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Abstract

Facial expressions are fundamental to interpersonal communication, including social inter-

action, and allow people of different ages, cultures, and languages to quickly and reliably

convey emotional information. Historically, facial expression research has followed from dis-

crete emotion theories, which posit a limited number of distinct affective states that are rep-

resented with specific patterns of facial action. Much less work has focused on dimensional

features of emotion, particularly positive and negative affect intensity. This is likely, in part,

because achieving inter-rater reliability for facial action and affect intensity ratings is pains-

taking and labor-intensive. We use computer-vision and machine learning (CVML) to iden-

tify patterns of facial actions in 4,648 video recordings of 125 human participants, which

show strong correspondences to positive and negative affect intensity ratings obtained from

highly trained coders. Our results show that CVML can both (1) determine the importance of

different facial actions that human coders use to derive positive and negative affective rat-

ings when combined with interpretable machine learning methods, and (2) efficiently auto-

mate positive and negative affect intensity coding on large facial expression databases.

Further, we show that CVML can be applied to individual human judges to infer which facial

actions they use to generate perceptual emotion ratings from facial expressions.

Introduction

The ability to effectively communicate emotion is essential for adaptive human function. Of all

the ways that we communicate emotion, facial expressions are among the most flexible—their

universality allows us to rapidly convey information to people of different ages, cultures, and

languages. Further, facial expressions signal complex action tendencies including threat and

cooperative intent [1–3]. Unsurprisingly, the ability to produce and recognize facial expres-

sions of emotion is of interest to researchers throughout the social and behavioral sciences.

Facial expressions can be interpreted using either message- or sign-based approaches [4].

Message-based approaches describe the meaning conveyed by a facial expression (e.g., happi-

ness), whereas sign-based approaches describe observable facial actions that embody/comprise
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messages (e.g., cheek raising may indicate happiness). Although message-based approaches

are used effectively by psychologists to measure facial expression messages (e.g., happiness),

they do not describe facial behavior comprehensively. Instead, they rely on expert judgments

of holistic facial expressions—provided by highly trained coders—rather than on facial move-

ments themselves. This renders message-based approaches susceptible to sources of individual

differences (unreliability) among human coders that are not inherent to sign-based approaches

(e.g., emotional inference on movements after detecting them), which can impede valid com-

parisons of results across studies and research sites—even when the same construct is

measured.

In comparison, multiple comprehensive, standardized sign-based protocols have been

developed and used to answer a variety of research questions [4]. Among these protocols, the

Facial Action Coding System (FACS; [5]) may be the most widely used. FACS comprises

approximately 33 anatomically-based facial actions (termed action units [AUs]), which inter-

act to generate different facial expressions.

Originally developed from a basic emotion theory perspective, the relation between FACS-

based AUs and discrete emotions is an active research topic [6]. Distinct patterns of AUs reli-

ably map onto each basic emotion category (happiness, sadness, anger, fear, surprise, and dis-

gust), and the existence of distinct patterns of AUs that people use to label different emotional

expressions is often used as evidence to support discrete theories of emotion (see [7]). For

example, oblique lip-corner contraction (AU12), together with cheek raising (AU6) reliably

signals enjoyment [8], while brow furrowing (AU4) tends to signal negative emotions like

anger and sadness (e.g., [9]). Recently, research on how people perceive discrete emotions

from AUs has revealed up to 21 discrete categories composed of compound basic emotions

(e.g., happily-surprised; [10]). Together, these studies suggest that people use the presence of

distinct AUs to evaluate emotional content from facial expressions [11], a hypothesis sup-

ported by neuroimaging studies showing that differential patterns of BOLD responding in the

posterior superior temporal sulcus discriminate between AUs [12].

Despite the clear links between AUs and discrete emotion perception, little is known about

how AUs map onto dimensional features of emotion [7], especially positive and negative affect

(i.e., valence). This is a potentially important oversight given the centrality of valance to

dimensional theories of emotion (e.g., [13–15]), of which valence is the most consistently repli-

cated dimension [16]. Early work using facial electromyography (EMG) showed that zygo-

matic (AU12) and corrugator (AU4) activity may indicate more positive and more negative

subjective intensity, respectively (e.g., [9]). However, later studies found that interactions

between multiple AUs better describe valence intensity (e.g., [17]), and in follow-up work,

researchers have proposed that the face may represent positive and negative affect simulta-

neously with independent sets of AUs (e.g., [18]). Of course, the number of AUs that can be

simultaneously measured using facial EMG is inherently limited by the number of electrodes

that can be used without obstructing the face. Subsequently, facial EMG can only be used to

identify a small set of AUs that may be linked to perceived valence intensity. In one of the few

studies directly linking AUs to perceived valence intensity, Messinger et al. [19] found that

cheek raising (AU6) was common to perceptual judgments of both intense positive and nega-

tive affect, which challenges the idea that people may use a single AU to make inference on the

entire range of valence intensity. Altogether, current evidence suggests that zygomatic (AU12)

and corrugator (AU4) activity indicate perceived positive and negative affect, but the extent to

which these and other discrete facial actions map onto the entire range of perceived positive or

negative affect intensity is unclear. Note that contemporary theories of emotion propose

valence as a core affective state that arises in varying intensity before emotional experiences are

labelled as happy, sad, etc. [20], suggesting that AUs linked to positive and negative affect are
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fundamental to the recognition of all other perceived emotions. Therefore, determining the

extent to which specific patterns of AUs map to positive and negative affect is important for

building on and testing contemporary models of emotion production and recognition.

