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Abstract

Recently, we developed a seasonal influenza prediction system that uses an advanced data 

assimilation technique and real-time estimates of influenza incidence to optimize and initialize a 

population-based mathematical model of influenza transmission dynamics. This system was used 

to generate and evaluate retrospective forecasts of influenza peak timing in New York City. Here 

we present weekly forecasts of seasonal influenza developed and run in real time for 108 cites in 

the United States during the recent 2012–2013 season. Reliable ensemble forecasts of influenza 

outbreak peak timing with leads of up to 9 weeks were produced. Forecast accuracy increased as 

the season progressed, and the forecasts significantly outperformed alternate, analog prediction 

methods. By Week 52, prior to peak for the majority of cities, 63% of all ensemble forecasts were 

accurate. To our knowledge, this is the first time predictions of seasonal influenza have been made 

in real time and with demonstrated accuracy.

Influenza is associated with the deaths of 3,000–49,000 people each year in the United 

States1 and presents an enormous burden on worldwide public health2. In temperate regions, 

pronounced outbreaks of influenza typically occur during winter. This recognized timing 

allows public health agencies to organize their influenza-related mitigation and response 

activities in preparation for the winter influenza season. For example, vaccines can be 
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administered each fall in advance of expected increased winter incidence, and influenza 

antivirals can be stockpiled to meet high wintertime demand.

While the general wintertime peak of influenza incidence in temperate regions is well 

described and predictable, the specific timing, magnitude and duration of individual local 

outbreaks in any given year is highly variable. Even after an outbreak has begun, it remains 

difficult to predict the future characteristics of the epidemic curve. If those outbreak 

characteristics were to be reliably forecast, public health response efforts could be better 

coordinated. Indeed, accurate forecast of the intensity and timing of infectious disease 

outbreaks discriminated among cities or regions within a country would provide greater lead 

time for preferential focus of mitigation and response resources to areas with more urgent 

need.

In a recent study we showed that accurate and reliable predictions of seasonal influenza 

outbreaks can be made using a mathematical model representing population level influenza 

transmission dynamics, which has been recursively optimized using an ensemble data 

assimilation technique and real-time estimates of influenza incidence3. This initial influenza 

forecast system was constructed and validated with a simple susceptible-infected-recovered-

susceptible (SIRS) model4. In addition to the intrinsic effects of population level 

susceptibility on influenza transmission rates, influenza transmission in the model 

population is also modulated by observed daily absolute humidity (AH) conditions, as this 

meteorological condition has been shown to affect the survival and transmission of 

influenza5. Most relevant to this application, the SIRS model simulates the number of 

people in a local population infected with influenza at any point in time over the course of 

an outbreak.

The SIRS model is described by two coupled equations, consisting of model state variables 

and parameters (See Methods). As the model is integrated forward in time, the state 

variables represent the number of infected and susceptible people within the simulated 

population. Model parameters describe additional intrinsic characteristics of both the host 

population and the virus.

To perform a forecast, a 200-member ensemble of SIRS model simulations is numerically 

integrated for a given location (e.g. New York City) and influenza season. Each ensemble 

simulation is initialized with a different randomly drawn suite of SIRS model state variables 

and parameters. Weekly local estimates of influenza incidence are then assimilated into 

these simulations using a data assimilation technique called the ensemble adjustment 

Kalman filter (EAKF)6. The EAKF is used to iteratively adjust both observable (i.e. number 

of newly infected people) and unobservable (i.e. number of susceptible people) state 

variables, as well as the parameters of the SIRS model. These adjustments not only directly 

modify model estimates of infected and susceptible people in the simulated population, but 

also improve the ability of the model to replicate the future unfolding trajectory of a local 

outbreak by adjusting the model parameters. Parameter estimation is an important feature of 

the forecast system, as it allows the SIRS model to flexibly simulate outbreaks with very 

different characteristics.
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The process of informing the model with observations can be thought of as a ‘training’ 

period prior to an actual forecast. The assimilation of observations up to the time of forecast 

essentially optimizes the future behavior of the ensemble to better match the evolving 

dynamics of the local seasonal outbreak. Actual weekly forecasts are then generated by 

integrating the ensemble of simulations into the future beyond the latest observation.

A variety of quantities describing the epidemic curve can be forecast and evaluated (e.g. 

peak timing, total outbreak cases). In prior work, we focused on the prediction of peak 

timing. For retrospective forecasts generated for New York City, we found a relationship 

between the spread of ensemble predictions of this metric and the accuracy of those 

predictions3. Indeed, forecast accuracy tended to improve as the spread of the ensemble 

decreased. The strength of this relationship is an important outcome, as it suggests that 

confidence in a particular forecast is inferable from the forecast ensemble variance.

Those previous forecasts for New York City were generated using the humidity-forced SIRS 

model, Google Flu Trends (GFT) estimates of influenza-like illness (ILI)7,8 and the EAKF. 

Here, we present real-time forecasts of influenza incidence throughout the U.S. generated 

for the 2012–2013 season using a similar prediction system, but with a modified 

observational estimate of influenza incidence. Recent analysis indicates that scaling an ILI 

metric by the proportion of ILI patients testing positive for influenza can provide a more 

specific metric of influenza activity than ILI alone9. In near real-time, weekly estimates of 

the influenza positive proportion of patients presenting with ILI are available for the U.S. by 

region10. For this work, we use such a combined metric, termed ILI+, in which municipal 

weekly GFT ILI estimates are multiplied by US Centers for Disease Control and Prevention 

(CDC) census division influenza positive proportions (see Methods). Indeed, ILI+ outbreaks 

tend to begin later in the season than ILI, which contains early fall signal that often reflects 

outbreaks of other respiratory infectious agents, such as rhinovirus, rather than influenza 

activity11.

