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Abstract: Endophytic bacteria colonize plants and live inside them for part of or throughout their
life without causing any harm or disease to their hosts. The symbiotic relationship improves the
physiology, fitness, and metabolite profile of the plants, while the plants provide food and shelter
for the bacteria. The bacteria-induced alterations of the plants offer many possibilities for biotechno-
logical, medicinal, and agricultural applications. The endophytes promote plant growth and fitness
through the production of phytohormones or biofertilizers, or by alleviating abiotic and biotic stress
tolerance. Strengthening of the plant immune system and suppression of disease are associated
with the production of novel antibiotics, secondary metabolites, siderophores, and fertilizers such as
nitrogenous or other industrially interesting chemical compounds. Endophytic bacteria can be used
for phytoremediation of environmental pollutants or the control of fungal diseases by the production
of lytic enzymes such as chitinases and cellulases, and their huge host range allows a broad spectrum
of applications to agriculturally and pharmaceutically interesting plant species. More recently, endo-
phytic bacteria have also been used to produce nanoparticles for medical and industrial applications.
This review highlights the biotechnological possibilities for bacterial endophyte applications and
proposes future goals for their application.

Keywords: biotechnological applications; endophytes; plant growth; biofertilizers; phytohor-
mones; phytoremediation

1. Introduction

Endophytes are fungal and bacterial organisms that inhabit the plant endosphere
without harming their hosts. They live asymptomatically in the plant cellular environment
and perform symbiosis-specific functions such as synthesis of secondary metabolites or
signaling molecules that function as internal and external stimuli during the mutualistic
interaction [1]. Endophytic microbes are sources of novel biomolecules for the biochemical
and pharmaceutical industries [2]. They produce biologically active metabolites, including
immune-suppressive compounds, anticancer agents, plant growth promotors, antimi-
crobial volatiles, insecticides, antioxidants, and antibiotics [3,4], with huge potential for
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application in medicine, pharmaceutics industry, or agriculture (Figure 1). Moreover, endo-
phytic microbes can improve plant growth under harsh conditions such as nutrient stress,
temperature stress, salinity, trace metal stress, or drought [5]. They can also help plants to
grow in contaminated environments by degrading hazardous compounds. We describe
the main concepts of the application of endophytes in agriculture and biotechnology.
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2. Types of Bacterial Endophytes

Taxonomically, endophytic bacteria belong to 16 phyla comprising more than 200 genera.
However, the majority of them belong to the three phyla: Firmicutes, Actinobacteria, and
Proteobacteria [6]. They are either Gram-negative or Gram-positive, such as Pseudomonas,
Achromobacter, Agrobacterium, Xanthomonas, Acinetobacter, Microbacterium, Bacillus, and
Brevibacterium [7]. Among others, mycoplasma has been isolated from the cytoplasm of
marine green algae (e.g., Bryopsis hypnoides or Bryopsis pennata) [8].

Endophytic colonization can be local or systemic [9,10]. The plant endosphere rep-
resents a protective niche in which the endophytes are protected from biotic and abiotic
stress. Moreover, endophytes can ecologically adapt to their environment and overcome
plant defense responses [11].

Bacterial endophytes can also be classified as obligate or facultative endophytes.
When endophytic bacteria rely on plant metabolites for survival and transfer between



Plants 2021, 10, 935 3 of 33

plants vertically or through the activity of different vectors, they are defined as obligate
endophytes [12]. In comparison, facultative endophytes live outside the host at a definite
stage of their life and are usually transmitted to plants from the surrounding atmosphere
and soil [13]. The data presented in Table 1 show some examples of culturable bacterial
endophytes and their attributes as plant growth-promoters.

Table 1. Some examples of recently reported culturable bacterial endophytes and their attributes as plant growth-promoters.

Endophytic Bacterial Species Host Plant/
Organ Plant Growth Promotion Attributes References

Proteobacteria: Pseudomonas spp. Nicotiana tabacum/seeds

Siderophores, IAA, ACC deaminase
production, nitrogen fixation,

phosphorus/potassium solubilization,
and trace metal tolerance

[14]

Firmicutes:
Bacillus paralicheniformis

Rice (Oryza sativa
L.)/roots Nitrogen fixation [15]

Firmicutes: Bacillus mojavensis, Bacillus
sp.

