), logistic regression (LR), and multiple linear regression (MLR) are tuned by the beetle antennae
search algorithm (BAS). Then, the prediction effects of the above seven machine learning models on
the compressive strength of concrete are evaluated and compared. The comparison results show that
KNN has higher R values and lower RSME values both in the training set and test set; that is, KNN is
the best model for predicting the compressive strength of concrete among the seven machine learning
models mentioned above.

Keywords: machine learning; compressive strength; BAS; hyperparameters

1. Introduction

Concrete is a common building material; it has been widely used in industrial and
civil buildings and has become one of the world’s most widely used building materials
because of its low price, excellent performance, simple production process, and other
characteristics [1–6]. Over time, more and more infrastructure industries have given
priority to concrete as a building material [7,8]. As a result of pouring, the concrete interior
often produces phenomena such as cavities and in-compactness. This will lead to the
strength, compactness, frost resistance, anti-permeability, and other properties of concrete
being reduced and will also affect the service life of concrete structures to a certain extent,
and may even affect the safe operation of buildings [9–12]. Cement is an important part
of concrete, but it will emit a large amount of carbon in the process of production, which
will bring a certain burden to the environment [13–15]. With the wide application of
concrete, its impact on the environment has been paid more and more attention [16–19].
Considering the strategy of sustainable development, it is urgently needed to solve the
problem of the environmental pollution caused by cement production by replacing cement
with green materials [20–26].

Blast furnace slag is a type of industrial waste slag discharged from the blast fur-
nace when smelting pig iron, and it contains a large amount of active substances [27–30].
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Researchers found that blast furnace slag has a certain value, so they began to study the
application of blast furnace slag, and took it as auxiliary cementing material to replace
part of the cement in concrete, alleviate the environmental pollution brought by cement
production, and improve the performance of concrete [29–32]. Shi et al. studied the effect of
blast furnace slag fine aggregate produced by three different steel mills on the mechanical
properties of high-performance concrete, and the results showed that the concrete with
blast furnace slag fine aggregate could improve the compressive strength of concrete under
the condition of a lower water–cement ratio [33]. Cvetkovic et al. proposed an adaptive
network-based fuzzy inference system (ANFIS) to study the influence of blast furnace
slag and fly ash on the strength of concrete. The research results showed that the addi-
tion of blast furnace slag and fly ash is beneficial to improving concrete strength, and the
curing time has the greatest influence on concrete strength [34]. Zhao et al. studied the
mechanical properties and fresh properties of self-compacting concrete by ground blast
furnace slag and hook-end steel fiber. The results showed that replacing 10% cement in
self-compacting concrete with slag had a positive effect on reducing the workability of
freshly mixed concrete. However, using slag to replace 30% cement in self-compacting
concrete will reduce the passing capacity and filling capacity of fresh concrete. Blast furnace
slag can improve the bonding properties of the fiber–matrix interface, and then improve
the mechanical properties of self-compacting concrete [35]. Liu et al. studied the influence
of the composite mixing of steel slag and blast furnace slag on mortar and concrete, and the
results showed that the composite mixing of steel slag and blast furnace slag may reduce
the early compressive strength of concrete, but will promote the development of concrete
strength over time, and is conducive to the self-shrinkage of concrete and the reduction of
adiabatic temperature. These phenomena are more obvious when the water–solid ratio is
low [36].

Engineers usually use the laboratory test method to study the performance of concrete.
However, the laboratory test method has many disadvantages, such as low efficiency
and high cost [37–43]. To find a more efficient and low-cost method to predict the perfor-
mance of concrete, many researchers choose to use machine learning models to predict
the properties of concrete [44–51]. Salimbahrami et al. studied the compressive strength
prediction methods of recycled concrete based on the artificial neural network (ANN)
and support vector machine (SVM), and the research results show that machine learning
models have good prediction effects on the compressive strength of recycled concrete [52].
Al-Shamir et al. established a prediction model for the compressive strength of HPC by
using the regularized extreme learning machine (RELM) technology and compared the
RELM model with other machine learning models. The results show that the prediction
accuracy of the RELM model for the compressive strength of HPC is higher [53]. Wang et al.
proposed a model based on the combination of random forest and support vector machine
(RF-SVM) to predict the impermeability of concrete and compared the prediction results of
the RF-SVM model with the BP neural network model and single SVM model. The research
results show that the RF-SVM model has a better prediction effect and fitting effect on
the prediction of the impermeability of concrete [54]. Nilsen et al. proposed to use the
linear regression and stochastic forest machine learning methods to predict the thermal
expansion coefficient of concrete to solve the time-consuming and expensive problems of
CTE measurement, and achieved a good prediction effect [55]. The above machine learning
models have achieved good prediction results in concrete performance prediction [56–68].
However, most researchers only consider the prediction effect of the proposed model
when studying the prediction of the properties of concrete by machine learning models.
Few researchers compare the prediction effect of various machine learning models and
select the machine learning model with the best prediction effect to predict the properties
of concrete.