Using the SIRS-EAKF framework and ILI+ observations, weekly real-time ensemble 

predictions of influenza epidemic progression were made for 108 cities throughout the U.S. 

during the 2012–2013 season. Here we show that these real-time forecasts accurately 

predicted local outbreak peaks up to 9 weeks in advance and that the expected accuracy of 

these ensemble predictions was inferable from the spread of the ensemble. Furthermore, we 

show that the SIRS-EAKF forecasts were substantially more accurate than alternate, analog 

predictions. The findings indicate that accurate, calibrated real-time forecast of influenza 

outcomes can be generated with a simple dynamical model that has been optimized using 

real-time observations of influenza incidence and data assimilation methods.

Results

Retrospective Calibration of 2012–2013 predictions

Our calibration of the real-time influenza predictions over the U.S. during the 2012–2013 

season is based on retrospective forecasts for the 2003–2004 through 2011–2012 seasons for 

115 cities in the US (see Methods). All retrospective ensemble simulations were trained 

each week to the point of forecast using scaled ILI+ observations and the EAKF. The 2008–
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2009 and 2009–2010 seasons, which included pandemic H1N1 outbreaks, were omitted 

from the analysis to restrict focus to the prediction of seasonal influenza.

An analysis of peak timing forecast performance was carried out for all municipalities 

within a census division region, all cities in aggregate, and individual municipalities (Figure 

1 and Supplementary Figure S1). Forecasts for which the ensemble predicted mode outbreak 

peak is 1–3 and 4–6 weeks in the future show a strong relationship of increasing accuracy 

with decreasing ensemble spread in most regions. This relationship allows us to quantify the 

expected accuracy of a predicted outcome based on the variance of the forecast ensemble. 

Only the New England census division, which contains only 3 of the 115 retrospective 

forecast cities, has no relationship at either of these lead times. The 7–9 week and 10+ week 

lead forecasts do not show a consistent relationship between spread and accuracy; however, 

the Mid-Atlantic, South Atlantic, East North Central, and West North Central census 

divisions exhibit increasing forecast accuracy with decreasing ensemble spread.

When the retrospective forecasts are aggregated for all 115 cities, a smoother relationship 

emerges (Figure 1B). Lead forecasts all exhibit increasing accuracy with decreasing 

ensemble variance, and forecasts for which the peak is predicted to have already occurred 

are accurate over a broad range of ensemble variances. Again, the emergence of a 

relationship between ensemble variance and forecast accuracy in the retrospective forecasts 

provides critical information for the interpretation of real-time forecasts and establishes a 

basis for determining whether the prediction system is well calibrated. If well calibrated, 

future events would occur in reality with the same probability as forecast by the system.

Examination of the retrospective forecasts of peak timing for select major cities reveals 

considerable variability. Chicago is characterized by a strong relationship between 

prediction accuracy and ensemble variance at all forecast lead times, whereas Seattle is not 

(Supplementary Figure S1). New York City, which previously demonstrated a similar 

relationship of increasing prediction accuracy with decreasing ensemble variance for 

retrospective forecasts using GFT ILI estimates only3, here, when using ILI+ with the 

scaling used in this study (see Methods), does not exhibit this same relationship; however, at 

the Mid-Atlantic census division level such a relationship is broadly evident. Whether this 

variability among cities is a function of the limited number of years, the data type, the 

appropriateness of the model form, the scaling of the ILI+ estimates, or the assimilation 

method, is not currently understood. Ongoing evaluation of these issues will take place as 

the system is further developed. In the present, as the spatial scale at which information 

should be aggregated is yet determined, we present forecast results at municipal, regional 

and national scales.

Forecast Accuracy during the 2012–2013 season

During the 2012–2013 U.S. influenza season, ILI+ observations and the EAKF were used to 

train the SIRS model, which was then used to create local near real-time forecasts of 

influenza activity for 108 municipalities (Supplementary Table S1). Forecasts were 

generated each week upon release of the latest CDC census division influenza positive 

proportions. New CDC weekly data were initially released 6 days following the end of the 

most recently completed week (i.e. near real time), and forecasts were produced the same 
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day. For example, the Week 51 forecasts were produced on December 28, 2012, included 

assimilation of Week 51 ILI+ estimates (i.e. through December 22, 2012), and were run in 

forecast mode from December 23, 2012 onward. A 1-week lead prediction for this forecast 

implies predicted local influenza incidence peak during Week 52 (December 23–29, 2012).

The accuracy of weekly ensemble mode predictions generated for individual cities was 

mixed (Table 1 and Supplementary Table S2). Some municipalities, e.g. Birmingham, AL, 

Kansas City, MO, Buffalo, NY, were accurately forecast throughout the influenza season, 

both before and after the observed local peak had passed. Outbreak peaks in other cities, 

such as Phoenix, AZ, Chicago, IL, and New Orleans, LA, were never well predicted. Many 

cities showed increasing accuracy of prediction as the season progressed, e.g. San Diego, 

CA, Atlanta, GA, and Boston, MA. Overall forecast accuracy increased from 19% to 74% as 

the season progressed and more observations were entrained into the evolving model (Table 

1 and Supplementary Table S2). By Week 52, 63% of all ensemble forecasts of mode peak 

week were accurate within 1 week.

