
Shiga Toxin-Mediated Hemolytic Uremic Syndrome: Time
to Change the Diagnostic Paradigm?
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Background. Hemolytic uremic syndrome (HUS) is caused by enterohemorrhagic Escherichia coli (EHEC) which possess genes
encoding Shiga toxin (stx), the major virulence factor, and adhesin intimin (eae). However, the frequency of stx-negative/eae-
positive E. coli in stools of HUS patients and the clinical significance of such strains are unknown. Methodology/Principal

Findings. Between 1996 and 2006, we sought stx-negative/eae-positive E. coli in stools of HUS patients using colony blot
hybridization with the eae probe and compared the isolates to EHEC causing HUS. stx-negative/eae-positive E. coli were
isolated as the only pathogens from stools of 43 (5.5%) of 787 HUS patients; additional 440 (55.9%) patients excreted EHEC.
The majority (90.7%) of the stx-negative/eae-positive isolates belonged to serotypes O26:H11/NM (nonmotile), O103:H2/NM,
O145:H28/NM, and O157:H7/NM, which were also the most frequent serotypes identified among EHEC. The stx-negative
isolates shared non-stx virulence and fitness genes with EHEC of the corresponding serotypes and clustered with them into the
same clonal complexes in multilocus sequence typing, demonstrating their close relatedness to EHEC. Conclusions/

Significance. At the time of microbiological analysis, ,5% of HUS patients shed no longer the causative EHEC, but do excrete
stx-negative derivatives of EHEC that lost stx during infection. In such patients, the EHEC etiology of HUS is missed using
current methods detecting solely stx or Shiga toxin; this can hamper epidemiological investigations and lead to inappropriate
clinical management. While maintaining the paradigm that HUS is triggered by Shiga toxin, our data demonstrate the
necessity of considering genetic changes of the pathogen during infection to adapt appropriately diagnostic strategies.
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INTRODUCTION
Hemolytic uremic syndrome (HUS) consists of microangiopathic

hemolytic anemia, thrombocytopenia, and renal insufficiency [1].

It usually develops after prodromal diarrhea, which is often bloody

[1,2]. HUS is a leading cause of acute renal failure in children [3]

and the mortality during the acute phase reported in recent studies

was ,2% [4–6]; many survivors suffer from renal or non-renal

sequelae [1,3].

The major etiological agents of HUS are enterohemorrhagic

Escherichia coli (EHEC) strains belonging to serotype O157:H7 and

several other serotypes, including O26:H11/NM (nonmotile),

O103:H2/NM, O111:H8/NM, O145:H28/NM, and O157:NM

[1,2,4–11]. The cardinal virulence traits of EHEC are Shiga toxins

(Stx) [12], which cause microvascular endothelial injury in kidneys

and other organs resulting in the characteristic thrombotic

microangiopathy that forms the histopathological basis of HUS

[1,13]. Stx production is mediated by lysogenic conversion of

EHEC with stx-harboring prophages, which integrate into specific

sites in their chromosomes [14–16]. These phages can be excised

by treatment with UV light, antibiotics, or by various stimuli in the

host [14,16–18]. The majority of EHEC strains associated with

HUS also harbor the eae gene encoding intimin [8,19], which

mediates intimate attachment of the bacteria to the intestinal

mucosa [20].

Although HUS is typically caused by EHEC, stx-negative/eae-

positive (stx2/eae+) E. coli strains are occasionally excreted by

patients with HUS [21,22]. However, the frequency of such strains

is unknown, and their origins and clinical significance are poorly

understood. To answer these questions, we studied stools from

HUS patients, processed so as to detect these variants. We

characterized the identified isolates and compared them to EHEC

associated with HUS with respect to serotypes, virulence and

fitness genes, phenotypes, and multilocus sequence types.

RESULTS

Frequency and serotypes of stx2/eae+ E. coli in

stools from patients with HUS
Between 1996 and 2006, stx2/eae+ E. coli strains were isolated

from stools of 43 (5.5%) of 787 individual, epidemiologically

unrelated HUS patients; additional 440 (55.9%) patients excreted

EHEC (Table 1), resulting in an overall isolation rate of 61.4%

(483 of 787). In none of the 483 culture-positive patients stx-

negative and EHEC strains were found together in the same stool.