Strength is an important index to measure the quality of concrete with blast furnace
slag. To ensure the quality of concrete, concrete must reach a certain strength, and the
material composition of concrete determines its most critical mechanical index, which is
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compressive strength. To predict the compressive strength of concrete with blast furnace
slag more efficiently and economically, firstly, this study uses the beetle antennae search
algorithm (BAS) to adjust the hyperparameters of the BPNN, SVM, DT, RF, KNN, LR, and
MLR, considering the simple implementation, fast convergence speed, and low possibility
of falling into local optimization by changing the step size strategy [69]. Then, comparing
the prediction effects of the above seven models on the compressive strength of concrete
with blast furnace slag, the machine learning model with the best prediction effect on the
compressive strength of concrete with blast furnace slag is selected.

2. Methodology
2.1. Data Collection

In the past, many researchers often only focused on developing new prediction models
of the performance of concrete, while ignoring the importance of a reliable database to
verify the accuracy of the developed models. In this study, the data set on the compressive
strength of concrete is collected from the published articles, and a reliable database is
formed [70]. Cement, water, blast furnace slag, coarse aggregate, fine aggregate, and
superplasticizer are the input variables, and the compressive strength of concrete is the
output variable. The frequency distribution histogram of the data of each variable in
the database is shown in Figure 1. It can be seen from Figure 1 that the data frequency
distribution histograms of water, coarse aggregate, and superplasticizer are single peaks,
and the data frequency distribution histograms of fine aggregate and concrete compressive
strength are double peaks. In short, from the frequency distribution histogram of these
seven variables, it can be seen that the data distribution of each variable in the database is
reasonable and covers a wide range; that is, using the database to predict the compressive
strength of concrete can achieve good results.

Figure 1. Cont.



Materials 2022, 15, 4582 4 of 22

Figure 1. Frequency distribution histogram of variables. (a) Cement; (b) Water; (c) Blast furnace slag;
(d) Coarse aggregate; (e) Fine aggregate; (f) Superplasticizer; (g) Uniaxial compressive strength.

2.2. Correlation Analysis

To prevent the multicollinearity of machine learning models for predicting the com-
pressive strength of concrete, it is necessary to analyze the correlation between input
variables before the training of models. The correlation analysis results of cement, water,
blast furnace slag, coarse aggregate, superplasticizer, and fine aggregate are shown in
Figure 2. It can be seen from Figure 2 that the correlation coefficients on the diagonal line
are 1, while the correlation coefficients on the other position are all less than 0.6; that is, the
correlation coefficients between the same variables are 1, and the correlation coefficients
between different variables are less than 0.6. The above results show that the correlation
between cement, water, blast furnace slag, coarse aggregate, superplasticizer, and fine
aggregate is low. Therefore, using them as input variables to predict the compressive
strength of concrete will not affect the prediction effect due to multiple collinearities.

2.3. Algorithm
2.3.1. Beetle Antennae Search (BAS)

BAS is an efficient intelligent optimization algorithm. Compared with other optimiza-
tion algorithms, this algorithm can optimize without knowing the specific function and
gradient information. Therefore, this algorithm has the advantages of small computation
and fast optimization speed. The idea of the BAS algorithm is to realize optimization by
simulating the process of beetles looking for food. The BAS algorithm regards the fitness
function value as the concentration of food odor, so the function has different function
values in different positions. Beetles find the optimal value by comparing the odor concen-
tration received by left and right antennae until they find the location of food; that is, the
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algorithm finds the optimal function value through multiple iterations and comparisons.
The optimization steps of the BAS algorithm are as follows:

(1) Determine the direction of the initial value of each beetle. The direction of the initial
value of the beetles is determined by the following formula:

→
d =

rands(K, 1)
‖rands(K, 1)‖ (1)

where rands(·) is the random function, and K is the spatial dimension.

