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The added value of radiomics 
from dual‑energy spectral CT derived 
iodine‑based material decomposition images 
in predicting histological grade of gastric cancer
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Abstract 

Background:  The histological differentiation grades of gastric cancer (GC) are closely related to treatment choices 
and prognostic evaluation. Radiomics from dual-energy spectral CT (DESCT) derived iodine-based material decompo-
sition (IMD) images may have the potential to reflect histological grades.

Methods:  A total of 103 patients with pathologically proven GC (low-grade in 40 patients and high-grade in 63 
patients) who underwent preoperative DESCT were enrolled in our study. Radiomic features were extracted from 
conventional polychromatic (CP) images and IMD images, respectively. Three radiomic predictive models (model-CP, 
model-IMD, and model-CP–IMD) based on solely CP selected features, IMD selected features and CP coupled with 
IMD selected features were constructed. The clinicopathological data of the enrolled patients were analyzed. Then, we 
built a combined model (model-Combine) developed with CP–IMD and clinical features. The performance of these 
models was evaluated and compared.

Results:  Model-CP–IMD achieved better AUC results than both model-CP and model-IMD in both cohorts. Model-
Combine, which combined CP–IMD radiomic features, pT stage, and pN stage, yielded the highest AUC values of 
0.910 and 0.912 in the training and testing cohorts, respectively. Model-CP–IMD and model-Combine outperformed 
model-CP according to decision curve analysis.

Conclusion:  DESCT-based radiomics models showed reliable diagnostic performance in predicting GC histologic 
differentiation grade. The radiomic features extracted from IMD images showed great promise in terms of enhancing 
diagnostic performance.

Keywords:  Gastric cancer, Dual-energy spectral CT, Iodine-based material decomposition images, Radiomics, 
Histologic grade
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Introduction
Gastric cancer (GC) remains one of the most aggressive 
digestive system malignancies, with over one million 
new cases expected in 2020 and an estimated 769,000 
deaths, ranking fifth in incidence and fourth in fatality 
globally [1]. TNM (tumor, lymph node, and metastatic) 
staging was shown to be substantially correlated with 
the 5-year survival rate of GCs. However, clinical results 
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among individuals getting comparable therapy at the 
same TNM stage differed significantly [2]. A growing 
number of studies have found that different histological 
differentiation types are closely related to the prognosis 
of GCs. According to the Japanese Gastric Cancer Clas-
sification and Lauren’s Classification, GC is histologically 
categorized into differentiated type, expanding, or intes-
tinal type, and undifferentiated type, or diffuse type [3, 4]. 
The undifferentiated type of GC corresponds to poorly 
differentiated gastric carcinoma in the World Health 
Organization Classification and encompasses a variety of 
subtypes, such as signet ring cell carcinoma (SRCC) and 
non-SRCC (NSRCC). Gastric cancers of the undifferenti-
ated type are known to have a higher rate of lymph node 
metastases and a worse prognosis than those of well dif-
ferentiated type [5, 6]. As a result, the histologic differen-
tiation type has come to be viewed as a crucial factor in 
assessing tumor progression, treatment options, and pre-
dicting outcomes in GC patients [7, 8]. Therefore, accu-
rate classification and risk stratification of GC patients is 
critical for making management decisions and predicting 
prognosis at the time of diagnosis.

Currently, endoscopic biopsy specimens are utilized to 
determine the histologic type and grade of gastric cancer 
prior to surgery; however, they are insufficient to repre-
sent the complete tumor due to intratumorally hetero-
geneity [9–11]. Furthermore, as an invasive procedure, 
endoscopic biopsy carries a risk of bleeding, perforation, 
and infection afterward [12, 13]. As a result, an alternate, 
noninvasive method for determining GC histologic type 
preoperatively is needed to enhance the currently utilized 
method.