The accuracy of these forecasts far exceeded the accuracy of predictions derived from the 

resampling of historical outcomes, including conditional resampling constrained by the 

current state (Figure 2, Supplemental Methods, Supplementary Table S3). By Week 49, all 

weekly SIRS-EAKF predictions were significantly more accurate than these resampled 

predictions. At Week 52, the SIRS-EAKF forecasts produced nearly twice as many accurate 

predictions as the best resampled forecast. In addition, the 2012–2013 real-time SIRS-EAKF 

forecasts accurately discriminated peak timing among the 108 cities forecast 

(Supplementary Methods, Supplementary Figure S2). That is, repeated random comparison 

of each city’s forecast with observations from a different city proved less accurate than with 

observations from the same city. SIRS-EAKF forecast discrimination of peak timing among 

cities was statistically significant (p < 0.05, based on bootstrapped confidence intervals) 

from Week 50 onward.

Expected Forecast Accuracy for the 2012–2013 Season

The preceding validations demonstrate that the 2012–2013 predictions greatly outperformed 

predictions derived from historically inferred probabilities. However, these comparisons 

treat all SIRS-EAKF ensemble predictions as equal, when in fact each real-time ensemble 

prediction has an associated expected accuracy (e.g. a 70% probability that influenza will 

peak in 5 weeks), which is inferred from the ensemble distribution of predicted outcomes 

(Supplementary Figure S3) and retrospective prediction accuracy (Figure 1 and 

Supplementary Figure S1). In general, predictions for which there is greater spread among 

ensemble members have a lower expected accuracy than those with narrower distributions. 

Depending on whether this inference is based on retrospective forecasts aggregated at the 

national, regional or municipal, the expected accuracy of each prediction varies.

Results from near real-time forecasts made for the 2012–2013 U.S. influenza season during 

Week 47 of 2012 through Week 8 of 2013 indicate that the forecasts across all 108 cities 

were reasonably well matched with retrospectively calibrated confidences at the national 

scale (Figure 3). Specifically, forecasts predicting a local outbreak peak in 4–6 weeks, match 

historically expected accuracies, i.e. predictions of peak timing 5 weeks in the future with a 
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log ensemble variance of 2, were accurate about 50% of the time, which is slightly better 

than historical expectance. Predictions with a 1–3 week lead were weaker than expected for 

log ensemble variances greater than 1.5 and less than 0.25, but better than expected between 

0.5 and 1.5. The 7–9 week lead predictions greatly outperformed historical expectance.

On the other hand, predictions that the peak had passed mostly underperformed nationally 

scaled expectance. Too many forecasts were generated indicating the peak had passed only 

to witness observed ILI+ continue to rise. We believe this underperformance stems in part 

from the intense media attention accorded the influenza outbreak during 2012–2013 in the 

U.S., which seems to have inflated GFT ILI estimates during January and prolonged a 

number of local outbreaks that in reality likely peaked in late December12.

When the predictions are grouped by census division region and compared by lead time and 

ensemble spread to expected accuracies the results are more mixed (Supplementary Figure 

S4). The accuracy of 2012–2013 predictions was similar to regional historical expectance 

for some lead times and regions, e.g. the West South Central, Mountain and Pacific census 

division regions with a 4–6 week lead, but most other groupings diverged from expectance.

Similar examination of individual city forecast accuracy versus expected accuracy reveals 

very mixed results (Supplementary Figure S5). The 1–3 week lead predictions for Chicago, 

Dallas, Houston, Memphis and St. Louis were not accurate, nor in line with accuracy as 

expected at the municipal, regional or national scale. Conversely, the 1–3 week peak timing 

predictions for Los Angeles, San Francisco, and Seattle outperformed municipal, regional 

and national expected accuracies at low ensemble spread, for Miami outperformed regional 

and national expected accuracies at all ensemble spreads, and for New York City 

outperformed all expected accuracies for all ensemble spreads. Clearly, the New York City 

municipally calibrated accuracy, which performed poorly in retrospective prediction 

(Supplementary Figure S1), did not provide a reliable estimate of forecast accuracy 

expectance during 2012–2013.

These findings indicate that nationally aggregate retrospective forecast accuracy provided a 

better estimate of expected accuracy of the real-time forecasts across the U.S. than regional 

and municipal expected accuracies. We can thus use real-time forecast ensemble variance to 

discriminate more reliable municipal predictions (e.g. 90% expected accuracy) from less 

reliable municipal predictions (e.g. 20% expected accuracy) using nationally aggregated 

expected accuracy.

Challenges due to Elevated ILI+ Levels During 2012–2013

During the 2012–2013 U.S. influenza season, ILI+ in most of the 108 forecast cities peaked 

during Weeks 2–4 (Supplementary Figure S6). These late-peaking cities, perhaps due to a 

longer period for ILI+ training prior to the peak, tended to be better predicted than cities that 

peaked earlier (Supplementary Figure S6B, Supplementary Table S4). A number of the 

cities that were forecast poorly had observed, seasonally cumulative ILI+ that, when scaled 

to reflect the total number of people infected within the SIRS model, neared or even 

exceeded the total population (Supplementary Figure S7). Indeed, with the scaling presented 

here (γ = 2.5, see Methods), 17 of the 108 forecast cities experienced total ILI+, i.e. Week 
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40, 2012–Week 12, 2013 summed weekly incidence, in excess of the model population (N = 

100,000). These aggregate incidence levels were unprecedented. During the seven 

retrospectively forecast seasons, across all cities and with identical γ scaling, seasonal total 

ILI+ never exceeded 70,000, whereas during 2012–2013, 60 of 108 cities exceeded this 

threshold.