Thirty-nine (90.7%) of the stx2/eae+ isolates belonged to serotypes

O26:H11/NM, O103:H2/NM, O145:H28/NM, and O157:H7/

NM (Table 1), which also accounted for the majority (91.1%) of
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the EHEC isolates (Table 1). One additional stx2/eae+ strain

belonged to serotype O121:H19 (which was also found among

EHEC; Table 1), and the remaining three were nontypeable

(Table 1). Each of the 43 stx2/eae+ strains lacked all known stx

alleles. The stools from which these strains were isolated contained

neither stx genes as demonstrated by PCR screening of enriched

primary stool cultures, nor free Stx as demonstrated by the Vero

cell assay on stool filtrates, nor any classic bacterial enteric

pathogens including Salmonella, Shigella, and Yersinia spp., and

Campylobacter jejuni.

Molecular characteristics of stx2/eae+ E. coli

isolates
We compared the stx2/eae+ E. coli O26:H11/NM, O103:H2/

NM, O121:H19, O145:H28/NM and O157:H7/NM isolated

from HUS patients to randomly selected HUS-associated EHEC

isolates of corresponding serotypes for the presence of several

genes that are known to be typically distributed in EHEC

[9,11,23–29] (Table 2). The stx2/eae+ strains of each serotype

closely resembled EHEC of the corresponding serotype with

respect to the presence or absence of putative non-stx virulence

genes encoding toxins (EHEC-hlyA, cdt-V), adhesins (iha, lpfAO26,

lpfAO157/OI 141, lpfAO157/OI 154, sfpA), and virulence determinants

of the O island 122 of E. coli O157:H7 (efa1, sen, pagC), as well as

the ter gene cluster and the irp2 and fyuA components of an iron

uptake system (Table 2). Moreover, the stx-negative and stx-

positive strains within each serotype shared the eae type and fliC

gene encoding the flagellin subunit of the H antigen (Table 2).

Consistently with the absence of stx, the chromosomal loci which

serve as integration sites for stx-converting bacteriophages in

EHEC O157:H7/NM (yehV, wrbA, yecE) [14,15] and EHEC

O26:H11/NM (wrbA, yecE) [16] were unoccupied in each of the

stx2/eae+ strains of the respective serotypes. This suggests that the

absence of stx in these strains was associated with the excision of

stx-harboring phages from their chromosomes.

Comparison of phenotypes of stx2/eae+ E. coli and

EHEC
The stx2/eae+ E. coli isolates shared with EHEC of the

corresponding serotypes several diagnostically useful phenotypes

(Table 3), but, in contrast to EHEC, their culture supernatants

were not toxic to Vero cells (Table 3), the cell line that is sensitive

to all Stx variants described until now. This suggests that these

strains did not produce Stx encoded by stx gene(s) that might have

been undetectable with our PCR protocol.

Multilocus sequence typing (MLST) analysis of stx2/

eae+ E. coli and EHEC
The phylogenetic relationships between the stx2/eae+ E. coli

O26:H11/NM, O103:H2/NM, O121:H19, O145:H28/NM, and

O157:H7/NM and EHEC of the same serotypes were determined

by MLST analysis of randomly selected strains (Figure 1). The stx-

negative and stx-positive strains of each serotype shared the same

sequence type or at least six of the seven alleles investigated [30]

and clustered therefore into the same clonal complex (Figure 1). In

contrast, the stx-negative strains of the five different serogroups

showed no close relationship based on their allelic profiles.

Serological investigations
Serum samples were collected during the acute phase of HUS

from 12 of 17 patients who shed stx2/eae+ E. coli O157 and from

10 of 26 patients who shed stx2/eae+ non-O157 strains. All 12

patients with E. coli O157 strains developed anti-O157 lipopoly-

saccharide (LPS) immunoglobulin M (IgM) antibodies. Among the

10 patients with non-O157 E. coli from whom serum samples were

available, only the patient who shed E. coli ONT:H7 developed

anti-O157 LPS IgM, suggesting a recent infection with E. coli

O157 which probably precipitated the HUS. IgM antibodies to

O157 LPS were not detected in the other nine sera from patients

who shed stx2/eae+ E. coli O26:H11/NM (n = 5), O103:H2

(n = 1), O145:H28/NM (n = 2), and ONT:H6 (n = 1). Each of the

five patients who excreted stx2/eae+ E. coli O26 had IgM

antibodies to O26 LPS; presence of anti-O103 and anti-O145

LPS antibodies in the one and two patients, respectively, who shed

stx2/eae+ E. coli strains of these serogroups could not be

determined because of insufficient amount of the serum

samples.