Ammodendron
bifolium/roots and

leaves

IAA, ACC deaminase, amylase,
cellulase, protease, lipase production,

phosphate solubilization,
nitrogen fixation

[16]

Proteobacteria:
Aquabacterium, Duganella, Massilia,

Bordetella, Salmonella, Pantoea, Kosakonia,
Klebsiella, Serratia, Pseudomonas,
Agrobacterium, Stenotrophomonas,

Brevundimonas, Ancylobacter,
Pleomorphomonas. Actinobacterium:

Curtobacterium, Microbacterium, Nocardia,
Sediminihabitans.

Firmicutes: Bacillus, Micrococcus,
Staphylococcus, Exiguobacterium

Sorghum bicolor/roots
and stems

IAA production, fungicidal and
bactericidal activities, nitrogen fixation [17]

Proteobacteria: Acetobacter, Burkholderia,
Caulobacter, Pseudomonas, Ralstonia,

Bradyrhizobium, Methylocapsa

Pinus arizonica; Pinus
durangensis/roots,
phloem, and bark

Production of active secondary
metabolites, metabolism of vitamins

and cofactors
[18]

Actinobacteria:
Streptomyces cavourensis

Cinnamomum
cassia/roots

Biosynthesis of active compounds with
antimicrobial and cytotoxic properties

and plant growth-promoting
capabilities.

[19]

Proteobacteria: Sphingomonas sp. Tephrosia apollinea/leaves Drought tolerance [20]

Actinobacteria:
Kocuria sp., Micrococcus luteus

Corchorus
olitorius/leaves, roots,

seeds, and seedling
IAA and siderophore production. [21]

Firmicutes: Actinobacteria
Proteobacteria: Curtobacterium sp.,

Microbacterium sp., Methylobacterium sp.,
Bacillus amyloliquefaciens

Browntop millet/seeds
Auxin production, phosphate

solubilization, inhibiting fungal
pathogens

[22]

Proteobacteria: Enterobacter ludwigii,
Enterobacter spp., Agrobacterium

tumefaciens, Kosakonia cowardii, Variovorax
sp., Burkholderia spp., Pantoea vagans,

Serratia marcescens
Firmicutes: Bacillus sp.

Soybean/roots,
stems, and leaves

Antagonistic activity against soybean
pathogenic fungi and bacteria [23]
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Table 1. Cont.

Endophytic Bacterial Species Host Plant/
Organ Plant Growth Promotion Attributes References

Chryseobacterium endophyticum,
Paenibacillus castaneae, Streptomyces sp.,

Lactobacillus plantarum, Bacillus
proteolyticus, Pseudomonas sp., Serratia

rubidaea, Klebsiella aerogenes,
Paraburkholderia sp., Burkholderia sp.,

Bacillus cereus, Bacillus subtilis,
Enterobacter cloacae, Enterobacter sp.,

Arthrobacter sp., Bacillus thuringiensis,
Bacillus sp.

Pigeonpea/stems, roots,
and leaves

Antimicrobial activity against Fusarium
wilt (Fusarium udum) [24]

Actinobacteria: Micrococcus yunnanensis
Avicennia

marina/Propagule
teguments

IAA, ammonium, siderophore, and
protease production [25]

59 bacterial isolates belonging to phyla:
Proteobacteria, Firmicutes, and

Actinobacteria

Chickpea (Cicer
arietinum L.)/roots

IAA production, ammonia production,
cellulase production, salt tolerance [26]

Firmicutes:
Bacillus velezensis Peanut/seeds Antagonistic against Sclerotium rolfsii [27]

Firmicutes:
Bacillus subtilis

Sugarcane/leaves and
stalks

Promoting plant growth, increasing N
and chlorophyll content [28]

Proteobacteria: Delftia, Stenotrophomonas;
Rhizobium; Brevundimonas, Variovorax;

Achromobacter; Novosphingobium;
Comamonas; and Collimonas

Zea mays L., Vicia faba L.,
Secale cereale L., Triticum

aestivum L., Arctium
lappa L., and Equisetum

arvense L./roots and
stems

IAA and siderophore production,
nitrogen fixation, and phosphate

solubilization
[29]

Proteobacteria: Enterobacter tabaci,
Pantoea agglomerans, Stenotrophomonas

maltophilia, Sphingomonas sanguinis,
Enterobacter tabaci

rice/seeds IAA production and Cd tolerance [30]