The 2012–2013 elevated ILI+ levels were a product of bias in GFT ILI relative to CDC ILI, 

possibly brought about by intense media coverage of the U.S. influenza outbreak, as well as 

the virulence of some of the circulating influenza strains, which likely prompted a higher 

percentage of infected persons to seek medical attention than in most previous years12 (see 

Methods). Even with continual state variable and parameter adjustment via the EAKF, the 

SIRS model, as formulated for a single influenza strain, is not equipped to depict an 

outbreak near or in excess of its total population (Supplementary Figure S8). Indeed, 2012–

2013 real-time forecast accuracy was negatively correlated with seasonal total ILI+ (e.g., 

correlation of Week 1 municipal forecast accuracy with seasonal total ILI+: r = −0.30, p = 

0.0019, two-sided t test).

These findings suggest that forecast accuracy during the 2012–2013 season was undermined 

by higher than normal values of scaled ILI+. Examination of forecast time series 

(Supplementary Figure S8) indicates that predictions for cities with high total ILI+ generally 

under-represented outbreak magnitude. While such performance is sub-optimal, it is 

encouraging as it suggests that peak timing forecast accuracy might have been still better in 

the absence of these unusual biases. Furthermore, a number of potential remedies exist for 

handling such biases in the future (see Supplementary Note 1).

Sensitivity to Different Observational Estimates of Incidence

During January of the 2012–2013 season, GFT ILI estimates considerably overestimated 

target CDC reported ILI12. As long as the same data source is used both to train and validate 

the SIRS-EAKF forecasts, and as long as within-season changes in data bias are not too 

extreme, the ensemble forecasts should perform well. However, due to the January increase 

of GFT ILI bias, the forecast validation metric, ILI+ peak timing, may not represent reality 

well. Obviously, to best inform public health, we would prefer an observational estimate of 

weekly influenza infections that represents actual incidence as accurately as possible.

CDC ILI estimates are not made publicly available at the municipal scale; however, they are 

available in near real time at aggregate national and regional levels, and both GFT ILI and 

CDC ILI estimates are provided in near real time at the Health and Human Service (HHS) 

region scale. We therefore ran regional-scale comparison forecasts using HHS GFT ILI+ 

and HHS CDC ILI+ estimates (see Supplementary Methods). Due to the large geographic 

scale of each region, the SIRS model was run without AH-forced modulation of 

transmissibility; instead, R0 was treated as a free parameter to be optimized by the EAKF 

assimilation process.

HHS CDC ILI+ peaked during Week 52 of the 2012–2013 season for all divisions except 

the HHS Region 9, which peaked during Week 4 (Figure 4). In contrast HHS-region GFT 

ILI+ estimates peaked during Week 1 (HHS Region 5), Week 2 (HHS Regions 1–4), Week 
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3 (HHS Regions 6–8) and Week 4 (HHS Regions 9–10). The weekly total accuracy of HHS-

region CDC ILI+ forecasts ranged from a low of 59.5% (Week 52) to a high of 90% (Week 

5). Overall, accuracy is greater for the HHS-region CDC ILI+ forecasts than the HHS-region 

GFT ILI+, which degraded in forecast quality as the season progressed from a high total 

accuracy of 85.2% (Week 48) to a low of 46.7% (Week 4). This degradation of HHS GFT 

ILI+ forecast accuracy coincides with the January increase of GFT ILI bias relative to CDC 

ILI. On average during Weeks 1–5 of 2013, HHS-region GFT ILI+ was 2.20 times HHS-

region CDC ILI+.

While the HHS-region CDC ILI+ forecasts are more accurate, the HHS-region GFT ILI+ 

peak timing forecasts are still quite reliable. That is, real time municipal GFT ILI+ forecast 

accuracy was not an artifact of GFT ILI biases (i.e., even though the target is wrong, the 

SIRS-EAKF framework is trained for that target and predicts it well). The HHS findings 

also suggest that were CDC ILI estimates at the municipal scale available, our city forecasts 

(Figure 2) might have been more accurate. In addition, the results indicate that reliable 

influenza forecasts can be made without AH modulation of transmissibility. That is, local, 

non-linear transmission dynamics are more important for forecast accuracy than AH 

modulation of influenza transmissibility. A fuller exploration of these model design issues 

and the benefit of including AH in the SIRS model framework is forthcoming.

Discussion

This study has shown that forecast accuracy with the SIRS-EAKF system during the 2012–

2013 influenza season was far superior to forecasts generated from resampling historically 

expected probabilities. This finding indicates that forecasting using a trained population-

based influenza model that represents local nonlinear transmission dynamics is much more 

informative than simple analog expectance. This study has also shown that, when nationally 

aggregated, SIRS-EAKF ensemble forecast expected accuracy could be reliably inferred 

from the forecast ensemble spread.

A further, more detailed exploration of geographic variability in forecast accuracy and 

reliability is needed to determine if some municipalities or regions are fundamentally more 

predictable. Preliminary analysis shows that for longer lead times (more than 2 weeks ahead 

of the observed ILI+ peak), municipal peak timing forecast accuracy increased as city 

population decreased, population density increased, or city area decreased (Supplementary 

Table S5, Supplementary Note 2). That is, longer lead forecasts for smaller populations, 

higher population densities, or smaller geographies tended to be more accurate. This finding 

suggests that larger municipalities might be better forecast if broken into smaller geographic 

units. A fuller exploration of these issues is needed to verify this preliminary finding and to 

define the optimal spatial scales at which influenza should be forecast. In addition, the 

characteristics that make an influenza outbreak more or less predictable—including 

geographic area, population size and density, number of circulating strains, population age, 

duration of outbreak, number of peaks, etc.—need to be better identified.