Multi-detector computed tomography (MDCT) 
was extensively employed for preoperative GC staging 
because of its wide availability and accessibility. Tsuru-
maru et al. investigated the enhancement patterns of dif-
ferent histologic types on dynamic contrast-enhanced 
CT [8]. However, the enhancement pattern may change 
owing to the tumor’s heterogeneous sections, which may 
also be influenced by the CT machine used and the scan-
ning time. According to Lee et al., perfusion CT param-
eters can help in the preoperative diagnosis of poorly 
cohesive carcinoma [14]. Perfusion CT, on the other 
hand, is time-consuming, requires patients’ coopera-
tion, and exposes patients to high radiation doses, hence 
it is rarely routinely used in GC clinical examination. 
Dual-energy spectral CT (DESCT) was seen as a possi-
ble advancement in CT that offer extra information such 
as material decomposition (MD) images (e.g., iodine- or 
water-based MD images), and monochromatic images. A 
previous study evaluated the effectiveness of DESCT in 
discriminating histological types of GC [15]. However, 
this study only analyzed the role of iodine concentration 

(IC) in GC, and their region of interests (ROIs) were 
drawn in round shapes on 2D images, implying that 
the diagnostic usefulness of DESCT had not been fully 
assessed.

Radiomics is the process of extracting quantita-
tive information from radiological images using high-
throughput analysis and choosing features to build a 
signature for comprehensive understanding of tumors’ 
characterization [16]. These signatures can be employed 
alone or in combination with other patient-related data 
(e.g., clinical data; pathological data) to improve tumor 
phenotyping, treatment response prediction, and prog-
nosis evaluation [17]. Radiomics has been found supe-
rior in predicting tumor invasion depth, lymph node 
metastasis, and assessing GC response to neoadjuvant 
chemotherapy [18–20]. Although radiomics signatures 
have been used to predict the histological status of GC in 
earlier studies [21, 22], the diagnostic utility of radiomics 
features combined with dual-energy signatures and clini-
cal features is unknown.

In this study, we aimed to explore the prediction per-
formance of DESCT-derived radiomics signatures, com-
bined with iodine-based MD images features and clinical 
features, in predicting the histologic differentiation grade 
of GC preoperatively.

Material and methods
The study was a retrospective study and was approved 
by our Hospital Medical Ethics Committee. Informed 
consent was waived. The study was performed in accord-
ance with the Declaration of Helsinki. All methods were 
carried out in accordance with relevant guidelines and 
regulations.

Patients
From December 2020 to January 2022, 171 patients 
with probable stomach diseases were scanned using a 
dual-energy multi-detector row CT before surgery. The 
following were the study’s inclusion criteria: (1) no pre-
operative neoadjuvant chemotherapy or radiotherapy; (2) 
contrast-enhanced CT examination within two weeks of 
surgery; (3) contrast-enhanced CT scan with gemstone 
spectral imaging (GSI) mode; (4) visible tumor lesions 
on CT images; (5) specimen with pathologic diagnosis 
of gastric cancer; (6) specimen with pathologic diagnosis 
of histologic differentiation grade. Finally, 103 patients 
were enrolled in our research (Fig.  1). Clinical data, 
including age, gender, tumor location, tumor size, pT 
stage, pN stage, and preoperative tumor makers includ-
ing carcinoembryonic antigen level (CEA, normal refer-
ence value: < 5  ng/ml), alpha fetoprotein (AFP, normal 
reference value: < 8.78  µg/L), carbohydrate antigen 125 
(CA125, normal reference value: < 35U/ml), carbohydrate 
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antigen (CA19-9, normal reference value: < 37U/ml), 
carbohydrate antigen 153 (CA153, normal reference 
value: < 31.3U/ml), carbohydrate antigen 72-4 (CA72-4, 
normal reference value: < 6U/ml) were obtained by evalu-
ating the medical records for analysis.

Histopathological examination
Two pathologists blinded to the CT data evaluated each 
tumor specimen. Tissue sections were stained with a 
hematoxylin and eosin (HE) stain according to standard 
procedures. The pathologic T and N stages according to 
the American Joint Committee on Cancer (AJCC) stag-
ing system (8th edition) [23], tumor differentiation status, 
and tumor long axis were all documented. The histologic 
differentiation results were divided into low- and high-
grade groups in accordance with the 5th edition of the 
WHO tumor classification of the digestive system and 
Japanese Gastric Cancer Classification [3, 24]. Well and 
moderately differentiated adenocarcinomas and papillary 
adenocarcinomas are classified as low-grade, whereas 

poorly differentiated adenocarcinomas, signet ring cell 
carcinoma, or mucinous adenocarcinoma are high-grade.