Comprehensive follow-up investigations have been difficult to pursue, in part, because

facial EMG can only detect a very limited number of AUs simultaneously, and manual alterna-

tives are both labor- and time-intensive and require highly skilled annotators. Indeed, FACS

training requires an average of 50–100 hours, and minutes of video can take expert coders

multiple hours to rate reliably [21]. These characteristics limit sample sizes, reduce feasibility

of replication efforts, and discourage researchers from coding facial expressions. Instead,

researchers tend to rely on measures of emotional responding that are not observable in social

interactions (e.g., heart rate variability). Recently, automated computer-vision and machine

learning (CVML) based approaches have emerged that make it possible to scale AU annotation

to larger numbers of participants (e.g., [22–24]) thus making follow-up studies more feasible.

In fact, inter-disciplinary applications of CVML have allowed researchers to automatically

identify pain severity (e.g., [25]), depressive states (e.g., [26]), and discrete emotions from facial

expressions (e.g., [27]).

Work using CVML to detect valence intensity from facial expressions is ongoing (see [28]).

In fact, there are annual competitions held to develop CVML models that best characterize

dimensional features of emotions such as valence and arousal (e.g., [29]). Currently, basic

emotions can be coded automatically with accuracy comparable to human coders, but valence

intensity models show lower concurrent validity. For example, state-of-the-art CVML models

show correlations between human- and computer-coded valence ranging from r = .60-.71

[30,31]. While impressive, there are two limitations that have impeded the use of CVML to

make inferences on positive and negative affect intensity. Below, we outline each of these limi-

tations and offer our solutions.

First, CVML models are often constructed using difficult to interpret machine learning

models that detect valence directly from frame-by-frame video input without intermediately

capturing AUs. Therefore, it is both unclear if: (1) successful valence detection depends on

prior detection of specific AUs, and (2) machine learning can provide useful insights into how

people interpret specific facial actions. In the current study, we show that CVML can be used

to both identify well known relationships between AUs and perceived positive and negative

affect intensity in addition to revealing novel relationships.

Second, how valence intensity is represented—and therefore measured—varies substan-

tially across studies. For example, some previous CVML models of valence intensity have been

developed from relatively small samples or on continuously collected valence ratings (human

ratings collected in real-time using dials or joysticks), while others are developed based on

static images. It is unclear if such models generalize to other research settings where partici-

pants’ emotional expressions to evocative stimuli are coded within discrete, trial-by-trial time

intervals (e.g., [32]). Indeed, contemporary work using CVML has shifted from evaluating

facial expressions in controlled laboratory settings toward accurately capturing continuous

facial expressions of emotion “in the wild”, which is a much more difficult task (e.g., [30,33]).

However, given the highly contextual nature of facial expression recognition [20], controlled

laboratory settings are ideal for identifying AUs that are specific to perceived core affective

processes such as positive and negative affect. Further, most valence-detecting CVML models

assume a unidimensional valence continuum as opposed to separable continua for positive

and negative affect—to our knowledge, there are few opensource datasets used in CVML

research that characterize valence as multi-dimensional (see [34]), and very little work has

been done with CVML to separate positive and negative affect (cf. [35]). Notably, positive and

negative affect can vary independently and have different predictive values [10,15,36],
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suggesting that CVML models designed to account for each dimension separately may be

most beneficial for behavioral science applications.

Using a well-validated method of emotion induction and both computer-vision measure-

ment of discrete facial actions and continuous measures of positive and negative affect inten-

sity, we (1) identified specific correspondences between perceived emotion intensity and

discrete facial AUs, and (2) developed a reliable, valid, and efficient method of automatically

measuring the separable dimensions of positive and negative affect intensity. Based on previ-

ous work on subjective valence intensity using facial EMG, we hypothesized that CVML would

identify AUs 12 and 4 as of the most important AUs for positive and negative affect intensity,

respectively. Additionally, we hypothesized that the effects of AUs 12 and 4 on positive and

negative affect intensity would depend on the activation of other AUs, and that these interac-

tions could be probed with interpretable machine learning methods. Importantly, data used to

train and validate our CVML models were collected from a commonly-used psychological task

and contained 4,648 video-recorded, evoked facial expressions from 125 human subjects

across multiple task instructions. Our findings shed light on the mechanisms of valence recog-

nition from facial expressions and point the way to novel research applications of large-scale

emotional facial expression coding.

Method

Participants

Video recordings and human coder data were collected as part of a larger study [32]. The cur-

rent study included 125 participants (84 females), ages 18–35 years. All participants gave

informed consent prior to the study, and the study protocol (#2011B0071) was approved by The

Ohio State Behavioral and Social Sciences Institutional Review Board. Self-reported ethnicities

of participants were as follows: Caucasian (n = 96), East Asian (n = 14), African-American

(n = 5), Latino (n = 3), South Asian (n = 3), and unspecified (n = 4). Note that we tested for

racial/ethnic differences in valence coding accuracy, and using Bayesian comparisons we found

evidence favoring no differences in accuracy between groups (see Supporting Information).

Measures

Emotion-evoking task. We used an emotion-evoking task, depicted in Fig 1, that has

been used in several previous studies to elicit facial expressions of emotion across multiple task

instructions [32,37]. Participants viewed 42 positive and negative images selected from the

International Affective Picture System (IAPS) to balance valence and arousal. Selections were

based on previously reported college-student norms [38]. Images were presented in 6 blocks of

7 trials each, whereby each block consisted of all positive or all negative images. For each

block, participants were asked to either enhance, react normally, or suppress their naturally

evoked emotional expressions to the images. These instructions effectively increased variability

in facial expressions within participants. Further, effortful enhancement and suppression of

facial expressions is common across many real-world social situations where specific emo-

tional expressions are expected to reach desired outcomes. Given known individual differences

in suppression and enhancement of facial expressions [32,37], we expected that these task

instructions would allow us to create a more generalizable CVML model than with no instruc-

tions at all. Block order was randomized across participants. Instructions were given so that

each valence was paired once with each condition. All images were presented for 10 s, with 4 s

between each image presentation. Participants’ reactions to each image were video-recorded

with a 1080p computer webcam (Logitech HD C270). Due to experimenter error, 1 partici-

pant’s videos were not recorded correctly, and 7 participants were shown only 41 recordings,
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resulting in 6,293 usable recordings. Among these, 3 were corrupted and could not be viewed.