(2) Set the step factor. The step size factor determines the searchability of beetles, so
choosing a larger initial step size is helpful to improve the search range of beetles.
The calculation formula of the step factor is as follows:

ξt+1 = ξt·eta(t = 1, · · · , n) (2)

where ξ is the step size, eta is the decreasing factor, eta ∈ [0, 1], t is the current number
of iterations, and n is the total number of iterations.

Figure 2. Correlation analysis results of input variables.

The position coordinates of the two whiskers of beetles are updated by the follow-
ing formula:  xl = xt − d0

→
d
2

xr = xt + d0

→
d
2

(t = 1, 2, · · · , n) (3)

where xl is the position of the left whisker, xr is the position of the right whisker, xt
represents the position of the individual centroid when the number of iterations is t, and d0
represents the length between the two whiskers.

The fitness function (mean square error, MSE) is expressed by the odor concentration
of the left and right whiskers, and the solution formula is as follows [71,72]:

f itness =
1
n

n

∑
i=1

(d f i − dvi)
2

(4)

where d f i represents the output value of the ith sample model and dvi represents the actual
value of the ith sample. The MSE between predicted outputs and observed outputs can be
minimized during this process to evaluate the predictive performance.
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Comparing the fitness values of the two tentacles, the beetle moves in the direction of
a large fitness value, to update the position. The location update formula is as follows:

xt+1 = xt − ξt·
→
d ·sign( f (xl − xr)) (5)

where ξt is the step size factor of the tth iteration and sign(·) is the symbolic function.

The code of the BAS algorithm is shown in Algorithm 1 [5,69].

Algorithm 1 The framework of BAS algorithm

Input: f (x): Fitness function
K: Dimensions of variables
eta: Decrease factor
n: Number of iterations
ξ: Step factor

Output: Optimal solution Xbest, fbest
1: Initial the initial position of the beetle X0

2: Initial a random orientation of the beetle
→
d 0

3: Initialization iteration number t = 1
4: While (t ≤ n) or (stop criterion) do
5: Xl

t , Xr
t ←Use Equation (3) to calculate the position of the beetle’s tentacles

6: f (Xl
t), f (Xr

t )←Use Equation (4) to calculate fitness value
7: Xt ←Update coordinate using Equation (5)
8: f (Xt)←Calculate its fitness value
9: If f (Xt) < f (Xbest)
10: f (Xbest)← f (Xt) Update the current optimal value
11: Xbest ← Xt Update the current position
12: End if
13: t← t + 1
14: End while
15: Return Xbest, fbest

2.3.2. Backpropagation Neural Network (BPNN)

BPNN is a multilayer feedforward network prediction model trained based on the error
backpropagation algorithm. Without knowing the clear mathematical equation relationship
between the input data and the output data, it can learn the relationship between the input
layer and the output layer, to input the corresponding value and obtain the prediction
result. The structure of BPNN is composed of an input layer, hidden layer, and output
layer. BPNN first needs to input influence variables, and then output the final results from
the output layer through the calculation and adjustment of the hidden layer. Next, it is
necessary to calculate the error between the input value and the actual value and judge
whether the error is within the specified range. If the error is not within the specified range,
backpropagation is required to redistribute the weight, and we then repeat the cycle until
the error is within the specified range. After the test error reaches the required accuracy,
the learning ends and a black box model is obtained. After this, the test and prediction of
the model are carried out around the black-box model. The flow chart of BPNN is shown
in Figure 3.

2.3.3. Support Vector Machine (SVM)

SVM is typical supervised learning technology. The basic idea of SVM is to find the
maximum interval hyperplane, maximize the interval from different types of samples to the
classification hyperplane, and optimize the classification hyperplane. In the hypothetical
linear separable sample set

{
(xi, yi), i = 1, 2, · · · , n, x ∈ Rd, y = 1,−1

}
, the expression of

the linear discriminant function in d-dimensional space is as follows:

g(x) = w·x + b (6)
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The equation for classifying hyperplanes is:

w·x + b = 0 (7)

Next, the discriminant function needs to be normalized so that the distance between
the classification hyperplane and the sample closest to the classification hyperplane in
the two types of samples is 1. At this time, the classification interval is 2/‖w‖, and
the maximum classification interval can be reached only when the minimum ‖w‖ is met.
To ensure that the classification hyperplane distinguishes all samples, the following formula
needs to be satisfied:

yi[(w·x) + b]− 1 ≥ 0, i = 1, 2, · · · n (8)

The classification hyperplane that minimizes ‖w‖ and satisfies the above formula is
called the optimal hyperplane.