Characterization of HUS patients who excreted

stx2/eae+ E. coli but not other pathogens
Twenty of 43 HUS patients who shed stx2/eae+ E. coli as the only

pathogens were males and 23 were females. Thirty-seven patients

for whom information about age was available were children

between 5 months and 9 years (mean age, 31.3 months; median

age, 24 months). The mean age of these patients was significantly

lower than that of patients who shed EHEC strains (range, 4

months to 64 years, mean, 34.6 months; median, 27 months)

(P = 0.003; Mann-Whitney U test). None of the 43 patients who

excreted stx2/eae+ E. coli strains and nine (2.0%) of the 440

patients who excreted EHEC died during the acute phase of HUS.

Table 1. Numbers of HUS patients from whom stx-negative/
eae-positive E. coli or EHEC strains were isolated and serotypes
of the isolates.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Serotypea
Patients with stx2/eae+
isolates

Patients with EHEC
isolates

Number of
patients

Percentage
Total

Number of
patients

Percentage
Total

O26:H11/NM 13 30.2 58 13.2

O103:H2/NM 4 9.3 15 3.4

O111:H8/H10/NM 0 0 11 2.5

O145:H28/NM 5 11.6 31 7.0

O157:H7/NM (NSF) 2 4.7 221 50.2

O157:NM (SF) 15 34.9 76 17.3

Others 4b 9.3 28c 6.4

Total 43d 100 440d,e 100

aNM, nonmotile; NSF, non-sorbitol-fermenting; SF, sorbitol-fermenting.
bSerotypes (number of isolates, if more than one, in parenthesis): O121:H19,

ONT:H6 (2), ONT:H7; ONT, O antigen not typeable with antisera against E. coli
O antigens 1 to 181.

cSerotypes (number of isolates, if more than one, in parenthesis): O4:NM,
O55:H7, O55:HNT, O70:H8, O73:H18, O76:H19, O91:H21 (2), O98:NM, O104:H4,
O112:NM, O113:H21 (2), O119:H2, O121:H19 (2), O128:H2, O136:HNT, O145:H25
(2), O163:H19, O174:H21, Orough:H2, Orough:H11, Orough:NM, ONT:H21,
ONT:NM, ONT:HNT; Orough, autoagglutinable strains; HNT, H antigen not
typeable with antisera against E. coli H antigens 1 to 56.

dIn none of the 483 culture-positive patients stx-negative and stx-positive
(EHEC) strains were found in the same stool sample.

eFour patients shed two different EHEC serotypes including O157:H7 and
O145:NM; O157:H7 and O103:H2; SF O157:NM and O145:NM; O26:H11 and
O145:NM (the underlined serotypes which prevailed in the stools and were
isolated as the first are included in the table).

doi:10.1371/journal.pone.0001024.t001..
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DISCUSSION
Stxs produced by EHEC are considered the major precipitants of

the microvascular endothelial injury that underlies HUS [1,12].

These toxins and their encoding genes are also the major targets

exploited in the laboratory diagnosis of EHEC infections [2,31].

Our finding of stx-negative E. coli strains that are closely related to

EHEC as the only putative bacterial pathogens in stools of ,5% of

patients with HUS during a long-term study sheds therefore new

light into microbiological, diagnostic, epidemiological, and clinical

aspects of this disorder.

Several lines of evidence support the hypothesis that these stx-

negative strains represent derivatives of original infecting EHEC

that lost the ability to express Stx (EHEC-LST), in these cases

because of stx-bacteriophage excision during infection. First, the

spectrum of serotypes of the stx-negative isolates is similar to that of

EHEC strains isolated from HUS patients (Table 1); in both cases,

serotype O157:H7/NM (including both non-sorbitol-fermenting

[NSF] and sorbitol-fermenting [SF] strains) is the most frequent,

being followed by serotypes O26:H11/NM, O145:H28/NM, and

O103:H2/NM (Table 1). These serotypes are generally not

excreted by healthy subjects [32; H. Karch, unpublished data].