Thus, 6,290 10-s recordings were potentially available.

In each of the 3 blocks containing positive and negative image content, participants were

asked to either enhance, react normally, or suppress their emotional expressions, so that each

valence type (i.e., positive or negative) was paired once with each task instruction (enhance,

react normally, suppress). All images were selected from the International Affective Picture

System [38]. Participants’ reactions to the images were video recorded and their facial expres-

sions were subsequently rated for positive and negative emotion intensity by a team of trained

coders. The same recordings were then analyzed by FACET, a computer vision tool which

automatically identifies facial Action Units (AUs). Note that the individual in this figure is of

the first author. The individual in this manuscript has given written informed consent (as out-

lined in PLOS consent form) to publish these case details.

Manual coding procedure. A team of three trained human coders, unaware of partici-

pants’ task instructions, independently viewed and rated each 10-s recording for both positive

and negative emotion intensity. Presentation of recordings was randomized for each coder.

Ratings were collected on a 7-point Likert scale ranging from 1 (no emotion) to 7 (extreme
emotion), where positive and negative affect were coded independently following each presen-

tation. Coders completed an initial training phase during which they rated recordings of pre-

selected non-study cases and discussed specific facial features that influenced their decisions

(see the Supporting Information for the coding guide). The goal of this training was to ensure

that all coders could reliably agree on emotion intensity ratings. In addition, coders partici-

pated in once-monthly meetings throughout the coding process to ensure reliability and

reduce drift. Agreement between coders across all usable recordings (6,290 recordings) was

high, with intraclass correlation coefficients (ICCs(3); [39]) of .88 and .94 for positive and neg-

ative ratings, respectively. The ICC(3) measure reported above indicates absolute agreement of

the average human-coder rating within each condition (enhance, react normally, suppress) for

each of the 150 participants in the original study [32]. To prepare data for CVML analysis, we

performed an additional quality check to screen out videos in which participants’ faces were

off-camera or covered. Any recording in which a participant’s face was covered, obscured, or
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Fig 1. Emotion-evoking task.

https://doi.org/10.1371/journal.pone.0211735.g001
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off-camera for 1 s or more was removed from analysis. If 50% or more of a participant’s

recordings were excluded, we excluded all of his/her recordings to ensure that we had enough

within-subject data to use for within-subject model performance analyses. This resulted in a

total of 4,648 usable recordings across 125 participants. With over 4,000 individually-coded

recordings, our sample size is in the typical range for machine learning applications [40].

Automated coding procedure. We then analyzed each of the 4,648 recordings with

FACET [24]. FACET is a computer-vision tool that automatically detects 20 FACS-based AUs

(see S1 Table for descriptions and depictions of FACET-detected AUs). While there are no

published validation studies of FACET’s AU detection accuracy to our knowledge, there are

many studies validating the Computer Expression Recognition Toolbox (CERT), which is

FACET’s opensource predecessor [41]. Validation studies of CERT show that it can discrimi-

nate between 18 different AUs with high accuracy rates (e.g., average 2AFC = 80–90%, [41]).

Further, FACET has shown better than human accuracy in detecting basic emotions across

multiple datasets (e.g., > 95%, [24]), which strongly relies on accurately capturing the AUs

that describe each basic emotion category. Note that FACET was recently purchased by Apple

Inc. and is no longer available to the public. However, there are other commercial software

options available for automated AU detection including Noldus’s FaceReader, Affectiva’s AFF-

DEX, and the opensource OpenFace package, each of which have been validated in previous

studies [22–24]. Importantly, the methodology we use in the current study is not specific to

FACET and any of the above software tools could be utilized to replicate our analyses. FACET

outputs values for each AU indicating the algorithm’s confidence in the AU being present.

Confidence values are output at a rate of 30 Hz, resulting in a time-series of confidence values

for each AU being present with each frame of a video-recording. Each point in the time-series

is a continuous number ranging from about -16 to 16, whereby more positive and more nega-

tive numbers indicate increased and decreased probability of the presence of a given AU,

respectively. We refer to this sequence of numbers as an AU evidence time-series.

Each AU evidence time-series was converted to a point estimate by taking the area under

the curve (AUC) of the given time-series and dividing the AUC by the total length of time that

a face was detected throughout the clip. This creates a normalized measure that does not ren-

der biased weights to clips of varying quality (e.g., clips in which participants’ faces are occa-

sionally not detected). Point-estimates computed this way represent the expected probability

that a participant expressed a given AU across time. We used the AU evidence time-series

point estimates as predictor (independent) variables to train a machine learning model to pre-

dict human valence intensity ratings. It took FACET less than 3 days to extract AU evidence

time-series data from all recordings (running on a standard 8-core desktop computer). Note

that we did not use a baseline correction for each subject, which would require human annota-

tion of a neutral facial expression segment for each participant. Therefore, the models reported

here may be applied to novel facial recordings with no human judgment.

In addition to raw AU scores, FACET computes scores for positive and negative affect

which reflect the probability that a facial expression is of either positive or negative affect.

Although these scores reflect presence of positive or negative affect rather than intensity, we

report them alongside our results to emphasize the added predictive validity achieved by our

method. We used the same preprocessing steps for FACET’s positive and negative affect scores

as for the AUs (i.e. we computed the normalized AUC values for each recording).