A more detailed evaluation of the timeliness and quality of real-time influenza incidence 

observation data forms is also needed. The latest ILI+ observations are first available 6 days 
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following the conclusion of a given influenza week. This 6-day lag delays the production of 

new weekly predictions, which could be generated sooner if weekly estimates of influenza 

positive proportions10 were reported more quickly. In addition, forecasts also might benefit 

from provision of these data at a finer spatial resolution (e.g. municipal or state level instead 

of regional level).

Different forecast models also need to be tested. For example, during the 2012–2013 season 

in the U.S., 4 strains of influenza (A/H3N2 Victoria/361/2011-like, B/Yamagata lineage, B/

Victoria lineage and A/H1N1/California/7/2009-like) were in circulation. Our use of a 

single-strain SIRS model for the prediction of these multiple strain outbreaks is likely a 

source of bias that may have reduced the overall accuracy of the forecasts. Indeed, the SIRS-

EAKF parameter estimates often appear slightly high (Supplementary Figure S9, 

Supplementary Note 1), which indicates that the EAKF may be adjusting state variable and 

parameter estimates to compensate for model bias. In the future, we plan to develop and test 

forecasts using models that simulate individual influenza subtypes or strains. In addition, we 

also plan to investigate systematically how the form and structure of an outbreak influences 

its inherent predictability. Nevertheless, it is encouraging that a simple SIRS model, which 

neglects known aspects of influenza transmission, is already able to produce accurate, 

calibrated forecasts.

During the 2012–2013 season, we trained and forecast each of the 108 forecast 

municipalities in isolation. In the future, alternate training and forecasting strategies might 

be adopted that account for the spatial co-variability of the parameters that control 

transmission dynamics or levels of modeled incidence and susceptibility.

A number of other predictions should also be explored. Real-time forecast of additional 

outbreak metrics, such as attack rate and peak magnitude, needs to be assessed, and the 

model framework might be used to predict the timing of local outbreaks worldwide during 

pandemic events. Unlike attempts to describe the emergence of a pandemic strain18 or the 

geographic spread of an emergent strain19–21, these efforts would be used to forecast the 

propagation of the pandemic strain through populations once local outbreaks have begun. 

Other pathogens, such as rhinovirus or respiratory syncytial virus, might also be forecast. In 

addition, prediction with alternate combinations of model form13,14, data type10,11, and 

assimilation scheme15–17 should be explored. Ultimately, an ensemble of different model 

forms, data types and assimilations each weighted by predictive ability in a given location 

may provide superior localized forecast of influenza activity.

During the 2012–2013 influenza season, the real-time forecast were archived for future 

study12 and disseminated in real time on a weekly basis to officials at the CDC. At that time, 

these predictions were a novel, relatively untested data stream; it was thus not expected that 

officials would use the forecasts to inform their decisions. However, going forward, we must 

work with public health officials to increase their familiarity with the capabilities and 

limitations of these forecasts, as well as our own familiarity with the public health 

intervention and response decision-making process. By so doing, these forecasts can be 

more sensibly presented, interpreted, and used in support of intervention and response 
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decisions, such as vaccine allocation, the distribution of anti-viral therapeutics, and school 

closure.

In the future, the real-time influenza forecasts will also be posted online for general 

consumption. Different lead forecasts will likely have different practical uses for the broader 

public. Short-lead predictions (i.e. 0–3 week leads) would likely improve awareness of 

current influenza risk, heighten vigilance to infection, and increase attention to personal 

hygiene; long-lead predictions (i.e. 5 weeks or greater) would provide enough time for 

vaccine-induced generation of protective antibodies and thus may motivate more individuals 

to get vaccinated. In addition to this broader dissemination, an ongoing task will be to 

improve forecast accuracy and reliability. Just as the performance of weather forecasting 

systems has advanced over time, our hope is that the forecast of influenza and other 

seasonally recurring respiratory pathogens will also improve.

Methods

Description of the SIRS model

The model used for this study is a perfectly-mixed, absolute humidity-driven susceptible-

infectious-recovered-susceptible (SIRS) construct3. This construct is a two-variable non-

linear oscillator that describes the transmission of influenza within a local population. The 

SIRS model equations are:

[1]

[2]

where S is the number of susceptible people in the population, t is time in years, N is the 

population size, I is the number of infectious people, N-S-I is the number of resistant 

individuals, β(t) is the contact rate at time t, L is the average duration of immunity, D is the 

mean infectious period, and α is the rate of travel-related import of influenza virus into the 

model domain.

The contact rate, β(t), is determined by β(t) = R0(t)/D, where R0(t), the basic reproductive 

number, is the number of secondary infections the average infectious person would produce 

in a fully susceptible population at time t. Absolute humidity (AH) modulates transmission 

rates within this model by altering R0(t) through an exponential relationship similar to how 

AH has been show to affect both influenza virus survival and transmission in laboratory 

experiments4:

[3]

where R0min is the minimum daily basic reproductive number, R0max is the maximum daily 

basic reproductive number, a = 180, and q(t) is the time-varying specific humidity, a 

Shaman et al. Page 10

Nat Commun. Author manuscript; available in PMC 2014 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measure of AH. The value of a is estimated from the laboratory regression of influenza virus 

survival upon AH5.