Actinobacteria:
Streptomyces niveus NRRL 2466

Camellia spp. and related
genera/roots and leaves

IAA, Ammonia, siderophores, ACC
deaminase, chitinase, and protease,

production. N2 fixation, P
solubilization

[31]

138 endophytic bacterial strains
belonging to the phyla Proteobacteria
(Pseudomonadales, Burkholderiales, and

Xanthomonadales) Firmicutes, and
Bacteroidetes (Bacillales and

Flavobacteriales)

Six terrestrial orchid
species/roots

Phosphate solubilization, siderophore
production, IAA production,

antagonistic activities against plant
pathogenic fungi

[32]

Herbaspirillum lusitanum (2 species),
Acinetobacter johnsonii (3 species),

Stenotrophomonas rhizophila, Agrobacterium
tumefaciens (4 species), Rhizobium

radiobacter,
Micrococcus yunnanensis, Paenibacillus
graminis, Bacillus pumilus (2 species),

Bacillus cereus; Bacillus muralis (2 species),
Terribacillus goriensis

Cucumber/roots, shoots,
and leaves

IAA production, siderophore
production, phosphate solubilization,
antibiotic production, salt tolerance

[33]



Plants 2021, 10, 935 5 of 33

Table 1. Cont.

Endophytic Bacterial Species Host Plant/
Organ Plant Growth Promotion Attributes References

Bacillus cereus, Pseudomonas migulae (3
species), Pseudomonas spp. (2 species),

Pseudomonas brassicacearum, Paenibacillus
lautus, Brevibacterium frigoritolerans,

Bacillus anthracis, Paenibacillus illinoisensis,
Bacillus muralis, Bacillaceae bacterium,

Micrococcus luteus

Sorghum/roots
IAA production, siderophore

production, phosphate solubilization,
antibiotic production, salt tolerance

[33]

Bacillus safensis, Acinetobacter lwoffii,
Bacillus cereus (6 species), Bacillus

thuringiensis (4 species), Bacillus muralis (2
species), Bacillus megaterium, Bacillus

tequilensis, Bacillus aerophilus, Bacillaceae
bacterium (2 species), Acinetobacter

johnsonii (2 species), Microbacterium
schleiferi, Bacillus subtilis, Paenibacillus sp.,

Bacillus niacin, Kochuria palustris

Tomato/roots, shoots,
and leaves

IAA production, siderophore
production, phosphate solubilization,
antibiotic production, salt tolerance

[33]

Firmicutes: Paenibacillus polymyxa Lilium lancifolium/bulbs

IAA, siderophore, ACC deaminase, and
organic acid production; nitrogen
fixation; phosphate solubilization;
antifungal activities against fungal

phytopathogens

[34]

Firmicutes and proteobacteria:
Actinobacteria; Bacillus, Fictibacillus,

Lysinibacillus, Paenibacillus, Cupriavidus,
and Microbacterium

Different rice cultivars
such as Xiushui-48,

Y-003, and CO-39/roots

Antagonistic effect against rice fungal
phytopathogens [35]

Paenibacillus barengoltzii (2 species),
Bacillus amyloliquefaciens (2 species),

Bacillus thuringiensis (2 species), Bacillus
cereus (4 species)

Fagonia mollis/leaves
Enzymatic activities, IAA production,

ammonia production, phosphate
solubilization, antibiotic activities

[36]

Brevibacillus agri (3 species) Achillea
fragrantissima/leaves

Enzymatic activities, IAA production,
ammonia production, phosphate
solubilization, antibiotic activities

[36]

3. Plant–Bacterial Endophyte Interactions

Interactions between bacteria and plants occur in many ways and at different levels
(Figure 2). All plant organs interact with microorganisms at a specific stage of their life, and
these interactions are not necessarily harmful to the plant. Plants can also benefit directly
or indirectly from the interaction [37,38]. An example includes the well-studied rhizobia–
legume interaction. Many endophytic bacteria form less specific symbiotic interactions with
plants, although both partners adjust their metabolisms to the symbiotic conditions and
can influence the biochemical properties of the partner [39]. This can result in promotion
of the growth of the plant under normal and particularly harsh conditions [40,41].