Machine learning procedure

Fig 2 depicts the machine learning procedure. We trained a random forest (RF) model to pre-

dict human-coded valence ratings from the AU evidence time-series point estimates described
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Fig 2. Machine learning procedure. The goal of our first analysis was to determine whether or not CVML could perform similarly to humans in rating facial

expressions of emotion. For each AU evidence time-series, we computed the normalized (i.e., divided by the total time that FACET detected a face) Area Under

the Curve (AUC), which captures the probability that a given AU is present over time. All AUC values (20 total) were entered as predictors into the random

Decoding facial expressions of emotion

PLOS ONE | https://doi.org/10.1371/journal.pone.0211735 February 5, 2019 7 / 23

https://doi.org/10.1371/journal.pone.0211735


above (see Supporting Information for details on training). RFs are constructed by generating

multiple decision trees and averaging predictions of all trees together. We chose the RF model

because (1) it can automatically capture interactions between independent variables, and we

know that humans use multiple AUs simultaneously when evaluating facial expressions; (2)

the importance of each independent variable can be easily extracted from the RF to make

inferences regarding which AUs human coders attended to while rating valence intensity

(analogous to interpreting beta weights from a multiple regression; [40]); and (3) RFs have pre-

viously shown robust representations of the mapping from facial features (e.g., AUs) to dis-

crete emotions and valence intensity [42,43]. We additionally tested regularized regression

models including the least absolute shrinkage and selection operator (LASSO), ridge regres-

sion, and elastic-net, but these linear models did not adequately capture the human ratings.

Further, we tested a Deep Neural Network model that performed similarly to the reported RF

results (see Supporting Information for model comparison), and due to its ease of use and

interpretation we decided to only report the RF model results in the main text .Given high

agreement among coders and a large literature showing that aggregating continuous ratings

from multiple, independent coders leads to reliable estimates despite item-level noise (i.e., rat-

ings for each recording; see [44]), we used the average of all coders’ ratings for each recording

as the outcome (dependent) variable to train the RF.

The RF model contains 2 tuning parameters, namely: (1) ntrees–the number of decision

trees used in the forest, and (2) mtry–the number of predictors to sample from at each decision

node (i.e., “split”) in a tree. A grid search over ntrees 2{100, 200, 300,. . .,1000} showed that

out-of-bag prediction accuracy converged by 500 trees for both positive and negative datasets

(not reported). A grid search over mtry 2{1, 2, 3,. . .,20} revealed negligible differences in out-

of-bag prediction accuracy for values ranging from 5 to 20. Because RFs do not over-fit the

data with an increasing number of trees [40], we set ntrees = 500 for models presented in all

reported analyses to ensure convergence. Because initial grid searches over mtry failed to

improve the model, we set mtry heuristically [40] as mtry = p/3, where p represents the number

of predictors (i.e., 1 for each AU) in an n × p matrix (n = number of cases) used to train the

model. We fit the RF model using the easyml R package [45], which provides a wrapper func-

tion for the randomForest R package [46]. All R codes and de-identified data (i.e. FACET out-

put and human coder ratings) used for model fitting along with the trained RF models are

available on our lab GitHub, which allow for replication of all analyses and figures (https://

github.com/CCS-Lab/Haines_CVML_2018).

Correspondence between human coders and model predictions. Model performance

refers to how similar the model- and human-generated valence intensity rating are. To assess

model performance, we split the 4,648 recordings into training (n = 3,060; 65.8%) and test

(n = 1,588; 34.2%) sets, trained the model on the training set (see the Supporting Information

for details), and then made predictions on the unseen test set to assess how well the RF pre-

dicted valence intensity ratings on new data. The data were split randomly with respect to par-

ticipants so that the training and test data contained 66% and 34% of each participant’s

recordings, respectively. This separation ensured that training was conducted with all partici-

pants, thus creating a more generalizable final model. We fit a separate RF model to positive

and negative human ratings. To see if the way we split the training and test data influenced our

forest (RF) model to predict the average coder rating for each recording. To test how similar the model ratings were to human ratings, we separated the data

into training (3,060 recordings) and test (1,588 recordings) sets. We fit the RF to the training set and made predictions on the unseen test set. Model

performance was assessed by comparing the Pearson and intraclass correlations between computer- and human-generated ratings in the test sets.

https://doi.org/10.1371/journal.pone.0211735.g002
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results, we made 1,000 different training/test-set splits and assessed model performance across

all splits [47,48]. We used Pearson correlations and ICC coefficients to check model perfor-

mance on training- and test-sets. Pearson correlations measure the amount of variance in

human ratings captured by the model, whereas ICCs measure absolute agreement between

human- and model-predicted ratings at the item level (i.e., per recording). Therefore, high cor-

relations and ICCs indicate the model is capturing a large amount of variance in human coder

ratings and generating ratings using a similar scale as human coders, respectively. We used

McGraw and Wong’s ICC(1), as opposed to other ICC methods [39], because we were inter-

ested in absolute agreement across all clips, regardless of condition/participant. One-way mod-

els were used to compute ICCs in all cases. In general, ICCs between .81 and 1.00 are

considered “almost perfect” (i.e., excellent) and ICCs between .61 and .80 are considered “sub-

stantial” (i.e., good; [49]). We used regression-based approaches and performance measures as

opposed to classification-based alternatives (e.g., F1 scores on models trained to classify inten-

sity ratings) because the averaged coder ratings across recordings resembled continuous, real

numbers more so than ordinal, categorical intensity scores. Additionally, regression-based

models are commonly used in developing models that predict valence and/or arousal intensity.

We also checked model performance using a different folding scheme for separating training

and test sets which ensured that participants’ recordings were not shared across splits. This

analysis revealed negligible differences in prediction accuracy for positive ratings and a

decrease in accuracy for negative ratings, which suggests that more training data may be neces-

sary to capture negative as opposed to positive affect intensity (see Supporting Information).