As formulated above, this model contains two variables (S and I) and four parameters (L, D, 

R0max and R0min). S and I are continuous variables, such that fractional persons are 

simulated, which enables transitions between model states to be calculated directly from 

Equations 1 and 2 without any stochasticity. Simulations were performed with fixed travel-

related seeding of 0.1 infections per day (1 infection every 10 days).

Specific Humidity Data

Specific humidity (SH) data were compiled from the National Land Data Assimilation 

System (NLDAS) project-2 dataset. These data are derived through spatial interpolation, 

temporal disaggregation and vertical adjustment from station measurements and National 

Center for Environmental Prediction North American Regional Reanalysis22. The gridded 

NLDAS meteorological data are available in hourly time steps on a 0.125° regular grid from 

1979 through the present23. Local SH data for each of the 115 cities included in these 

forecasts were assembled for 1979–2011. These hourly data were then averaged to daily 

resolution. A 1979–2002 (24 year) daily climatology was then constructed for each city and 

used as the daily specific humidity forcing for all retrospective forecasts. A 1979–2011 (33 

year) daily climatology was constructed for each city and used for the real-time forecasts 

during the 2012–2013 influenza season.

Observational Estimates of Influenza Incidence

Google Flu Trends (GFT) data8 give estimates of weekly influenza like illness (ILI) per 

100,000 people seeking medical attention based on a simple statistical model that uses 

internet search query activity as a predictor of U.S. Centers for Disease Control and 

Prevention (CDC) ILI (see reference 7 for details). GFT ILI data are available weekly in real 

time and, in the continental U.S., provided at the municipal scale for 115 cities. Previously, 

we used GFT ILI as our estimate of respiratory infection incidence when retrospectively 

forecasting in New York City3. For this study, we employ an alternate metric that more 

precisely estimates influenza infection incidence.

In the U.S., CDC ILI is a measure of influenza among patients presenting at sentinel 

hospitals and clinics, which comprise the U.S. Outpatient Influenza-like Illness Surveillance 

Network (ILINet). ILI is a symptomatic diagnosis requiring fever above 37. 8°C plus cough 

and/or sore throat. Patients for which the etiology is known to be not influenza are not 

classified as ILI; however, the specific pathogen infecting most patients presenting with ILI 

is not typically determined. As such, the ILI designation includes patients with other 

respiratory viruses, such as rhinovirus and respiratory syncytial virus, who present with 

similar symptoms. Due to this non-specificity, outbreaks of ILI tend to be of longer duration 

than pure influenza outbreaks. A cleaner signal of actual influenza infection incidence can 

be generated simply by multiplying ILI with a second observational estimate: the percentage 

of people presenting with ILI who tested positive for influenza (hereafter “influenza positive 

proportions”)9.
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Weekly U.S. influenza positive proportions are compiled through the National Respiratory 

and Enteric Virus Surveillance System (NREVSS) and U.S.-based World Health 

Organization (WHO) Collaborating Laboratories. The NREVSS and WHO laboratories 

assay volunteered respiratory swab samples from patients presenting with ILI for etiological 

agents. The weekly data derived from this laboratory network provides an estimate of the 

percentage of patients presenting with ILI who are infected with influenza10. During the 

2012–2013 influenza season these weekly data were first available with a lag, 6 days 

following the end of a given influenza week. In addition, unlike the GFT ILI estimates, 

which were available in real time at the municipal scale, influenza positive proportions were 

only available nationally and regionally. Still, by multiplying weekly municipal GFT ILI 

estimates by CDC census division regional influenza positive proportions for the same 

week, a near real-time estimate of municipal influenza infection per 100,000 patient visits 

can be made. Here we refer to this metric as ILI+ (Supplementary Figure S10).

Outbreaks of ILI+ are of shorter duration than GFT ILI alone. In addition, observed ILI+ 

outbreak trajectories are more consistent with the transmission dynamics simulated within 

an influenza model. That is, model dynamics are more likely to produce an outbreak with 

the duration, peak magnitude and total number of cases seen in ILI+ than with ILI. 

Consequently, use of the ILI+ metric may provide a better observational target for a model 

simulating purely influenza transmission. In addition, the ILI+ target may also provide a 

better observation for recursive assimilation and optimization of the model, as well as 

forecast. In this study, 115 U.S. cities were forecast retrospectively using the ILI+ 

observation metric and 108 U.S. cities were forecast in near real time (6-day delay) during 

the 2012–2013 influenza season (Supplementary Table S1). N.b. GFT stopped releasing ILI 

estimates for seven cities during the 2012–2013 influenza season, hence only 108 of the 115 

cites were forecast in near real time.

Scaling ILI+ to Estimate Influenza Incidence

To assimilate ILI+ observations into the SIRS model, these values must first be converted to 

influenza incidence, a variable that is distinct from I, but which can be tracked within the 

SIRS model. (Incidence represents the number of new influenza infections during a week, 

whereas I is the number of infected persons at any point in time.) Conversion between ILI+ 

and influenza incidence is influenced by several factors. Specifically, ILI+ is simply an 

estimate of the probability for a given week that a person seeking medical treatment, m, has 

influenza, i.e. p(i | m). By Bayes theorem, ILI+ is then

[4]

where p(i) is the probability of getting influenza in a given week (i.e. influenza incidence), 

p(m | i)is the probability of seeking medical attention given infection with influenza, and 

p(m) is the probability that anyone seeks medical attention for any reason. Equation 4 can be 

rearranged as:
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[5]

where γ = p(m)/p(m | i). That is, the probability of incident influenza infection in the general 

population, p(i), is approximately equal to ILI+ scaled by:

1. the probability that anyone seeks medical attention for any reason, p(m)

2. the probability that a person with influenza seeks medical attention, p(m | i)

Both scaling probabilities change through time. In particular, p(m | i) changes with influenza 

virulence: an influenza strain producing more severe symptoms will increase the probability 

that an infected person seeks medical attention.