CT Imaging
After a night of fasting to empty the stomach, all patients 
underwent CT scans. To allow for stomach distention, 
all patients were instructed to drink 800–1000 ml of tap 
water. All stomach CT scans were performed using the 
same scan protocol on a high-definition dual-energy 
spectral CT scanner (Discovery CT750HD, GE Health-
care, Wisconsin, USA). All the patients were positioned 
in a supine position on the scanner, and a routine non-
enhanced CT scan was done first. The contrast-enhanced 
scans were then completed utilizing a single tube, rapid 
dual kVp (80 kVp and 140 kVp) switching technique (GSI 
mode). Other scan parameters included a 5 mm collima-
tion thickness with 40  mm detector coverage, 600  mA 
tube current, 0.984 helical pitch, and 0.6 s rotation speed. 
Contrast media (Ultravist370; Schering, Berlin, Ger-
many) with a standard dose (1.5  ml/kg of body weight) 
was injected at a flow rate of 4 ml/s with a power injector 

Fig. 1  Flowchart of patient enrollment
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(Urich REF XD 2060-Touch, Germany). After the start of 
the contrast injection, two phase-enhanced CT images, 
comprising the arterial phase and portal phase, were 
obtained, encompassing the whole abdomen and pelvis, 
respectively. Arterial phase scanning began 10 s after the 
trigger threshold (100 HU) was reached at the level of the 
supra-celiac abdominal aorta. Portal phase scanning was 
started at 60 s delays after the injection.

The CT images were reconstructed by using projec-
tion-based material-decomposition software. To balance 
image noise and spatial resolution, the reconstruction 
thickness was 1.25  mm, with 1.25  mm intervals. The 
adaptive statistical iterative reconstruction (ASIR) 
algorithm was employed to reduce image noise on the 
decomposition images. The percentage of ASIR was 30%. 
After scanning, conventional polychromatic images were 
generated. In addition, iodine-based MD images of the 
portal phase were reconstructed using the GSI Volume 
Viewer software package at the ADW 4.7 workstation 
(GE Healthcare, Milwaukee, WI, USA). The conventional 
polychromatic images and iodine-based MD images were 
ultimately used for analysis.

Tumor segmentation
Because most gastric cancer lesions showed consider-
able enhancement and could be clearly separated from 
the neighboring tissues in the portal phase, the portal 
phase CT images were collected for further tumor seg-
mentation [25]. The radiologists were advised of the veri-
fied surgical locations of the tumor but were blinded to 
other clinical information and pathologic outcomes when 
completing the segmentation because our study did not 
attempt to assess the detection capabilities of CT radiom-
ics analysis. The tumors were segmented using 3D Slicer 
4.11.2 software (www.​slicer.​org) by a radiologist (reader 
1) with 10 years of experience in CT abdominal imaging.

Initially, conventional polychromatic images were used 
to identify the volume of interest (VOI) for the whole 
tumor. All lesions had regions of interest (ROIs) drawn 
slice-by-slice on the 2D images, with the contour drawn 
slightly within the margins of the tumor masses to avoid 
including adjacent air or fat. The corresponding sagit-
tal and coronal planes of the tumors might be utilized 
as a reference if the lesion was difficult to recognize in 
the axial plane. The ROIs were then used to reconstruct 
VOIs. The resulting 3D segmentation was then repli-
cated onto the geometrically identical images of the IMD 
images. Figure 2 depicts a manual segmentation example 
in action.