Importance of AUs for positive and negative affect. To identify the specific AUs that

human coders were influenced most by when making affective ratings, we fit the RF model to

the entire dataset (all 4,648 recordings) without splitting into training and test sets. We used

this method to identify independent variables that were robust across all samples [47,48]. After

fitting the RF models, the importance of each independent variable was estimated using partial
dependence [50], a measure of the expected standard deviation in the outcome variable (e.g.,

positive or negative affect intensity) as a function of a given predictor variable (e.g., AU12)

averaged across all other predictor variables (e.g., all AUs except AU12). In fact, in special

cases, the absolute values of the multiple regression beta weights are equivalent to the corre-

sponding partial dependence metric [50], which makes partial dependence a useful metric for

assessing the importance of predictors when using “black-box” methods such as RFs. Crucially,

and unlike other methods of measuring variable importance, partial dependence can also be

used to probe both directionality and interaction effects when plotted as a function of the

model predictors [50].

To determine if CVML could adequately capture the relative importance of AUs for each

individual coder, we also fit the RF to each coder’s ratings independently. We used randomiza-

tion tests to determine the minimum number of ratings necessary to accurately infer which

AUs the coders attended to while generating emotion ratings. For each of the 3 coders, we per-

formed the following steps: (1) randomly sample n recordings rated by coder i, (2) fit the RF

model to the subset of n recordings/ratings according to the model fitting procedures outlined

above, (3) compute the ICC(2) of the extracted RF feature importances (i.e., partial depen-
dence) between the subsampled model and the model fit to all recordings/ratings from coder i,
and (4) iterate steps 1–3 thirty times for each value of n (note that different subsets of n record-

ings/ratings were selected for each of these thirty iterations). We varied n 2 {10, 15, 20, 25, 30,

35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 115, 125, 135, 150, 200, 250, 300, 350,

400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1200, 1400, 1600, 1800, 2000,

2500, 3000}.
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Results

Model performance across participants

Table 1 shows correlations between the model-predicted and the average of the human coders’

ratings per recording across both training and test sets. Overall, the RF showed good to excel-

lent performance across both training and test sets for positive and negative ratings. Notably,

these results were supported by both the Pearson correlations and the ICCs, suggesting that

the RF produced ratings that not only captured variance in, but also showed high agreement

with, human ratings. Sensitivity analyses (see Fig 3) indicated that model performance was

robust across different training and test splits of the data. These results suggest that variance in

human-coded valence intensity can be captured by the presence of discrete AUs.

Model performance within participants

We also checked model performance for each of the 125 participants by computing correla-

tions between human- and model-generated ratings for each participant separately (Fig 4).

Although the RF model performed well for many participants in the positive (median r = .91,

ICC(1) = .80) and negative (median r = .73, ICC(1) = .51) affect test sets, 5 participants within

the positive and 7 participants within the negative affect test-set yielded negative correlations

between human- and computer-generated emotion ratings (Fig 4). Further analyses of within-

participant model performance revealed significant positive associations between within-sub-

ject variance in model-predicted ratings and within-participant prediction accuracy (all rs�
.54, ps< .001; see S2A Fig). We found the same relation between human-assigned ratings and

within-participant variance (see S2B Fig). This suggests that the RF model was more accurate

in predicting human-rated emotion if participants expressed a wider range of emotional

intensity.

Importance of AUs across task instructions

To identify which facial expressions human coders may have used to generate positive and

negative emotion ratings, we examined the importance of all AUs in predicting human emo-

tion ratings (Fig 5). Note that importance values for the RF do not indicate directional effects,

but instead reflect relative importance of a given AU in predicting human-coded positive/neg-

ative affect intensity. The RF identified AUs 12 (lip corner pull), 6 (cheek raiser), and 25 (lips

Table 1. Correlations between human- and computer-generated valence ratings.

Model:

Data Set

Correlation [95% CI]

r ICC(1)

(+) (–) (+) (–)

RF Ratings:

Training

.89 [.88, .90] .77 [.75, .78] .88 [.87, .89] .71 [.69, .72]

RF Ratings:

Test

.88 [.87, .89] .74 [.72, .77] .87 [.86, .88] .68 [.65, .71]

FACET Ratings: Training + Test .71 [.70, .73] .40 [.38, .43] -.43 [-.46, -.41] -.22 [-.25, -.20]

Notes. (+) = positive valence ratings; (–) = negative valence ratings; r = Pearson’s correlation; ICC = Intraclass

correlation coefficient. Training and test sets contained 3,060 and 1,588 recordings, respectively. Note that because

FACET’s default positive and negative valence scores were not informed by our dataset, we present the correlations

of FACET scores across the entire dataset as opposed to separately for training and test sets. ICC(1) scores are not

necessarily interpretable for FACET’s positive and negative affect scores because FACET’s scale of measurement is

arbitrary (i.e. ranging from about -16 to +16), whereas the human coders made judgements on a meaningful 1–7

scale. Nevertheless, we report them for completeness.

https://doi.org/10.1371/journal.pone.0211735.t001
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part) as three of the five most important AUs for predicting positive emotion. In contrast to

positive ratings, relative importance values for AUs of negative ratings were distributed more

evenly across AUs, a trend which was also found when the RF was fit individually to each

coder (see Coder-specific AU importance measures below). Notably, the importance of AUs for

positive and negative emotion ratings were largely independent. In fact, when the ICC(3) is

computed by treating positive and negative importance weights for each AU as averaged rat-

ings from two “coders”, the ICC(3) is negative and non-significant (ICC(3) = –.48, p = .80),

which would only be expected if different facial expressions were important for the coders to

rate positive versus negative valence. Lastly, the RF identified stronger interactive effects

between AUs for positive relative to negative affect intensity (Fig 5). Specifically, interactions

between AUs 12�18 and 2�12 together accounted for ~25% of the interactive effects for positive

affect, which is exceedingly high given the 190 possible 2-way interactions. Conversely, inter-

actions between AUs for negative affect intensity were more uniformly important, apart from

the interaction between AUs 4�5. These differences in interactions between positive and nega-

tive affect may be partially attributable to the larger number of possible AU combinations that

can indicate negative rather than positive affect.