The absence of serogroup O111, which was found in 2.5% of

EHEC-excreting patients, among the HUS-associated EHEC-

LST isolates (Table 1) is probably because stx1, which is the most

prevalent stx in EHEC O111 [33] is encoded within a defective

prophage, which has been immobilized in the EHEC genome

[34], preventing the stx loss by phage excision. Also, the ratio

between SF and NSF EHEC-LST O157 isolates (88% vs. 12%)

(Table 1), while in contrast to that observed between SF and NSF

EHEC O157 isolated from HUS (26% vs. 74%) (Table 1), is

proportional to the greater frequency with which the stx loss occurs

in SF EHEC O157:NM [21,22]. Second, the EHEC-LST isolates

share with EHEC of the corresponding serotypes non-stx virulence

and fitness genes and belong to the same MLST clonal complexes.

This demonstrates a common phylogeny and conservation of

variable genome regions in the two groups of organisms. Third,

the possibility of stx loss from EHEC O26:H11/NM and SF

EHEC O157:NM during the course of HUS has been proposed in

our previous study based on closely related molecular character-

istics of stx-positive and stx-negative isolates from the initial and

follow-up stools, respectively [21]; the stx loss has been confirmed

in vitro [16]. Fourth, the genomic loci where stx-converting

bacteriophages integrate into the genomes of EHEC O26:H11/

NM [16] and O157:H7/NM [14,15] were unoccupied in all stx2/

eae+ isolates of these serotypes indicating that the stx loss resulted

from the excision of stx-converting phages. Altogether, these data

strongly suggest that the stx2/eae+ E. coli strains isolated from

HUS patients were EHEC-LST.

Although the design of the study does not allow to determine

whether the stx2/eae+ E. coli strains could be primary pathogens

that triggered the HUS in patients from whom they were isolated,

this seems to be unlikely, taking into account the paradigm that

HUS is caused by Stx [1,2]. However, because they have

unoccupied stx-bacteriophage integration sites, the stx2/eae+ E.

coli O26:H11/NM and O157:H7/NM strains can be transduced

with stx-harboring phages and converted thus to EHEC, at least in

vitro [16]. Whether such an event can occur during infection and

whether it could trigger HUS remains to be established.

Moreover, conditions favoring lysogenic conversion or stx loss in

vivo are poorly understood [18].

The ratio between EHEC-LST (5.5%) and EHEC (55.9%)

isolated in our study is ,1:10. The finding that every 10th patient

with HUS, a condition that was most probably triggered by an

EHEC infection, does not shed EHEC, but rather excretes EHEC-

LST when stool is subjected to appropriate microbiological

analysis, has important practical implications. First, the stx loss

in an EHEC strain during infection can mislead epidemiological

investigations because an stx-negative strain would not be, based

on currently used criteria, considered to be epidemiologically

related to stx-positive strains, even though of the same serotype.

Therefore, the awareness of the possibility that a patient with HUS

can excrete, in lieu of the original infecting EHEC, EHEC-LST

which shares non-stx molecular characteristics with EHEC of the

corresponding serotype, can assist epidemiologists to link correctly

epidemiologically related cases, to identify the source of the

infection and to trace modes of transmission. In such studies it is

necessary to bear in mind that the loss of stx-harboring

bacteriophages can alter pulsed-field gel electrophoresis patterns

of the strains [15,16], so that the epidemiologically related stx-

positive and stx-negative strains can more or less differ in their

fingerprints [16].

Table 3. Comparison of phenotypes of stx-negative and stx-positive E. coli strains of serotypes O26:H11/NM, O103:H2/NM,
O121:H19, O145:H28/NM, and O157:H7/NM.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Phenotypea
Occurrence of the phenotype among stx-negative and stx-positive E. coli strains of serotypeb

O26:H11/NM O103:H2/NM O121:H19 O145:H28/NM O157:H7/NM O157:NM

stx2 stx+ stx2 stx+ stx2 stx+ stx2 stx+ stx2 stx+ stx2 stx+

(n = 13) (n = 15) (n = 4) (n = 8) (n = 1) (n = 2) (n = 5) (n = 10) (n = 2) (n = 10) (n = 15) (n = 20)