Feature extraction
The Slicer Radiomics extension, which integrates the 
PyRadiomics library into 3D Slicer [26], was used to 

extract features. The images was preprocessed in the 
following way to facilitate consistent feature extraction: 
spatial resampling to 1 × 1 × 1 mm3; intensity discretiza-
tion to a fixed bin width of 25. Radiomics features were 
calculated on the preprocessed images using the wave-
let and Laplacian of Gaussian (LoG) filters with vary-
ing λ-parameters (= 1.0, 2.0, 3.0, 4.0, 5.0). In total, 1316 
radiomic features were extracted, including (1) first-order 
statistics features; (2) shape features; (3) texture features, 
including gray level co-occurrence matrix (GLCM), 
gray level size zone matrix (GLSZM), gray level run 
length matrix (GLRLM), gray level dependence matrix 
(GLDM), and neighboring gray tone dependence matrix 
(NGTDM); (4) statistical features produced from LoG fil-
tered domains; (5) wavelet features derived from wavelet 
filtered domains.

A set of 30 lesions was chosen at random to assess the 
repeatability of radiomics features, and two radiologists 
(reader 1; reader 2, with 12  years of work experience) 
completed individual segmentation repeats. Follow-
ing that, the intraclass and interclass correlation coeffi-
cients (ICC) were calculated. Features with ICCs of 0.80 
or above (both inter- and intra-observer classes) were 
deemed reliable and selected for further investigation.

Features selection and model construction
For model establishment and assessment, all enrolled 
patients were randomly divided into training and testing 
cohorts at a ratio of 7:3 (72 and 31 patients, respectively). 
An open-source free application, FeAture Explorer Pro 
(FAE, version 0.5.0; https://​github.​com/​salan​668/​FAE) 
on Python(3.7.6) [27], was used to analyze and assess all 
of the radiomics models. To remove the unbalance of the 
training data set, we used up-sampling method to make 
positive/negative samples balance by repeating random 
low-grade cases. Data normalization (three approaches), 
dimension reduction (two ways), feature selection algo-
rithms (four methods, 20 features), and classifier devel-
opment (ten methods) were then used to construct the 
radiomics models. All conceivable combinations of 
approaches were used to build radiomics models to give 
additional options for model development and to select 
more appropriate modeling methods. The procedure for 
model development is shown in Fig. 3.

Models based on the conventional polychromatic 
images features (model-CP), iodine-based MD images 
features (model-IMD), and a model combining con-
ventional polychromatic images and iodine-based MD 
images features (model-CP–IMD) were developed. 
In addition, the radiomics signature and independent 
clinicopathologic factors with P values less than 0.05 
in the univariable analysis were merged to form a com-
bined prediction model (model-Combine). Ten-fold 

http://www.slicer.org
https://github.com/salan668/FAE
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cross-validation (CV) was applied to the training cohort 
to determine the candidate combinations of the selected 
features and classifiers. The cross-validation was then 
performed on the entire training set to determine the 
candidate combination, following which the final model 
was built by all training cases and evaluated on the test 
cohort. The area under the receiver operator character-
istics curve (AUC) of the classification results was cal-
culated for each tested condition. The radiomics model 
with the greatest performance in the cross-validation set 
would be picked as the final model. When several models 
had similar or almost identical prediction performance, 
the one with the fewest features was picked to reduce the 
model’s complexity and the risk of non-generalization. At 
a cutoff value that maximized the value of the Youden 
index, the accuracy, sensitivity, specificity, positive pre-
dictive value (PPV), and negative predictive value (NPV) 
were calculated.

Model performance and comparison
The receiver operating characteristic curve (ROC) was 
used to evaluate the discrimination performance of the 
aforementioned four models, and AUC was compared 
using DeLong’s test. In both training and testing cohorts, 
calibration curves, Hosmer–Lemeshow test, and Brier 
score were employed to assess the model’s goodness of 
fit. Furthermore, decision curve analysis (DCA) was con-
ducted to evaluate the model’s clinical applicability by 
measuring the net benefits at different threshold prob-
abilities. Figure 3 shows the flowchart of our study.

Statistical analysis
The differences in clinical characteristics between the 
two cohorts were assessed using an independent samples 
t-test or Mann–Whitney U-test, depending on whether 
they were normal distribution (Kolmogorov–Smirnov 
test). The difference between category variables was 

Fig. 2  Delineation of the volume of interest (VOI). A gastric cancer located in the cardia was shown in a axial portal phase images; b iodine-based 
MD images; c coronal multiplanar reconstruction images. d Three-dimensional VOI of the tumor was displayed
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Fig. 3  Flowchart of our study
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assessed with chi-square test or Fisher exact test. All P 
values were two-sided, and P < 0.05 was considered statis-
tically significant. Model performance assessments were 
performed using R software (version 4.1.2, http://​www.​
rproj​ect.​org). Other statistical analyses were carried out 
using IBM SPSS Statistics (Version 21; IBM Corp., New 
York, USA).