The partial dependence analysis measures revealed that the main effects of the 5 most

important AUs were in the expected directions for both positive and negative affect intensity

Fig 3. Sensitivity of model performance to different training/test splits. Results of sensitivity analyses across different splits of the training and test sets. We

created 1,000 different splits of the training and test sets, fit the RF to each training set, and then made predictions on each respective test set. We stored the

Pearson correlations between human- and model-generated ratings for each iteration. Distributions therefore represent uncertainty in prediction accuracy.

Means of the distributions (superimposed on respective graphs) are represented by dashed red lines.

https://doi.org/10.1371/journal.pone.0211735.g003
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ratings (Fig 6). Specifically, AUs 12, 6, and 25 were positively related to increased positive

affect intensity, while AUs 4, 5, 9, and 10 were positively related to increased negative affect

intensity. Intriguingly, we found that AU18 was negatively related to increased positive affect

intensity, which may be attributed to either its masking effects on AU12 or its relation anger.

Indeed, the largest interaction for positive affect was between AUs 12 and 18, where high pres-

ence scores for AU12 in combination with low presence scores for AU18 predicted high posi-

tive affect intensity. For negative affect intensity, we found an interaction between AUs 1 and 5

such that negative affect was most intense when AU5 had high presence scores while AU1 had

low presence scores, despite both AUs showing independent, positive relationships with

increased negative affect. We found a similar relationship between AUs 5 and 9, which

revealed that negative affect was strongest when AUs 5 and 9 had high and low presence

scores, respectively. These finding may be attributable to AUs 5 relationships to fear, surprise,

and arousal, of which arousal is often used as an indicator of more intense emotion by human

judges (e.g, [51]).

Sensitivity of AUs to task instructions

To determine if task instructions (enhance, react normally, suppress) affected model perfor-

mance or our interpretation of which AUs map onto positive and negative affect, we fit the RF

model to all recordings from each condition separately and then compared model

Fig 4. Model performance within participants. Distributions of within-participant Pearson correlations for positive and negative ratings in the training (all

125 participants) and test (122 participants; correlations could not be computed for 3 participants who had 0 variance in human ratings) sets. Red dashed

lines represent median within-participant Pearson correlations for each distribution. Intraclass correlations for corresponding figures are reported in text.

https://doi.org/10.1371/journal.pone.0211735.g004
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performance and AU importance scores across conditions. Table 2 shows correlations between

human- and computer-generated valence ratings within the different conditions, and sum-

mary statistics for AU evidence scores within each condition are provided in S2 Table. For

positive ratings, correlations were consistently high (rs> .80) across all conditions. In contrast,
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https://doi.org/10.1371/journal.pone.0211735.g005
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https://doi.org/10.1371/journal.pone.0211735.g006

Table 2. Correlations between human- and computer-generated ratings within conditions.

Condition Correlation [95% CI] Number of recordings

r ICC(1) Training Test

(+) (–) (+) (–)

Enhance .81 [.78, .84] .64 [.59, .68] .79 [.76, .82] .61 [.55, .66] 1,047 569

Normal .81 [.78, .84] .55 [.49, .61] .79 [.76, .82] .49 [.42, .55] 880 516

Suppress .85 [.83, .87] .44 [.38, .51] .83 [.80, .85] .35 [.28, .42] 1,040 596

Notes. (+) = positive valence ratings; (–) = negative valence ratings; r = Pearson’s correlation; ICC = Intraclass correlation coefficient. All results reported are on test sets.

https://doi.org/10.1371/journal.pone.0211735.t002
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for negative ratings, correlations were highest in the enhance condition, followed by the react

normally and suppress conditions. Of note, all correlations between human- and computer-

generated ratings were lower when data were separated by condition compared to when condi-

tion was ignored (cf., Table 2 to Table 1). This suggests the lower number of recordings

included in the training samples may be partially responsible for lower model performance,

but also that CVML performs best when trained on a wider range of emotional intensity.

Indeed, our supplementary analyses showed that when participants had lower variance in

affect intensity (determined by either human or model ratings), the correspondence between

human and model ratings tended to be lower as well (see S2 Fig). This finding suggests that

lower model performance in the Suppression condition may be due to limited variation in

human ratings for the model to predict.

Despite only moderate correlations for negative ratings in these conditions, relative impor-

tance values for AUs across conditions showed minimal differences (Fig 7). In fact, ICCs

between AU importance values across conditions were excellent for both positive and negative

ratings (Fig 7). Taken with our supplementary analysis of variation in human ratings and

model performance, these results suggest that the task instructions did not strongly influence

the interpretation of important AUs for detecting positive and negative affect intensity across

coders.
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https://doi.org/10.1371/journal.pone.0211735.g007
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Coder-specific AU importance measures

All three coders showed similarly-ordered importance profiles, indicating that they attended

to similar AUs while generating emotion ratings (S3 Fig). Agreement between all three indi-

vidual coders’ importance profiles supported this claim—non-normalized ICC(3)s were high

for both positive (ICC(3) = 0.93) and negative (ICC(3) = 0.90) importance profiles. The ran-

domization test revealed how many recordings were necessary to adequately estimate the rela-

tive importance of AUs for each individual coder. For positive ratings, ICC(2)s for all 3 coders

reached 0.75 (regarded as “excellent” agreement; see 39) after approximately 60 recordings/rat-

ings. For negative ratings, ICC(2)s for all 3 coders reached 0.75 after approximately 150

recordings/ratings (see S4 Fig). Because the recordings in our task were 10 s long and coders

rated positive/negative emotion intensity after each recording, the task used in the current

study could be condensed to about 150 recordings (<30 minutes) and still reveal coder-spe-

cific AU importance measures with good accuracy. Future studies may be able to shorten the

task even further by testing shorter video recordings (i.e., less than 10 s per recording).