Sorbitol fermentation + + + + + + + + 2 2 + +

Rhamnose fermentation 2 2 + + + + + + + (50) + (60) 2 2

Tellurite resistance + (92) + (93) + (25) + (13) + + + + + + 2 2

EHEC hemolysin + + + + + + + + + + 2 2

Cytolethal distending toxin
V (CDT-V)

2 2 2 2 2 2 2 2 2 2 + (87)c + (85)c

Shiga toxin 2 + 2 + 2 + 2 + 2 + 2 +

aThe phenotypes were determined as described in Materials and Methods.
bNM, nonmotile; stx2, stx-negative; stx+, stx-positive. n, number of strains tested; +, all strains tested (n) expressed the phenotype; 2, none of the strains tested (n)

expressed the phenotype; if a subset of the strains expressed the phenotype, the percentage is given in parenthesis.
cThe CDT-V titers were 1:4–1:16 in both stx-negative and stx-positive strains as determined by Chinese hamster ovary cell assay [26].
doi:10.1371/journal.pone.0001024.t003..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

HUS:Change Diagnostic Paradigm

PLoS ONE | www.plosone.org 4 October 2007 | Issue 10 | e1024



Figure 1. Phylogenetic relatedness of stx-negative and stx-positive E. coli strains within serotypes O26:H11/NM, O103:H2/NM, O121:H19,
O145:H28/NM, and O157:H7/NM. Unrooted neighbor-joining tree was generated from allelic profiles of seven housekeeping genes (adk, fumC, gyrB,
icd, mdh, purA, recA) [30] using the Phylip software package (http://evolution.genetics.washington.edu/phylip.html). ST, sequence type; CC, clonal
complex (at least six identical alleles); NM, non-motile; stx, Shiga toxin-encoding gene; stx2, stx-negative; stx+, stx-positive; SF, sorbitol-fermenting;
NSF, non-sorbitol-fermenting. Strains of serotype O121:H19 differ by at least 4 alleles from all known sequence types and have therefore no assigned
clonal complex. Scale bar, 5% estimated evolutionary distance.
doi:10.1371/journal.pone.0001024.g001
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Second, microbiological identification of patients infected with

EHEC O157:H7 early in illness is strongly associated with a good

nephrologic outcome [1], probably because such an expeditious

diagnosis prompts early volume expansion [35]. In patients

excreting an EHEC-LST, the microbiological diagnosis may be

delayed or the EHEC etiology of the disease is missed using tests

that rely solely on the detection of stx genes or Stx production

[31]. However, this concern might or might not be appropriate,

depending on when in the course of the disease EHEC-LST

replace the EHEC that almost certainly preceded the EHEC-

LST. Whereas underdiagnosing EHEC-LST might not be

clinically critical in patients with overt HUS who had already

developed microvascular injury, the information about the

presence of EHEC-LST in the stool (which may indicate

continuing presence of the original EHEC in an amount

undetectable by PCR stx screening) is of an important diagnostic

value in patients with diarrhea, especially those with bloody

diarrhea which often precedes HUS [1,2,5]. In such patients,

a prompt diagnosis of EHEC-LST infection should alert the

treating physician that the patient could develop HUS and should

be monitored assiduously, receive isotonic volume expansion

[35], and not be given antibiotics [36,37] or antimotility agents

[1,38]. Clearly, we need better, and broader, microbiologic

procedures to detect, in addition to stx or Stx, also non-stx/Stx

EHEC targets.