Results
Clinical characteristics
The clinical data of the study cohort patients were pre-
sented in Table  1. Among all 103 patients, low-grade 
was pathologically diagnosed in 40 patients, and high-
grade was pathologically diagnosed in 63 patients. 
All the clinical factors, including age, gender, tumor 

Table 1  Clinical characteristics of the patients in training and testing cohorts

Characteristics Training set (n = 72) Testing set (n = 31)

Low-grade
(n = 28)

High-grade
(n = 44)

P value Low-grade
(n = 12)

High-grade
(n = 19)

P value

Age 70.29 ± 8.19 66.43 ± 11.12 0.119 65.33 ± 11.48 64.11 ± 11.72 0.777

Gender 0.714 0.178

 Female 9 16 1 7

 Male 19 28 11 12

Tumor long axis 4.53 ± 2.73 5.39 ± 2.85 0.209 3.60 ± 1.71 5.66 ± 3.55 0.039

pT stage 0.005 0.025

 T1 5 0 5 0

 T2 4 5 0 1

 T3 5 4 2 4

 T4 14 35 5 14

pN stage  < 0.001  < 0.001

 N0 11 6 6 1

 N1 5 2 2 1

 N2 7 17 3 4

 N3 5 29 1 13

Location 0.115 0.278

 Upper 1/3 10 10 3 4

 Middle 1/3 10 14 5 5

 Lower 1/3 7 16 4 7

 Multiple 1 4 0 3

AFP 1.000 1.000

 Normal 26 41 12 19

 Abnormal 2 3 0 0

CEA 0.147 1.000

 Normal 23 42 12 19

 Abnormal 5 2 0 0

CA125 0.884 0.510

 Normal 25 41 12 17

 Abnormal 3 3 0 2

CA19-9 0.553 0.409

 Normal 22 37 7 15

 Abnormal 6 7 5 4

CA72-4 0.620 0.510

 Normal 23 34 12 17

 Abnormal 5 10 0 2

CA153 1.000 1.000

 Normal 27 43 12 19

 Abnormal 1 1 0 0

http://www.rproject.org
http://www.rproject.org
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location, tumor size, and all tumor makers were not 
significantly associated with tumor differentiation 
grade except pT and pN stage (all P-values < 0.05 in 
training and testing cohorts). We constructed a clinical 
model based on the pT and pN stage, and its predictive 
performance was shown in Table 2.

Radiomic features and model establishment
After consistency, a total of 898 features from CP 
images and 484 features from IMD images were 
selected for further analysis. For model-CP, the pipe-
line using Mean data normalization, Pearson Cor-
relation Coefficient (PCC) dimension reduction, 
Kruskal–Wallis (KW) feature selector, and Linear Dis-
criminant Analysis (LDA) classifier yielded the high-
est AUC using 8 features. For model-IMD, the pipeline 
using Z-score data normalization, PCC dimension 
reduction, recursive feature elimination (RFE) fea-
ture selector, and auto-encoder (AE) classifier yielded 
the highest AUC using 13 features. For model-CP–
IMD, the pipeline using Z-score data normalization, 
PCC dimension reduction, RFE feature selector, and 
Gaussian process (GP) classifier yielded the highest 
AUC using 5 features. For model-Combine, the pipe-
line using Mean data normalization, PCC dimension 
reduction, RFE feature selector, and support vector 
machine (SVM) classifier yielded the highest AUC 
using 10 features. The selected features were shown in 
Fig. 4.