Discussion

Our study offers strong evidence that people use discrete AUs to make wholistic judgments

regarding positive and negative affect intensity from facial expressions, indicating that patterns

of discrete AUs reliably represent dimensions of facial expressions of emotion (analogous to

how specific patterns of AUs map to the basic emotions). Our CVML analysis identified

AU12, AU6, and AU25 as especially important features for positive affect intensity ratings.

Together, these AUs represent the core components of a genuine smile [52]. Note that AU12

and AU6 interact to signify a Duchenne smile, which can indicate genuine happiness [8], and

previous research demonstrates that accurate observer-coded enjoyment ratings rely on AU6

[53]. Additionally, the five most important AUs we identified for negative affect intensity map

on to those found in negative, discrete emotions such as fear and anger (AUs 4 and 5), disgust

(AU9), and sadness (AU4). While AU12 and AU4 have been implicated in positive and nega-

tive affect for some time (e.g., [9]), this is the first study of its kind to determine the relative

importance of these and other AUs in determining positive and negative affect intensity.

Importantly, the strong correspondence that we found between specific sets of AUs and posi-

tive and negative valence intensity suggests that contemporary models of constructed emotion

may be further tested against basic emotion theories in experimental settings. For example,

future studies may investigate the time course of facial expression detection, where basic versus

constructed emotion theories make differential predictions on whether basic emotional cate-

gories versus emotional dimensions are recognized more accurately and/or rapidly.

Together, the AUs that we identified for positive and negative affect are consistent with

prior studies suggesting that positive and negative facial expressions occupy separate dimen-

sions [15,54]. Notably, the AUs accounting for the majority of the variance in positive affect

had no overlap with those for negative affect, evidenced by near-zero ICCs, indicating that our

human coders used distinct patterns of facial expressions to evaluate positive versus negative

intensity ratings. The existence of distinct patterns of AUs which represent positive and nega-

tive affect intensity explains paradoxical findings that facial expressions can be simultaneously

evaluated as both positive and negative (e.g., happily-disgusted; [10]). Importantly, prior stud-

ies have shown that automated facial expression recognition tools such as FACET sometimes

fail to recognize blended expressions as accurately as human observers do, which is in part

human observers rely strongly on affective valence whereas tools such as FACET rely on mor-

phological features when making classifying expressions (e.g., AUs; [55]). Our results suggest

that this inherent limitation of automated tools can potentially be overcome if morphological
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features are used to train models to predict valence intensity, which may then allow CVML to

make better distinctions between prototypical and blended facial expressions. Further, our

supplementary results suggest that the use of CVML to determine the relative importance of

AUs for positive and negative affect recognition within individual coders is a potentially

important avenue for future research. While the current study only determined relative AU

importance for three trained coders (see S3 and S4 Figs), future studies may collect emotion

ratings from larger, naïve groups of participants and perform similar analyses to assess for

potential individual differences.

Our results also provide support for the use of CVML as a valid, efficient alternative to

human coders, and with further validation we expect CVML to expand the possibilities of

future facial expression research in the social and behavioral sciences. For example, adoption

of automatic facial coding tools will allow researchers to more easily incorporate facial expres-

sions into models of human decision making. Decades of research show clear links between

facial expressions of emotion and cognitive processes in aggregate (see [56,57]), yet the dynam-

ics between cognitive mechanisms and facial expressions are poorly understood in part due to

difficulties accompanying manual coding. In fact, we are currently using computational

modeling to explore cognition-expression relationships with the aid of CVML [58], which

would be infeasible with manual coding of facial expressions. For example, in the current

study it took less than three days to automatically extract AUs from 4,648 video recordings

and train ML models to generate valence intensity ratings (using a standard desktop com-

puter). In stark contrast, it took six months for three undergraduate human coders to be

recruited, trained, and then code affect intensity across our 125 subjects—FACS coding would

have taken much longer, rendering the scale of this project infeasible.

Models used in this study predicted positive emotion intensity with greater accuracy than

negative emotion intensity, which may be due to the number of discrete facial actions associ-

ated with negative compared to positive emotional expressions. To support this claim, we

found that importance scores for negative, but not positive, emotion ratings were spread across

many different AUs and showed more variation across task instructions (Figs 5 and 7). This

suggests that a wider range of facial expressions were used by coders when generating negative

rather than positive emotion ratings. Future studies might address this with CVML models

that can detect more than the 20 AUs used here. Additionally, our results suggest that negative

affect intensity requires more training data for CVML than positive affect, as evidenced by

large discrepancies in model performance between our CVML model that ignored the task

instructions compared to those that we fit to data from each task instruction separately. Future

studies might address this by devoting more time to collecting and coding negative, rather

than positive, affective facial expressions.

Our interpretation of the computer-vision coded AUs in this study is potentially limited

because we did not compare reliability of AU detection between FACET and human FACS

experts. Additionally, FACET only detects 20 of the approximately 33 AUs described by

FACS, so it is possible that there were other important AUs to which the human coders

attended when generating valence ratings that we were unable to capture. However, our mod-

els showed excellent prediction accuracy on new data (i.e., capturing ~80% of the variance in

human ratings of positive affect intensity), and we identified theoretically meaningful patterns

of AUs for positive and negative emotion intensity that are consistent with prior studies (e.g.,

components of the Duchenne smile). Crucially, of the AUs that were identified as important

for positive and negative affect intensity, our interpretable machine learning analyses revealed

that each AU had main and interactive effects that were in the theoretically predicted direc-

tions (e.g., AU12 and AU4 predicting increased positive and negative affect intensity, respec-

tively). It is unlikely that we would achieve these results if FACET did not reliably detect
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similar, important AUs which represented the intensity of positive and negative facial expres-

sions produced by our 125 participants. Further, because FACET is intended for commercial

use, it has been trained on a large number of participants across a variety of different genders,

ages, and ethnicities, which is likely why our model generalized well across ethnicities despite

our predominantly Caucasian sample (see Supporting Information). Finally, as computer

vision advances, we expect that more AUs will be easier to detect. CVML provides a scalable

method that can be re-applied to previously collected facial expression recordings as technol-

ogy progresses. Our interpretation of the relative importance of AUs for perceptual ratings of

positive and negative affect intensity is clearly limited by our relatively low number of coders.