We ran retrospective forecasts with 1 ≤ γ ≤ 50, and found that values ranging from 2–15 had 

good predictive ability. For the 2012–2013 season, we generated weekly real-time forecasts 

using different values of γ between 2 and 15. As the season progressed, it became clear that 

one or more of the circulating influenza strains was highly virulent. As a consequence, we 

focused our forecasting efforts on lower scaling values, i.e. γ = 2.5. These are the forecasts 

presented in this paper. (Real-time forecasts made with alternate scaling factors, e.g. γ = 5, 

were archived and are available for analysis.) In the future, the scaling factor, γ, might not 

be fixed but rather treated as a free parameter and adjusted during EAKF assimilation of 

observations.

In the EAKF framework, the variance of observational error must be prescribed. For this 

work, we specified a heuristic observation error variance (OEV) that varied with the 

magnitude of the ILI+ estimate. Similar to Shaman and Karspeck3, the OEV for week k, was 

defined as

[6]

where ILI+j is the ILI+ estimate for week j. OEV has units of [infected people/100,000 

people] squared. Equation 6 indicates that there is a baseline uncertainty in estimates of 

influenza incidence that increases or decreases proportionally with ILI+ estimates summed 

for the preceding 3 weeks.

Model Training Using EAKF

200-member ensemble simulations with the SIRS model were trained up to the point of 

forecast using the scaled ILI+ observations and the EAKF. Throughout training, the EAKF 

algorithm updates the ensemble simulations of the observed state variable (i.e. incidence) to 

better align with scaled ILI+ observations. Simultaneously, it uses cross ensemble co-

variability to adjust both the unobserved state variables and parameters. In so doing, the 

Shaman et al. Page 13

Nat Commun. Author manuscript; available in PMC 2014 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ensemble simulations better match observed incidence levels and accrue other key variable 

and parameter characteristics needed to better mimic local outbreak dynamics. Unlike some 

Kalman filter forms that use random perturbations (i.e. stochasticity) in conjunction with the 

Kalman gain to obtain each update, the EAKF algorithm uses a non-random, deterministic 

adjustment6, 24. More details on the application of the EAKF to the SIRS are provided in 

Shaman and Karspeck3.

Multiplicative inflation was applied following the assimilation of each ILI+ observation of 

incidence3, 6. The inflation was used to counter EAKF tendency toward ‘filter divergence’, 

which occurs when the prior ensemble spread becomes spuriously small, causing the system 

to give too little weight to observations and to diverge from the true trajectory. For this 

application, the variance of the observed state variable, influenza incidence, was inflated by 

a multiplicative factor of λ = 1.02 prior to each weekly observational assimilation and 

calculation of the posterior. The remaining model state variables and parameters were 

augmented with a 2% increase of all prior ensemble values. This augmentation increases the 

mean and variance of these model state variables and parameters prior to weekly 

assimilation of the observation and calculation of posterior values based on EAKF 

formulations and the co-variability of the observed state variable with model state variables 

and parameters.

Retrospective Forecasts

Retrospective forecasts were performed using the humidity-forced SIRS model for the 

2003–2004 through 2011–2012 influenza seasons. Influenza seasons begin around Week 40 

of the calendar year, corresponding to early October. This start date is typically before there 

is significant influenza activity. Focus is restricted to seasonal influenza prediction, so the 

2008–2009 and 2009–2010 pandemic years were excluded from the analysis. For each year, 

assimilation of ILI+ data using a 200-member EAKF was initiated in the fall season with a 

random selection of initial state variables (S and I) and parameters (L, D, R0max and R0min). 

Each week the latest ILI+ observation was assimilated and a new posterior ensemble 

generated6. This posterior ensemble was then propagated forward to the next weekly 

observation and the assimilation process was repeated. At each week, forecasts were 

generated by integrating the model posterior forward without further training3 to the end of 

the influenza season.

To sample a more complete range of possible parameters and model states, the assimilation/

forecast process outlined above was repeated 125 times. Specifically, 25 200-member 

ensembles were initialized with different randomly chosen initial parameters and state 

conditions and initiated at one of 5 staggered start weeks in the fall season (weeks 38, 39, 

40, 41 or 42). Thus, for each of the 7 influenza seasons, 39 weekly retrospective forecasts 

were generated for each of 125 200-member ensemble simulations for each of 115 cities 

within the U.S. (Table S1). Initial state variable and parameter conditions for each ensemble 

member simulation were generated from the same prior for each of these ensemble 

simulations. The parameter ranges for this initial random selection were 2 ≤ L ≤ 10, 2 ≤ D ≤ 

7, 1.3 ≤ R0max ≤ 4, 0.8 ≤ R0min ≤ 1.3, as in3, and combinations were selected using a Latin 

hypercube sampling strategy. By running multiple ensembles for each city, year and start 
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date, the multiple forecasts generated provide a measure of variability of ensemble forecast 

statistics, i.e. how much the ensemble mode varies as a function of random initial conditions 

and start date.