Comparison of the predictive performance among models 
in training and testing cohorts
The ROC curves of all models are shown in Fig.  5. The 
AUC values and statistical values, including accuracy, 
sensitivity, specificity, PPV, and NPV, are demonstrated 
in Table  2. In the training set, model-Clinical reached 
an AUC of 0.674 (95% CI: 0.543–0.804). Model-CP and 
model-IMD reached an AUC of 0.802 (95% CI: 0.693–
0.911) and 0.871 (95% CI: 0.793–0.950), respectively. 
Model-CP–IMD revealed some improvement, with 
an AUC of 0.900 (95% CI: 0.830–0.971). In addition, 
model-Combine developed combined with conventional 
polychromatic images features, iodine-based images 
features, pT stage, and pN stage, reached the highest 
AUC of 0.910 (95% CI: 0.837–0.983). Model-CP–IMD 
and model-Combine showed significantly better per-
formance than model-CP (P = 0.011 and 0.012). Model-
IMD, model-CP–IMD, and model-Combine all showed 
significantly better performance than model-Clinical 
(all P-values < 0.05). There was no significant difference 
between other models (all P-values > 0.05). For the test-
ing set, model-Combine also demonstrated better per-
formance for predicting histologic grade (AUC = 0.912, 
95% CI: 0.778–1.000) than other models. Model-CP–
IMD (AUC = 0.851, 95% CI: 0.711–0.991) reached higher 
AUC than model-Clinical, model-CP, and model-IMD 
(AUC = 0.847 (95% CI: 0.612–0.950), AUC = 0.781 (95% 
CI: 0.612–0.950), and AUC = 0.759 (95% CI: 0.582–
0.936), respectively), Delong’s test showed there was no 
significant difference between all the models (all P-val-
ues > 0.05). Delong’s test results were shown in Fig. 6.

Table 2  Diagnostic performance of models in training and testing cohorts

AUC​ area under the receiver operating curve, 95% CI 95% confidence interval, ACC​ accuracy, SEN sensitivity, SPE specificity, PPV positive predictive value, NPV negative 
predictive value

AUC (95% CI) ACC​ SEN SPE PPV NPV

Model-Clinical

 Training 0.674 (0.543–0.804) 0.694 0.795 0.536 0.729 0.625

 Testing 0.847 (0.612–0.950) 0.710 0.579 0.917 0.917 0.579

Model-CP

 Training 0.802 (0.693–0.911) 0.792 0.818 0.750 0.837 0.724

 Testing 0.781 (0.612–0.950) 0.742 0.737 0.750 0.824 0.643

Model-IMD

 Training 0.871 (0.793–0.950) 0.792 0.818 0.750 0.837 0.724

 Testing 0.759 (0.582–0.936) 0.774 0.790 0.750 0.833 0.692

Model-CP–IMD

 Training 0.900 (0.830–0.971) 0.861 0.818 0.927 0.947 0.765

 Testing 0.851 (0.711–0.991) 0.839 0.842 0.833 0.889 0.769

Model-Combine

 Training 0.910 (0.837–0.983) 0.875 0.955 0.750 0.857 0.913

 Testing 0.912 (0.778–1.000) 0.936 0.747 0.917 0.974 0.917
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Fig. 4  Features contained in models and their weights. a Model-CP; b model-IMD; c model-CP–IMD; d model-Combine

Fig. 5  ROC curves of the models in a training set and b testing set
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The Hosmer–Lemeshow test showed a statistically 
favorable calibration of all the models in both cohorts 
(P = 0.593, 0.431, 0.700, 0.600, and 0.148, respectively for 
model-Clinical, model-CP, model-IMD, model-CP–IMD, 
and model-Combine in the training set, and P = 0.933, 
0.598, 0.146, 0.182, and 0.378, respectively for model-
CP, model-IMD, model-CP–IMD, and model-Combine 
in the testing set). According to the calibration curves 
and Brier score, model-CP–IMD and model-Combine 
showed better goodness of fit than model-CP and model-
IMD in both training and testing sets (Brier score = 0.210, 
0.173, 0.141, 0.126, and 0.115, respectively for model-
Clinical, model-CP, model-IMD, model-CP–IMD, and 

model-Combine in the training set; Brier score = 0.146, 
0.184, 0.193, 0.158, and 0.086, respectively for model-CP, 
model-IMD, model-CP–IMD, and model-Combine in 
the testing set). The calibration curves of model-Com-
bine showed a good agreement between predicted and 
actual events in both cohorts (Fig.  7). In terms of the 
clinical gain, DCA illustrated that model-Combine added 
more net benefit than model-CP at a range of 0.1–0.9 and 
model-CP–IMD added more net benefit than model-CP 
at a range of 0.3–1.0. In comparison to model-Clinical, 
model-Combine owned a larger net benefit at a range 
threshold probability of 0.05–0.95, indicating better clini-
cal utility (Fig. 8).