How should EHEC-LST be detected? eae, which is present in

the majority of EHEC isolated from HUS patients in Europe

[2,19] and the United States [7,8], appears to be a quite

appropriate additional diagnostic target. Specifically, based on

our finding that eae-negative EHEC account for ,4% of HUS-

associated EHEC isolates in Germany [19] and assuming, based

on the data from the present study, that stx loss occurs in ,10% of

the infecting EHEC, the using eae as a target to identify EHEC-

LST would miss only ,0.4% of such strains. This proportion of

missed pathogens might be higher in regions where eae-negative

EHEC account for a higher proportion of HUS isolates [10,39]. In

this case, the gene encoding the Stx-producing E. coli autoagglu-

tinating adhesin (saa) [39], which is present in the majority of eae-

negative EHEC associated with HUS [39], might be a suitable

alternative to search for EHEC-LST. Optimal detection algo-

rithms, and non-stx loci, depend on geographic and temporal-

specific epidemiological trends, and for this reason it is necessary

to continue microbiological surveillance. In this regard, it is critical

to not abandon culture in favor of non-culture methodology, but

to apply both modalities simultaneously to all stool specimens. In

consideration of current epidemiology and etiology [1,2], we

believe that optimal diagnosis for both EHEC and EHEC-LST

should consist of plating on sorbitol MacConkey (SMAC) agar

(detection of NSF E. coli O157:H7/NM) and enterohemolysin

agar (detection of the most frequent non-O157 serotypes based on

the enterohemolytic phenotype) (Table 3) [9,24], Stx or stx gene

testing, and targeting eae (or saa) and sfpA (the latter for a specific

detection of SF E. coli O157:NM) (Table 2) [23]. In culture-

negative patients for whom serum samples are available, detection

of antibodies against LPSs of the most frequent E. coli serogroups

associated with HUS (both O157 and non-O157) can be an

alternative approach to detect infection with both EHEC and

EHEC-LST.

The application of stx/Stx-independent diagnostic strategies to

identify EHEC-LST in HUS patients appears to be appropriate to

consider for several reasons. First, stool samples from such patients

are frequently collected only after HUS develops, i.e. $1 week

after the onset of the prodromal diarrhea [1], as was true also for

the majority of patients in our study. At this point in illness, EHEC

might have been cleared [40] or stx might have been lost from

infecting organisms [21]. In the latter case, using a non-stx

diagnostic target such as eae or saa can still identify, with a high

probability, the causative agent. Moreover, such diagnostic

approaches would permit a prospective systematic clinical study

to determine if stx loss by the infecting EHEC during the course of

HUS might result in a less severe acute disease and/or a decreased

rate of late sequelae.

Our study has two major limitations. First, although we

systematically sought stx2/eae+ E. coli strains in stools that were

negative for EHEC, as indicated by negative result of PCR

screening for stx genes, we did not seek such strains in stool

samples that contained EHEC. Stools that were stx-positive in

PCR screening were only analyzed for stx-positive colonies. This

approach rendered it impossible to determine if some of the

patients had both stx2/eae+ E. coli strains and EHEC in the same

stool, a situation that would indicate progressive loss of stx by the

infecting EHEC population. Although poly-isolate analyses in

other studies where a panel of markers were used including stx

nucleic acid hybridization did not detect such a mixed population

[41,42], in these studies, stools were collected early in illness, and

only five colonies were studied. Further studies targeting

systematically both stx and eae (or other loci) in sequential stools

from HUS patients are needed to determine the dynamic of stx loss

during infection and to identify factors that could influence this

process, such as serotype of the infecting EHEC, patient-related

and/or environmental factors. Second, we do not have sufficient

data to determine if antibiotics played a role in stx loss, as

suggested in several experimental studies [14,17].

In conclusion, at the time of microbiological analysis, an

appreciable subset of patients with HUS shed no longer EHEC

sensu stricto, but do excrete EHEC that lost stx. Diagnostic

strategies need to be formulated to detect such pathogens and

treating physicians should be immediately informed. Patients who

shed such strains should be considered as potentially infected by

EHEC and managed accordingly, at least until more data about

the clinical significance of the EHEC-LST emerge. While not

changing the paradigm that Stxs are the critical virulence

determinant of EHEC responsible for HUS, our data do

demonstrate the necessity of taking into account possible genetic

changes of the pathogens during infection when developing

appropriate diagnostic strategies and interpreting results of

microbiological analyses.

MATERIALS AND METHODS

Patients
During routine diagnostic work between 1996 and 2006, we

sought stx2/eae+ E. coli and EHEC strains in stools (one stool per

patient) from 787 epidemiologically unrelated patients with HUS.

The patients were hospitalized in 23 pediatric nephrology centers

in Germany and Austria described previously [5], with an

extended period for patient enrollment until December 2006.