Analysis of Retrospective Forecasts

The quality of the retrospective forecasts is analyzed by comparing the accuracy of each 

ensemble mode prediction of peak timing with the spread of predictions among the 200 

simulations within that ensemble3. A forecast is deemed accurate if the ensemble mode 

predicted peak lies within 1 week of the observed ILI+ peak. The spread is calculated as the 

log ensemble variance of the predicted peak weeks. Plots of mode accuracy versus ensemble 

spread indicate an inverse relationship in which the expected accuracy increases as the log 

ensemble variance decreases (Figure 1 and Supplementary Figure S1). These relationships, 

stratified by lead of prediction provide an expectance of accuracy for the 2012–2013 real-

time forecasts.

Generation of Real-Time Forecasts

The 2012–2013 near real-time forecasts were generated using a broader range of start dates: 

Weeks 32, 34, 36, 38, 40, and 42. For each of these 6 start dates, 25 200-member ensembles 

were initiated, each with a different suite of randomly chosen parameters and initial 

conditions. This is analogous to the procedure used to generate retrospective forecasts. 

Following assimilation of the most recent ILI+ observation and generation of a new 

posterior, the ensemble was integrated forward to the end of the season (a combined 40 

weeks of training and forecast). Thus, for each city, 150 200-member ensemble forecasts 

were generated each week upon CDC release of the latest census division influenza positive 

proportions. This process created a distribution of 150 ensemble mode peak timing 

predictions each week for each city (i.e. each 200-member ensemble produces an ensemble 

mode prediction of peak timing). Often these 150 mode predictions were redundant, but in 

many instances, a range of mode predicted outcomes were realized (reflecting uncertainty in 

the ensemble forecasts).

New influenza positive proportions were initially released 6 days following the end of the 

most recently completed week. As a consequence, the forecasts were performed in ‘near real 

time’. For example, the Week 52 forecasts were produced on January 4, 2013, the day the 

Week 52 influenza positive proportions were released. These forecasts included assimilation 

of Week 52 ILI+ estimates, and ran in forecast mode from December 30, 2012 onward. A 1-

week lead prediction for this forecast implies predicted local influenza incidence peak 

during Week 1 (December 30, 2012–January 5, 2013). The first forecast (Week 47) was 

performed following assimilation of Week 47 data. Results from forecasts generated for 

Weeks 47-8 are presented.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Calibration of forecast accuracy as a function of ensemble spread. Retrospective forecasts of 

outbreak peak timing initiated for each of the 2003–2004 through 2011–2012 seasons, 

excluding the pandemic seasons of 2008–2009 and 2009–2010. Retrospective forecasts were 

made for 115 cities, which were then aggregated by census division or nationally. Plots 

present the probability that an ensemble predicted mode peak timing is accurate within +/− 1 

week of the observed ILI+ peak as a function of ensemble predicted peak timing variance 

log transformed. A) Training and forecast made using climatological AH, census division 

aggregation; B) As in A), but aggregated nationally. The colored lines are for ensemble 

mode peak predictions 10+ weeks in the future (magenta), 7–9 weeks in the future (blue), 4–

6 weeks in the future (cyan), 1–3 weeks in the future (red), 0–2 weeks in the past (green), 

and 3–5 weeks in the past (black).
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Figure 2. 
Accuracy of 2012–2013 real-time forecasts. Plots comparing the weekly fraction of accurate 

SIRS-EAKF forecasts with the accuracy of analog forecasts derived from historical 

probabilities (see Supplementary Methods). Top) Weekly SIRS-EAKF forecast accuracy 

and resampled analog predictions using two alternate resampling approaches. Bottom) 

Weekly SIRS-EAKF forecast accuracy and resampled analog predictions based on 

historically observed durations between initially elevated ILI+ and peak ILI+. Only cities 

that have exceeded an onset, or initial threshold, level of elevated ILI+ are included in the 
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analog forecast for a given week. Three different onset thresholds are shown: 100, 500 and 

2000 ILI+. For all the analog forecasts, the thick line depicts the mean fraction of accurate 

forecasts while the shading and thin lines delineate 95% bootstrap confidence intervals.
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Figure 3. 
Expected accuracy of peak timing forecasts for the 2012–2013 season. Week 47-8 forecasts 

were made for 108 cities, which were then aggregated nationally. Plots present the 

probability that an ensemble predicted mode peak timing is accurate within +/− 1 week of 

the observed ILI+ peak as a function of ensemble predicted peak timing variance log 

transformed. The blue lines are the 2012–2013 predictions grouped by forecast lead; the red 

lines are the expected accuracy based on the retrospective forecasts also aggregated 

nationally (as shown in Figure 1B).
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Figure 4. 
Weekly predictions of CDC ILI+ and GFT ILI+ peak timing for HHS regions. Top) The 

fraction of all SIRS-EAKF forecasts each week (made using SIRS model without AH 

modulation of R0); the Week Weeks 1–6 forecasts were run in near real time; the Week 47–

52 forecasts were run using data downloaded following Week 1. Middle) Plots of observed 

HHS CDC ILI+ as reported through Week 12, 2013; using this metric, all HHS peak during 

Week 52, except HHS Region 9, which peaked during Week 4. Bottom) Plots of observed 

HHS GFT ILI+ as reported through Week 12, 2013; 9 of the 10 GFT ILI+ HHS regions 

peak later than their counterpart CDC ILI+ estimate. From Week 40 (2012) through Week 
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12 (2013), HHS GFT ILI+ was on average 1.61 times corresponding estimates of HHS CDC 

ILI+, and during Weeks 1–5 HHS GFT ILI+ was on average 2.20 times HHS CDC ILI+.
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