Fig. 6  DeLong’s test results in a training set and b testing set

Fig. 7  Calibration curves of model-Combine in a training cohort and b testing cohort
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Discussion
The radiomics models of conventional polychromatic 
images and iodine-based MD images were established 
in this work to predict histological grade in GC patients, 
and results showed that they had comparative perfor-
mance (AUC = 0.781 and 0.759, accuracy = 0.742 and 
0.774 for model-CP and model-IMD, respectively). We 
then integrated these two types of signatures to create a 
combined radiomics model (model-CP–IMD) for pre-
dicting the histologic differentiation type of GC prior to 
surgery. The model-CP–IMD performed better, with a 
higher AUC value of 0.851 and a higher accuracy value of 
0.839, reflecting the discrimination value of iodine-based 
MD images from DESCT. In addition, with an AUC value 
of 0.912, model-Combine, which incorporated radiomic 
and clinical characteristics, outperformed other models 
in predicting the histologic differentiation type of GC.

An accurate diagnosis of the histologic differentiation 
type of GC is required since it affects therapy options and 
patients’ prognosis [28]. Biopsies are taken from the sur-
face of the lesion, posing the risk of bleeding or infection, 
and may not exactly correspond to the final specimen 
from gastrectomy or endoscopic resection [11, 12, 29]. As 
a result, a noninvasive approach for precisely predicting 
the histologic differentiation grade of GC prior to surgery 
is required. By extracting high-throughput quantitative 
imaging features, radiomics had previously demonstrated 
their efficacy in discriminating histologic type preop-
eratively. Li et  al. revealed that whole-tumor-based his-
togram and texture analysis using intravoxel incoherent 

motion were able to distinguish pathologic subtypes 
of GC with an AUC of 0.948 [30]. While CT is more 
widely used and serves as the standard-of-care imaging 
method for the preoperative evaluation of GC, building 
radiomics models using features derived from routinely 
acquired contrast CT images could be more convenient 
and efficient.

Liu et  al. only used CT texture parameters to distin-
guish poorly differentiated GCs, yielding an AUC of 0.774 
[21]. The work carried out by Huang et al. established a 
nomogram based on CT radiomics and clinical charac-
teristics to predict the histologic grade of GC preopera-
tively, with AUCs of 0.752 and 0.793, respectively, in the 
training and validation cohorts [22]. In comparison to 
previous investigations, our radiomics model, which used 
both conventional polychromatic images and iodine-
based MD images features, had higher AUCs of 0.900 and 
0.851 in the training and testing cohorts, respectively. 
Our approach, on the other hand, coupled iodine-based 
MD images with conventional polychromatic images 
performed better than conventional polychromatic 
images alone. Delong’s test revealed no significant differ-
ences among these three models in the testing set, which 
might be attributed to the small number of patients in 
our research. The Brier score of model-CP–IMD showed 
better goodness of fit than model-CP, and decision curve 
analysis also showed that the model-CP–IMD was the 
optimal decision-making strategy to add the net benefit 
compared with model-CP. The better results were attrib-
uted to the use of iodine-based MD images, which have 
the potential to improve the depiction and characteriza-
tion of hypoattenuating malignancies by increasing the 
contrast between a hypoattenuating lesion and normally 
enhancing parenchyma based on differences in tissue IC.