However, the strong correspondence we found between human- and model-predicted affect

intensity is made stronger by the number of subjects and recordings per subject used to train

our models, and our supplementary analyses showed that our design may be expanded to

larger numbers of “coders” (i.e. participants) with a substantially reduced number of record-

ings to empirically probe coder-specific AU importance measures for positive and negative

affect intensity recognition (see S4 Fig).

Although this study investigated positive and negative affect, our method could easily be

extended to identify facial actions that are associated with other emotional constructs (e.g.,

arousal). The ability to identify specific AUs responsible for facial expression recognition has

implications for various areas within the social and behavioral sciences. Opportunities may be

particularly pronounced for psychopathology research, where deficits and/or biases in recog-

nizing facial expressions of emotion are associated with a number of psychiatric disorders,

including autism, alcoholism, and depression [59–61]. CVML provides a framework through

which both normal and abnormal emotion recognition can be studied efficiently and mecha-

nistically, which could lead to rapid and cost-efficient markers of emotion recognition in psy-

chopathology [62].

Supporting information

S1 Fig. Sensitivity of model performance to different training scheme. Test set performance

for the RF model fit using 1,000 training/test splits where separate participants were used to

train and test the model. Note that performance for positive affect intensity—but not negative

affect intensity—is indistinguishable from results reported in the main text (c.f. Fig 3), suggest-

ing that models of negative affect intensity may require a more diverse set of training data (i.e.

more participants) compared to positive affect intensity.

(EPS)

S2 Fig. Probing within-participant model performance. (A) Pearson’s correlations between

within-participant model performance (Pearson’s r; see Fig 4) and the logarithm of within-par-

ticipant human rating standard deviation (SD). Human-rated SDs were computed as the loga-

rithm of the SD of human coders’ ratings across a given participants’ recordings. Cases with

zero variance in human ratings (i.e., all ratings were “1”) are excluded from this analysis. Cor-

relations and the number of participants included in each comparison are superimposed on

their respective graphs. All correlations are significant (ps < 0.001). (B) Pearson’s Correlations

between within-participant model performance (see Fig 4) and the logarithm of within-partici-

pant computer rating standard deviation. Computer-rated SDs were computed in the same

way as human-rated SDs, but the model estimates were used in place of the true human rat-

ings. All correlations are significant (ps < 0.001).

(EPS)

Decoding facial expressions of emotion

PLOS ONE | https://doi.org/10.1371/journal.pone.0211735 February 5, 2019 18 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0211735.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0211735.s002
https://doi.org/10.1371/journal.pone.0211735


S3 Fig. Coder-specific AU importance measures. Partial dependence scores (not normalized

to show relative differences) extracted from the RF model fit separately to each coder. Coders

all show similarly ordered importance profiles, suggesting that they attended to similar facial

expressions while generating emotion ratings. Note that positive importance estimates are dis-

tributed across fewer predictors (i.e., AUs 6, 12, and 18), whereas negative importance esti-

mates are more spread out throughout all predictors. Agreement between all three individual

coders’ importance profiles was high, with ICC(3)s of .93 and .90 for positive and negative rat-

ings, respectively.

(EPS)

S4 Fig. Number of recordings necessary to accurately estimate AU importance. Grid

searches over the number of recordings/ratings necessary to achieve reliable estimates of AU

importances for each valence-coder pair (coders appear in the same order as in S3 Fig). Reliabil-

ity is indexed by the ICC(2) between AU importance profiles (i.e. partial dependence) extracted

from the model fit to all the recordings that coders rated versus the model fit to subsets of

recordings that they rated. Note that the ICC(2) assumes that importance estimates are “aver-

age” units (similar to ICC(3)s in Fig 6). The RF model was fit to each sample of size n along the

x-axis, AU importance profiles were extracted from the model, and ICC(2)s were then calcu-

lated between the given sample and full-data AU importance profile scores. We iterated this

procedure 20 times within each different sample size to estimate the variation in estimates

across recordings. Shading reflects the 2 standard errors from the mean ICC within each sample

across all 30 iterations. The red-dashed line indicates an ICC(2) of .75, which is considered

“excellent”. For positive ratings, the ICC(2) reached .75 after ~60 recordings/ratings for each

coder. For negative ratings, all coders reached an ICC(2) of .75 by ~150 recordings/ratings.

(EPS)

S5 Fig. Regularized regression model performance. Results of the Elastic Net with various

settings for α (including the LASSO at α = 1 and Ridge Regression at α = 0). Distributions

shown are generated in the same way as those in Fig 3. Model performance was not affected by

changes in α, thus, the LASSO model was selected and compared against the RF model.

(EPS)

S6 Fig. Deep neural network model performance. Performance of the DNN in both training

and test sets across a grid of different numbers of hidden layers and nodes per hidden layer.

Note that the RF model performed similarly to the DNN across all the values within the grid.

(EPS)

S1 Table. Facial action units detected by FACET. Note. Pictures and descriptions of all

Action Units used in the current study. Images were adapted from https://www.cs.cmu.edu/~

face/facs.htm.

(PDF)

S2 Table. Average evidence scores for action units within conditions.

(PDF)

S1 Supporting Information.

(DOCX)
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