Stools from patients who excreted stx2/eae+ E. coli strains and

EHEC strains were collected between 5 and 14 days (median 9

days) and between 5 and 13 days (median 8 days), respectively,

after the onset of prodromal diarrhea. The difference in the time of

stool collection was not significant (P = 0.24, Mann-Whitney U

test). HUS was defined as microangiopathic hemolytic anemia

(hematocrit ,30%, with evidence of the destruction of erythro-

cytes on a peripheral-blood smear), thrombocytopenia (platelet

count ,150,000/mm3), and renal insufficiency (serum creatinine

concentration greater than the upper limit of the normal range for

age) [36].
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Identification of stx2/eae+ E. coli in stools
stx2/eae+ E. coli strains were sought in parallel with EHEC as

described [21,23]. Briefly, stool samples enriched in Hajna broth

were specifically enriched for E. coli O157 using immunomagnetic

separation with Dynabeads anti-E. coli O157 (Invitrogen, http://

www.invitrogen.com) and magnetically separated organisms were

cultured on SMAC agar and cefixime-tellurite (CT)-SMAC agar

(Oxoid, http://www.oxoid.com). To identify non-O157 E. coli

strains, non-separated broth cultures were inoculated onto SMAC

and enterohemolysin agar (Sifin, http://www.sifin.de). The over-

night growth was harvested into saline and screened by PCR for

stx1, stx2, eae, rfbO157 and sfpA genes [21,23]; the latter two PCRs

specifically detect E. coli O157 [23]. stx-positive stool cultures were

further processed to isolate EHEC strains [21,23]. From cultures

which were stx-negative but eae-positive the eae-positive strains were

isolated using colony blot hybridization with digoxigenin-labeled

eae probe [21]. Among the 43 stx2/eae+ strains described here, 27

were isolated in this study and 16 (12 O157:H7/NM and four

non-O157) in our previous studies [21,22].

Phenotypic methods
Resulting isolates were biochemically confirmed as E. coli (API 20

E; bioMérieux, http://www.biomerieux.de) and serotyped [43].

Fermentations of sorbitol and rhamnose were detected on SMAC

and rhamnose MacConkey agar (Sifin), respectively [24]. The

enterohemolytic phenotype was sought on enterohemolysin agar

and resistance to tellurite on CT-SMAC [25]. Stx activity in

culture supernatants and stool filtrates was detected using the Vero

cell assay [19]. Production of cytolethal distending toxin (CDT)

was determined using Chinese hamster ovary cells [26].

Genotypic characterization
eae, presently known stx alleles [2], and other toxin (EHEC-hlyA,

cdt-V) and adhesin (iha, lpfAO26, lpfAO157/OI 141, lpfAO157/OI 154,

sfpA) genes were detected using established PCR protocols

[19,23,24,26,27,33,44]. Moreover, the isolates were PCR tested

for putative virulence genes located within O island 122 of EHEC

O157:H7 strain EDL933 (efa1, sen, pagC) [11,28], the ter gene

cluster encoding tellurite resistance [25], and irp2 and fyuA, which

are components of the iron uptake system encoded on the high

pathogenicity island [29]. eae genes were subtyped [45] and

genotypes of the flagellin-encoding fliC gene were determined

[9,33]. The intact or occupied status of chromosomal loci that

serve as phage integration sites (yehV, wrbA, yecE) was investigated

using PCR primers and conditions described previously [14–16].

MLST
MLST was performed by analyzing internal fragments of seven

housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, recA) [16,30].

The alleles and sequence types were assigned in accordance with

the E. coli MLST website (http://web.mpiib-berlin.mpg.de/mlst/

dbs/Ecoli). The genetic relationships between different sequence

types were determined using eBURST [46] and a phylogenetic

tree based on neighbor-joining analysis was constructed using the

Phylip package (http://evolution.genetics.washington.edu/phylip.

html).

Detection of additional classic bacterial enteric

pathogens
Salmonella, Shigella, and Yersinia spp., and Campylobacter jejuni were

sought using standard procedures [47–49].

Serological investigation
IgM antibodies against the O157 and O26 LPS antigens were

sought in sera from acute phase of HUS using an immunoblot

[21].

Statistical analysis
The non-parametric Mann-Whitney U (Wilcoxon) two-sample test

for independent sample groups and OpenStat2 Software (http://

www.statpages.org/miller/openstat/) were used for statistical

analysis. P values ,0.05 were considered significant.
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