The transformation of samples from low-dimensional space to high-dimensional
space is a solution to the linear inseparable problem. By this method, the transformation
from the nonlinear problem to the linear problem can be realized, and then the optimal
classification hyperplane can be solved. Suppose that φ : Rd → H is a nonlinear mapping,
which can realize the transformation of input samples from low-dimensional space to
high-dimensional feature space; that is, the construction of the optimal hyperplane can
be realized by the inner product operation of high-dimensional space. Its expression is
φ(xi)·φ(yi), where φ(xi) does not need to be calculated. The inner product operation of
high-dimensional space can determine a kernel function K, and the kernel function K
satisfies the following formula:

yi[(w·x) + b]− 1 ≥ 0, i = 1, 2, · · · , n (9)

The key to transforming the nonlinear problem into the linear problem is to select
the appropriate kernel function K. At this time, the calculation formula of the objective
function is as follows:

Q(α) =
n

∑
i=1

αi −
1
2

n

∑
i,j=1

αiαjyiyiK(xi·xj) (10)
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The calculation formula of the classification function is as follows:

f (x) = sgn

{
n

∑
i=1

α∗i yiK(xi·yi) + b∗
}

(11)

When the above expression is used to calculate the classification function, other
conditions of the algorithm do not change. In short, the main idea of SVM to construct
the optimal hyperplane in high-dimensional space is to transform the input vector into
high-dimensional feature space mapping through the kernel function.

2.3.4. Decision Tree (DT)

The DT is a common prediction method in machine learning. It is a typical classifi-
cation method that generates partition rules through the continuous logical induction of
training data sets, and its main forms are binary tree and multiway tree. The construction
of a decision tree algorithm mainly includes the generation of a decision tree and pruning
of a decision tree. Decision tree generation refers to the process of generating decision rules
by learning and training sample set data. Pruning of the decision tree mainly refers to
using test data set to test, correct, and trim the rules generated by the above decision tree to
prevent the over-fitting phenomenon of the decision tree. The selection of characteristic
values is the most critical part of the process of DT division, and the effect of inductive clas-
sification after the completion of decision tree construction largely depends on the selected
feature evaluation method. The DT algorithm is one of the most widely used inference
algorithms because of its advantages of high classification accuracy, simple generation
mode, and high tolerance of noisy data.

2.3.5. Random Forests (RF)

RF is an algorithm that integrates multiple trees through the bagging idea of ensemble
learning. RF summarizes the classification results of all decision trees on the training
sample set by constructing a large number of decision trees. If the problem studied is
a classification problem, the result is the prediction category of the classification tree; if
the problem studied is a regression problem, the result is the average of all regression
trees. Integrated learning is one of the most common machine learning ideas at present.
The advantage of integrated learning is to integrate more models and effectively avoid the
inherent defects of a single model or a group of models. RF is one of the typical ensemble
learning algorithms. RF can solve the problems of low accuracy and over-fitting of a
single decision tree by gathering multiple decision trees. The construction process of RF is
as follows:

(1) Assuming that the size of the training set is N, m training sample sets with retrieval
are taken from the training sample set, and m regression trees are constructed using
the extracted training sample sets.

(2) In the process of constructing a regression tree, no more than the total number of
variables are randomly extracted from all independent variables at each node to
branch, and each branch is scored to determine the optimal branch.

(3) Each regression tree is branched from top to bottom, and parameters such as the
number of RF subtrees, the depth of RF subtrees, the maximum number of subtrees,
and the minimum number of subtrees are constantly adjusted during the branching
process, to optimize the accuracy of the model.

(4) Summarizing all the generated regression trees to form the RF model, the prediction
effect of the model is determined by evaluating the determination coefficient and root
mean square error of the test set. If the prediction effect of the model is not satisfactory,
the parameters need to be adjusted continuously in the process of random forest
modeling until the expected effect is achieved.