Plants produce root exudates to attract beneficial bacteria, whereas bacterial endo-
phytes recognize these compounds [42]. The bacteria in the root environment move towards
the roots in response to the chemical attraction of the exudates [43]. After attachment to
the root surface, they can enter the root, e.g., at lateral root emergence or openings caused
by wounds or mechanical wounding [43]. Several bacterial structures are involved in their
attachment to the plant surface, including fimbriae, flagella, bacterial surface polysaccha-
rides, and lipopolysaccharides. For example, in Rhizobium spp., the surface polysaccharides
are modified during the transition from free-living cells to the bacteroid form through the
expression of surface antigens [44].
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Bacterial entrance and spread inside plant tissues require plant cell wall modification,
which is achieved by the secretion of cell-wall-degrading enzymes like endoglucanases,
xylanases, cellulases, and pectinases by the endophytic bacteria [45,46]. Penetration into
the host can be active or passive. Active penetration is completed by proliferation and at-
tachment tools involving pili, flagella, twitching motility, and lipopolysaccharides, whereas
quorum sensing influences bacterial colonization and movement in the host plant [47].
Passive penetration occurs through cracks on root tips or root emergence zones or arising
from the activities of harmful organisms [12].

Bacterial colonization often begins at the root surface. After successful entry, the
bacteria can move to aerial parts by the transpiration stream and with the support of the
bacterial flagella [48]. This colonization pattern begins with intracellular microbial access
through root hairs [49]. Endophytes can pass through the plant cell wall and enter the
root cell either directly by the secretion of plant cell-wall-degrading enzymes and passage
through the plant plasma membrane or by rhizophagy. Rhizophagy is a phenomenon in
which many plants get microbes from the soil into their cells and digest them as a source of
essential nutrients [50,51].

However, most endophytes reside in the intercellular spaces of their hosts, i.e., in
sites that are rich in carbohydrates, inorganic nutrients, and amino acids [52]. Besides
root colonization, endophytic bacteria can also occupy the intercellular spaces of stems,
leaves, seeds, flowers, fruits, and xylem vessels [53–57]. Endophytes with intracellular
colonization are difficult to study because they are often non-cultivable [58].

4. Applications of Bacterial Endophytes
4.1. Agricultural Applications
4.1.1. Plant Growth Promotion

Endophytic bacteria utilize the same mechanisms as rhizosphere bacteria for enhanc-
ing plant growth in silviculture, horticulture, and agriculture, as well as in phytoremedia-
tion [59]. The growth-promoting effect can be either direct or indirect (Figure 3).
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Direct Plant Growth Promotion

A. Phytohormone production

Plant growth regulators or phytohormones are organic substances that modify, inhibit,
or promote plant growth and development at low concentrations (<1 mM) [60]. For
agricultural applications, they are either chemically synthesized, extracted from plant
materials, or produced by microbial fermentation. However, their complex chemical
structures or low abundance in plants often prevent the application of these techniques [61].
Alternatively, the development of techniques for fermentative hormone production may
decrease the production costs and increase productivity.

The main phytohormones produced by endophytic bacteria are auxins, cytokinins, ab-
scisic acid, ethylene, brassinosteroids, gibberellins, strigolactones, and jasmonates [59,62–64].

Indole-3-acetic acid (IAA) primarily promotes plant cell elongation and differentia-
tion [65]. In symbiosis, the IAA produced by the bacteria stimulates adventitious and lateral
root development, promotes nutrient access, and enhances root exudation to increase the
interaction [66,67]. Common endophytic IAA producers belong to the bacterial genera
Azospirillum, Azotobacter, Alcaligenes, Herbaspirillum, Enterobacter, Pseudomonas, Klebsiella,
Rhizobium, Burkholderia, Pantoea, Bacillus, Acetobacter, and Rhodococcus [68–71]. They are
often found in nature, as recently shown for medicinal plant populations in Egypt [36,72].