The vascular density and the blood volume in different 
tissue regions are reflected by IC. Vascular endothelial 
growth factor (VEGF) expression and microvessel den-
sity (MVD), both of which are directly related to the his-
tological differentiation grade of GC, have been reported 
to be positively correlated with the IC value in previous 
research [15, 31–33]. Poorly differentiated tumors may 
increase vasopermeability and immature endothelial 
cells, explaining the high values of IC and MVD in poorly 
differentiated gastric cancer. Additionally, Li et  al. dem-
onstrated that the IC value was an independent predictor 
of lymph node metastasis in gastric cancer [34]. How-
ever, the measurement of IC in the previous study only 
reflected the average IC value in ROIs, and more infor-
mation (such as tumor heterogeneity) was not evaluated 
in GC. Therefore, radiomic features of iodine-based MD 
images may provide more predictive information and 
improve the diagnosis. Li et  al. developed a nomogram 
incorporating deep learning radiomics features extracted 

Fig. 8  Decision curve analysis for all models in the whole dataset. A 
larger area under the decision curve indicates a better clinical utility. 
Model-Combine added more net benefit than model-CP at the 
range of 0.1–0.9 and model-CP–IMD added more net benefit than 
model-CP at the range of 0.3–1.0. In comparison to model-Clinical, 
model-Combine owned a larger net benefit at a range threshold 
probability of 0.05–0.95
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from 40-, 65-, and 100-keV images and CT-reported 
lymph node status. Their findings revealed that the nom-
ogram not only performed well in predicting lymph node 
metastasis in gastric cancer but also significantly asso-
ciated with patient’s prognosis [35]. This indicates that 
DESCT-based radiomics has great application prospects 
in gastric cancer. Previous studies have found that radi-
omic features derived from dual-energy CT iodine maps 
are useful in predicting breast cancer metastatic status 
[36] and identifying cervical lymph node metastases of 
thyroid cancer [37]. In this investigation, iodine-based 
MD images obtained from DESCT also performed well 
in predicting GC histologic grade, and the model’s per-
formance was increased when paired with conventional 
polychromatic images. Furthermore, by combining 
radiomic and clinical signatures, our model was able to 
achieve even higher AUC. All of these demonstrated the 
importance of clinical and iodine-based radiomic fea-
tures in GC histologic characteristics prediction.

The histological grade of GC was linked with age, sex, 
and tumor site, according to Huang et al. [22]. Similarly, 
Kim et  al. [38] found that sex, age, and TNM stage are 
correlated with the histological classification of GC. Jing 
et al. [39] also revealed that some tumor makers, includ-
ing CEA, and CA19-9, were significantly associated with 
pathological types and TNM staging. However, only the 
pT and pN stage showed significant differences between 
low- and high-grade GC in this investigation. Further-
more, pT and pN stage were meaningful and positively 
connected with tumor grade when it comes to model 
construction. It is worth noting that since this is a ret-
rospective study, the stage here relates to the postopera-
tive pathological information, but it is difficult for us to 
obtain totally precise staging information prior to sur-
gery, predicting histologic grade using radiomic features 
may be more effective and successful.

Texture features are generally recognized as quantita-
tive indicators of tumor heterogeneity because they are 
strongly related to the tumor microenvironment [40]. 
Our model-CP–IMD and model-Combine screened 
texture features mainly from wavelet and LoG filtered 
transformed images, with iodine-based MD images pro-
viding most of them. The findings showed that the fea-
tures extracted from the iodine-based preprocessed 
images were more stable than those acquired from the 
original images. Our findings emphasize the value of 
using iodine-based MD images to extract high-order sta-
tistical features to assist in the radiological assessment 
and clinical decision-making.

There were certain limitations in our research. First, 
because this was a single-center retrospective study, 
selection bias was unavoidable. Second, the model was 
based on small sample size and there was no external 

validation. To evaluate the usefulness and robustness of 
this CP–IMD combined model, further research based 
on more patients and multiple centers is required. Third, 
only the venous phase images were employed to derive 
the radiomics features in this work. This was due to the 
fact that tumor differentiation from neighboring nor-
mal stomach tissue was at its peak in the portal venous 
phase, and additional phases should be investigated in 
the future.

In conclusion, our findings showed that DESCT-based 
radiomics models could help preoperatively predict his-
tologic grade. The DESCT iodine-based MD images 
derived radiomic signatures have great potential for 
enhancing diagnostic performance. To fully compre-
hend the predictive potential of radiomics in this context, 
larger prospective studies are required.
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