The schematic diagram of random forest construction is shown in Figure 4.
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2.3.6. K-Nearest Neighbor (KNN)

KNN is one of the most simple machine learning methods. The core idea of KNN
is that if k nearest samples of a sample in space belong to the same category, the sample
also belongs to this category. That is, the category of a given unknown sample can be
determined according to the category of k samples closest to it. In simple terms, the
KNN algorithm calculates the distance between the input unknown sample and all sample
points and then takes the first K samples with the smallest distance for unified annotation.
The graphic description of the KNN algorithm is shown in Figure 5.
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2.3.7. Logistic Regression (LR)

LR is a generalized linear regression model with the advantages of strong plasticity,
fast calculation speed, and strong generalization ability. The LR algorithm can not only
predict the possibility of an event occurring under the action of a variety of different input
variables but also analyze two opposing events. LR has many advantages over SVM, ANN,
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and other self-optimized training learning algorithms in the learning of model training
set and the time required for model prediction. The binary classification problem is the
most important application field of LR. LR only distinguishes class 0 and class 1 in the
classification process of binary classification problems, and its probability distribution
formula is as follows:

P(Y = 1|x, w ) =
ewx+b

1 + ewx+b =
1

1 + e−(wx+b)
(12)

P(Y = 0|x, w ) =
1

1 + ewx+b (13)

where w is the model weight coefficient, w ∈ Rn, x is the input variable, x ∈ Rn, Y is the
output variable, Y ∈ {0, 1}, b is bias, and b ∈ {0, 1}.

In the case of multiple inputs, the weight vectors and input variables of the model
need to be expanded. In this case, the mathematical expression of the LR algorithm is
as follows:

P(Y = 1|x, w ) =
1

1 + e−wT x
(14)

P(Y = 0|x, w ) =
1

1 + ewT x
(15)

where w = (w1, w2, wn, m)
T , x = (x1, x2, xn, m)

T , and wi, xi represent the ith dimension of
w and x vectors, respectively.

The regression function is obtained by unifying the above two expressions as follows:

f (x) =
1

1 + e−wT x
(16)

2.3.8. Multiple Linear Regression (MLR)

Regression analysis is a common statistical analysis method to deal with variable
correlation. For the independent variables and dependent variables without a strict de-
terministic function relation quantity, regression analysis can also better determine the
functional relationship between them. The conceptual diagram of the regression model is
shown in Figure 6.
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Regression analysis problems can usually be divided into unary regression and mul-
tiple regression. In real life, a phenomenon is often associated with multiple factors, so
it is necessary to generate an optimal combination of multiple independent variables to
jointly predict the dependent variable. Therefore, the application scope of multiple linear
regression is often wider than that of unary regression. The general form of multiple
regression linear problems is as follows:

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε (17)
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where β0, β1, · · · , βn is the regression coefficient, β0 is the regression constant, x1, x2, · · · xn
are the independent variable, y is the dependent variable, and ε is the random error.

In the actual problem, if there are m groups of data, the multiple linear regression
model can be expressed as follows:

y1 = β0 + β1x11 + β2x12 + · · ·+ βnx1n + ε1
y2 = β0 + β1x21 + β2x22 + · · ·+ βnx2n + ε2

...
ym = β0 + β1xm1 + β2xm2 + · · ·+ βnxmn + εm

(18)

where the error term must satisfy E(ε j) = 0, Var(ε j) = σ2, Cov(ε j, εk) = 0, j 6= k.
The above formula can be written as a matrix:

Y = Xβ + ε (19)

where X =


1 x11 · · · x1n
1 x21 · · · x2n
...

...
...

1 xm1 · · · xmn

, Y = (y1, y2, · · · , ym)
T , β = (β0, β1, · · · , βn)

T , ε =

(ε1, ε2, · · · εm)
T . The hyperparameters of the machine learning models tuned by the BAS

algorithm are summarized in Table 1.

Table 1. Hyperparameters of the machine learning models tuned by the BAS algorithm.