The plant defense hormone ethylene is involved in various stress responses, as well
as developmental processes, including root development. In the rhizobia–legume sym-
biosis, it participates in the nodulation process [73]. Bacterial endophytes can possess a 1-
aminocyclopropane-1-carboxylate deaminase (ACC deaminase), which generates the nitro-
gen sources ammonia and α-ketobutyrate from the ethylene precursor ACC [74]. Therefore,
these bacterial endophytes can promote plant growth under nitrogen-limitation conditions
through the secretion of ACC deaminases. This also results in a stronger immune system
and promotes tolerance against abiotic stress. For instance, Pseudomonas brassicacearum
SVB6R1 increases salt stress tolerance in sorghum plants through the section of ACC deam-
inase [33]. Moreover, Paenibacillus polymyxa from the bulbs of Lilium lancifolium promotes
the growth of two Lilium varieties through secretion of ACC deaminase, among other
effects [34].
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Several studies reported endophytic bacterial species which produce gibberellins and
cytokinins. Gibberellins control plant growth and development through enhanced seed
germination, stem and leaf growth promotion, stimulation of flowering and fruit develop-
ment, and delaying plant aging [75,76]. Cytokinin controls cell division and differentiation,
increases resistance to biotic and abiotic stress, enhances phloem transport, and promotes
flowering and axillary bud growth [77]. The endophytic Azospirillum lipoferum was inocu-
lated in a maize plant previously treated by gibberellin inhibitor synthesis and subjected to
drought stress. The inoculated maize plant performed better than the uninoculated con-
trols, particularly under stress due to the bacterial gibberellin [78]. Moreover, endophytic
bacterial strains including Pseudomonas resinovorans and Paenibacillus polymaxa isolated from
Gynura procumbens exhibited an efficient ability to produce compounds similar to cytokinin
in a broth extract [79]. These examples of endophytic bacteria-mediated biosynthesis of
different phytohormones are illustrated in Table 2.

Table 2. Some examples of endophytic bacterial strain-mediated biosynthesis of phytohormones.

Hormone Producer Strain Plant Source Function/Effect Reference

Gibberellins Bacillus amyloliquefaciens
strain RWL-1

Oryza sativa L.
(Poales: Poaceae)

Plant growth promotion,
hormone regulation [62]

Abscisic acid Azospirillum lipoferum Maize Alleviating drought stress
symptoms in maize [78]

Cytokinin’s Bacillus subtilis lettuce plants
Increased plant shoot and

root weight by
approximately 30%

[80]

Auxin (indol
acetic acid)

B. amyloliquefaciens B. cereus
and Bacillus subtilis

Capsicum annuum
L. (Solanales:
Solanaceae)

Anthracnose control, plant
growth promotion, and
biomass improvement

[81,82]

Auxins
B. amyloliquefaciens strain B14
and Bacillus sp. strains B19

and P12
Phaseolus vulgaris Plant growth promotion,

seed germination [83]

Indol acetic acid B. subtilis strain
NA-108

Fragaria ananassa
Duchesne (Rosales:

Rosaceae)

Plant growth promotion and
biomass improvement [84]

IAA Pseudomonas aeruginosa.
Bradyrhizobium sp. Soybean Plant growth-promoting [85]

IAA, gibberellins,
and cytokinin

Acitenobacter braumalli,
Enterobacter asburiae,

Pseudomonas aeruginosa,
Pseudomonas fulva,
Pseudomonas lini;

Pseudomonas montelli,
Pseudomonas putida,

Pseudomonas thivervalensis,
Sinorhizobium meliloti,
Klebsiella pneumoniae

Maize
Plant growth-promoting,
alleviating drought stress,

biocontrol activity
[86]

IAA Acinetobacter guillouiae Wheat Plant growth-promoting; [87]

IAA Arthrobacter sulfonivorans Wheat Plant growth-promoting [88]

IAA

Acinetobacter calcoaceticus,
Bacillus amyloliquefaciens,

Enterobacter cloaca,
Pseudomonas putida

Soybean [89]