Machine Learning Models Hyperparameters Tuned by
the BAS Algorithm

Range Values (or
Requirement) of

the Hyperparameters

BPNN
hidden_layer_num 1–3

hidden_layer_size 1–20

SVM

C_penalty 0.1–10

kernel Linear

tol 1 × 10−4–1× 10−2

DT

criterion Gini, Entropy

max_depth 1–100

min_samples_split 2–10

min_samples_leaf 1–10

RF
criterion Gini, Entropy

n_estimators 1–1000

KNN neighbors num 1–10

LR
tol 1 × 10−5–1 × 10−3

C_inverse 0.1–10

3. Results and Discussion
3.1. Hyperparameter Tuning

To optimize the hyperparameters of the BPNN, SVM, DT, RF, KNN, LR, and MLR
models, the BAS algorithm is used in this study to optimize the hyperparameters of the
above seven machine learning models, and the optimization results are shown in Figure 7.
It can be seen from Figure 7 that the RSME values of the BPNN, SVM, RF, and KNN
models decline rapidly at first with the increase in the number of iterations, and tend to
be stable as a whole when they fall to lower values, and the RSME values of SVM are the
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lowest. However, although the RSME values of the DT, LR, and MLR models are low before
iteration, their RSME values do not change with the increase in the number of iterations.
That is, BAS has a better hyperparameter tuning effect on the BPNN, SVM, RF, and KNN
models, and the best hyperparameter tuning effect on SVM, but no hyperparameter tuning
effect on the DT, LR, and MLR models.
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Figure 7. The relationship between RSME values and the number of iterations of different models.

To further determine the optimal RSME values of the above seven machine learning
models, this study further tuned the hyperparameters of the above models through 10-
fold cross-validation. The results of the 10-fold cross-validation on the hyperparameter
optimization of the above seven models are shown in Figure 8. The 10-fold cross-validation
is a common test method to test the accuracy of the algorithm. This method needs to
divide the data set into ten parts, selecting one of them as the testing data in turn and the
remaining nine as the training data for training. It can be seen from the figures that after
BAS hyperparameter tuning, the RSME values of the BPNN, SVM, RF, and KNN models
are lower; that is, the prediction effect for the compressive strength of concrete with blast
furnace slag is better.
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3.2. Evaluation of the Model

The box diagram of the prediction error of concrete compressive strength by the BPNN,
SVM, DT, RF, KNN, LR, and MLR models optimized by BAS is shown in Figure 9. It can be
seen that the KNN performed the best among all the models, as indicated by the minimum
residual value. The DT, BP, and MLR models showed large residuals, demonstrating that
they may not be suitable to predict the compressive strength of the concrete with blast
furnace slag. The remaining machine learning models (SVM and RF) showed moderate
performance in predicting the mechanical properties of the concrete with blast furnace slag,
with certain accuracy.
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To select the model with the best prediction effect for the compressive strength of
concrete, this study further evaluated the prediction effect of the BPNN, SVM, DT, RF, KNN,
LR, and MLR models tuned by BAS on the compressive strength of concrete. The compari-
son between the predicted values and actual values of the training set and test set of the
seven models mentioned above is shown in Figure 10. It can be seen from Figure 10 that the
BPNN, SVM, RF, and KNN models show high consistency between the predicted values
and the actual values, while the DT, LR, and MLR models show a large difference between
the predicted values and the actual values. The RSME values of the BPNN, SVM, DT, RF,
KNN, LR, and MLR models of the training set are 5.8238, 0.2376, 11.1465, 3.4754, 1.0299,
9.642, and 7.5262, respectively; R values are 0.9306, 0.9999, 0.7007, 0.9809, 0.9978, 0.8658,
and 0.8765, respectively; the RSME values of the test set are 19.8532, 10.968, 9.6954, 6.4661,
6.2801, 9.3101, and 7.4981, respectively; R values are 0.3485, 0.8358, 0.8197, 0.9173, 0.9165,
0.871, and 0.8836, respectively. In other words, BPNN, SVM, RF, and KNN all have higher
R values and lower RSME values in the training set and test set. This shows again that
the BPNN, SVM, RF, and KNN models have a better prediction effect on the compressive
strength of concrete, while the LR and MLR models have a poor prediction effect on the
compressive strength of concrete. Although SVM has the highest R value and the lowest
RSME value in the training set, its R value decreases greatly and the RSME value increases
greatly in the test set; that is, SVM appears to display the overlearning phenomenon in
this study.

Figure 11 is the radar diagram of the R values and RSME values of the BPNN, SVM,
DT, RF, KNN, LR, and MLR models. It can be seen more intuitively from Figure 11
that KNN has both a lower RSME value and a higher R value; that is, among the seven
machine learning models, KNN is the model with the highest prediction accuracy for
the compressive strength of concrete. This can be due to the fact that the KNN model
itself does not need assumptions for the data set and is not sensitive to outliers, which
can easily appear in concrete design. Moreover, the KNN model mainly relies on the
surrounding limited adjacent samples, rather than the method of discriminating the class
domain to determine the category. Therefore, the KNN model is more suitable for sample
sets with more overlapping class domains (there may be more overlapping class domains
in concrete design).