Plants 2021, 10, 935 9 of 33

B. Biofertilization

a. Nitrogen fixation

Manufacturing nitrogenous fertilizers is costly, and their usage increases the pollution
of groundwater with nitrate [90]. Interestingly, biological nitrogen fixation (BNF) accounts
for about two-thirds of the globally fixed nitrogen [91]. Apart from photosynthesis, biologi-
cal nitrogen fixation (BNF) is the most remarkable biological process, and this process is
limited to prokaryotic organisms only. Bacterial endophytes can establish closed relations
with certain crops. The plant endosphere contains excess carbon and a lack of oxygen,
which presents suitable conditions for nitrogen fixation that can be then transported by
endophytes to their host plant. Interestingly, endophytic bacteria can fix nitrogen within
plants without forming nodule-like structures [92]. Some endophytic bacteria possess BNF
genes that enable them to convert nitrogen gas (N2) to other nitrogen forms such as nitrate
and ammonium, which can be utilized by host plants [93,94]. In Brazil, it was observed
that sugarcane plant (Saccharum officinarum L) cultivated without nitrogen fertilizers and
infected with diazotrophic endophytes such as Herbaspirillum seropedicae and Acetobacter
diazotrophicus were able to derive all their nitrogenous needs from atmospheric N2 [95].
Regarding nitrogen fixation, endophytes do better than rhizosphere microbes in promoting
plant growth and health, and help the plant thrive in nitrogen-restricted soil [96].

Bacterial endophyte inoculation has contributed to increased biomass over un-inoculated
control plants, as noted by several authors (Table 3). Some endophytic strains of Enterobacter spp.
and Klebsiella spp. have been reported to fix N2 and promote the growth of sugarcane un-
der gnotobiotic and natural conditions [97–100]. Wei et al. [101] isolated Klebsiella variicola
DX120E, a nitrogen-fixing bacterium, from the roots of the ROC22 sugarcane cultivar. This
strain was capable of fixing N2 in association with sugarcane plants under gnotobiotic con-
ditions, promoting GT21 cultivar growth and plant uptake of N, P, and K under greenhouse
conditions. The total nitrogen content of Poa pratensis L. plants was increased by 37% after
inoculation with the endophytic Burkholderia vietnamiensis WPB strain [102]. Significant
increases in root and shoot biomass and flowers/fruits were obtained by the inoculation
of cherry tomato Lycopersicon lycopericum cv ‘Glacier’, with Rahnella strain WP5, while an
approximately twofold increase in total nitrogen content in root tissue of Lolium perenne was
reported when the plant was inoculated with a multi-strain endophytic consortium (PTD1,
WPB, WP19, WP1, and WW6) [103]. Andrade et al. [104] reported that about 40 endophytic
bacterial strains were isolated from banana roots (Musa L.); out of these, 20 endophytic
isolates had the capacity to grow in N-free media. Out of 20 isolates, four endophytic
strains belonging to the Firmicutes (Bacillus spp.) showed the ability to fix nitrogen when
assessed by the Kjeldahl and acetylene reduction assay methods. Moreover, these four
isolates exhibit banana growth-promoting activities in vivo through nitrogen fixation, IAA
production, and phosphate solubilization. The diazotrophic endophytic bacteria and their
nitrogen-fixing capacity for plant growth promotion are summarized in Table 3.

b. Phosphate Solubilization

Plants take up monobasic (H2PO4
−) and dibasic phosphate (HPO4

2−) from the soil,
whereas 95-99% of soil phosphorus is non-available for plants because it is present in
precipitated, immobilized, and insoluble forms [119]. In agriculture, phosphate deficiency
is compensated by applying chemical or organic phosphate fertilizers [120].

Endophytes increase phosphorus availability for plants, as they dissolve insoluble
phosphate via secretion of organic acids, chelation, and/or ion exchange [121]. Further-
more, endophytes can secrete P-solubilizing enzymes, such as phosphatase, phytase, and
C—P lyase (Figure 4) [122]. Secretion of organic acids such as citric, malonic, fumaric,
tartaric, gluconic, acetic, or glycolic acid is considered the main mechanism involved in
P solubilization. The P-solubilizing activity of the bacteria is usually correlated with a
decrease in the pH value of the medium, which varies due to bacterial species (Figure 4).
For example, the phosphate-solubilizing Bacillus spp. secretes itaconic, lactic, isobutyric,
isovaleric, and acetic acid, and thus acidifies the medium and rhizosphere during sym-
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biosis [123]. Other P-solubilizing mechanisms are the secretion of exopolysaccharides
(Figure 4). [124] and the degradation of P-containing substances.

Table 3. Recent studies describing the diazotrophic endophytic bacteria, and their isolation and inoculation in
agricultural plants.