To further analyze the prediction effect of the training set and test set of seven models
on the compressive strength of concrete, a Monte Carlo simulation was conducted on the
RSME values of the seven models in this study, and the simulation results are shown in
Figure 12. Although the same data for the training group and the test group were employed
in this study, it can be seen that in the process of Monte Carlo simulation, the error of
prediction showed obvious randomness. The possible reason for this is that these machine
learning algorithms differ greatly in the underlying principles of implementation, so data
differences are almost statistically irrelevant. Moreover, it can be seen from Figure 12 that
BPNN has the highest R value in the training set; that is, BPNN tuned by BAS has the
worst prediction effect in the training set. Although the SVM has the lowest RSME value
of the training set, the RSME value of the test set is relatively high; that is, the prediction
effect of the SVM optimized by BAS on the compressive strength of concrete is not stable.
In contrast, KNN adjusted by BAS has lower RSME values in both the training set and the
test set, which again verifies that KNN has the best prediction effect on the compressive
strength of concrete among the seven machine learning models mentioned above.
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3.3. Importance of Variables

Due to the complexity of the compressive strength of concrete, different admixtures
have different effects on the compressive strength of concrete. The importance scores of
different input variables to concrete compressive strength are shown in Figure 13. It can
be seen from Figure 13 that cement has the highest importance score (2.7171) for the
compressive strength of concrete; that is, cement is the most important factor affecting the
compressive strength of concrete among the input variables of this study. The importance
of fine aggregate to the compressive strength of concrete has the lowest score (0.3128);
that is, fine aggregate is the variable with the least influence on the compressive strength
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of concrete among the input variables of this study. The importance scores of cement,
water, blast furnace slag, coarse aggregate, superplasticizer, and fine aggregate to the
compressive strength of concrete are all positive; that is, the compressive strength of
concrete is proportional to the above six input variables.
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4. Conclusions

Concrete is one of the most widely used building materials, and strength is an im-
portant index of its comprehensive performance; to ensure that the quality of concrete
meets the requirements, concrete must reach a certain compressive strength. To enhance the
compressive strength of concrete and ensure the sustainable development of the concrete in-
dustry, the use of mineral admixtures to replace part of the cement in concrete has attracted
more and more researchers’ attention. In this study, the prediction effect of BPNN, SVM,
DT, RF, KNN, LR, and MLR models tuned by BAS on the compressive strength of concrete
containing blast furnace slag was studied, and the following conclusions were obtained:

(1) The BAS algorithm showed a small amount of computation, very fast convergence,
and global optimization ability in the machine learning model used to adjust and
predict the mechanical properties of concrete. By comparison with varying machine
learning models, the results showed that BAS has good hyperparameter tuning effects
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on BPNN, SVM, RF, and KNN models, but poor hyperparameter tuning effects on DT,
LR, and MLR models.

(2) Among the seven machine learning models, SVM, RF, and KNN have higher predic-
tion accuracy for the compressive strength of concrete, while SVM has an over-fitting
phenomenon for the prediction of the compressive strength of concrete. After further
comparison, the KNN model is finally confirmed to be the model with the highest
prediction accuracy (R value of the training set is 0.9978; R value of the testing set is
0.9165) for the compressive strength of concrete.

(3) Among all the design parameters of the concrete with blast furnace slag, the impor-
tance score of cement to the compressive strength of concrete is the highest, while
the importance score of fine aggregate to the compressive strength of concrete is the
lowest, and the importance values of the above five variables to the compressive
strength of concrete are all positive. In other words, cement and fine aggregate have
the greatest and least influence on the compressive strength of concrete among the
five input variables mentioned above, and the compressive strength of concrete is
proportional to any one of the five input variables in this study.

In future studies, more data can be collected to improve the reliability of the machine
learning model, and the prediction model obtained should be applied to actual production
practice, providing some guidance for industrial production. Moreover, the performance of
the models optimized with the BAS algorithm can be compared with traditional methods
to train each model to verify the effectiveness of hyperparameter tuning. The model
combining the linear and nonlinear models using error series or residuals can be proposed
in the future to improve the efficiency and reliability of computing.
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