Diazotrophic Endophytic
Bacteria Plant Source Inoculated in Capacity of N-Fixing

Confirmed by Reference

Proteobacteria: (Acinetobacter
calcoaceticus, Enterobacter cloacae,

Pseudomonas putida).
Firmicutes: (Bacillus cereus,
Bacillus amyloliquefaciens)

Glycine max L. In vitro assay

• Growth on Ashby’s N-free
medium,
nif H gene amplification

[89]

Firmicutes: (Bacillus subtilis
EB-04, Bacillus pumilus EB-64,

Bacillus pumilus EB-169,
Paenibacillus sp. EB-144)

Banana tree In vitro assay
• Acetylene reduction assay
• nif H gene amplification [104]

Actinobacteria (Arthrobacter),
Proteobacteria (Rhizobium),
Firmicutes (Bacillus spp.)

Diverse Poaceae family
plants (maize, wheat,
pearl millet, sorghum,

and rice)

Wheat • Kjeldahl method [105]

Proteobacteria (Pseudomonas
aeruginosa PM389) Pennisetum glaucum Wheat

• Acetylene reduction assay
• nif H gene detection [106]

Proteobacteria
(Herbaspirillum sp.)

Tea plants (Camellia
sinensis var. assamic and

C. sinensis)
In vitro assay

• Acetylene reduction assay
• nif H gene detection [107]

Proteobacteria
(Burkholderia spp., Klebsiella spp.,

Novosphingobium spp.,
Sphingomonas spp.)

Rice (Oryza sativa) Rice (Oryza sativa) • Acetylene reduction assay [108]

Proteobacteria (Pseudomonas
spp., Caballeronia sordidicola,

Rhizobium herbae)
Actinobacteria (Rathayibacter

tanaceti, Frigoribacterium
endophyticum, Herbiconiux solani)

Bacteroidetes (Flavobacterium
aquidurense)

Lodgepole pine (Pinus
contorta var. latifolia)

In vitro assay;
lodgepole pine
(Pinus contorta)

• Acetylene reduction
activity

• Amplification of nif H gene
• 15N isotope dilution assay

[109]

Firmicutes (Paenibacillus
kribbensis HS-R01, Paenibacillus

kribbensis HS-R14)

Rice (Oryza sativa var.
japonica)

Rice (Oryza sativa
var. japonica)

• nif H gene amplification [110]

Firmicutes (Bacillus spp.)
Proteobacteria (Enterobacter sp.) Zea mays L. Zea mays L.

• Acetylene reduction assay
• nif H gene amplification [111]

Firmicutes (Paenibacillus
polymyxa P2b-2R)

Lodgepole pine
(Pinus contorta var.

latifolia)
Zea mays L.

• Acetylene reduction assay
• nif H gene amplification
• 15N isotope dilution assay

[112]

Firmicutes (Paenibacillus
polymyxa P2b-2R)

Lodgepole pine
(Pinus contorta var.

latifolia)

Canola (Brassica
napus L.) and

tomato (Solanum
lycopersicum)

• Acetylene reduction assay
• nif H gene amplification
• 15N isotope dilution assay

[113]
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Table 3. Cont.

Diazotrophic Endophytic
Bacteria Plant Source Inoculated in Capacity of N-Fixing

Confirmed by Reference

Firmicutes: (Bacillus spp,
Paenibacillus spp.)

Proteobacteria: (Caballeronia
spp., Pseudomonas spp.)

Spruce tree In vitro assay • Acetylene reduction assay [114]

Proteobacteria: (Burkholderia,
Sphingomonas, Bradyrhizobium sp.,

Azospirillum brasilens,
Rhodospirillum rubrum,
Rhodobacter capsulatus)
Cyanobacteria: (Nostoc

punctiforme)
Euryarchaeota: (Methanococcus

maripaludis, Methanosarcina
acetivoran)

Populus trichocarpa In vitro assay
• 15N2 assay
• Acetylene reduction assay
• nif H gene amplification

[115]

Proteobacteria: (Azospirillum
amazonense AR3122, Burkholderia

vietnamiensis AR1122)
Rice (Oryza sativa L) Rice (Oryza sativa

L.)
• Acetylene reduction assay [116]

Proteobacteria:
(Gluconacetobacter diazotrophicus,

Azospirillum, Herbaspirillum
seropedicae, Herbaspirillum

rubrisubalbicans, Burkholderia
tropica)

Sugarcane Sugarcane

• Kjeldahl method.
• Abundance of 15N in leaves
• Isotopic 15N dilution assay

[117]

Proteobacteria: (Pseudomonas
spp., Rhizobium spp.,

Duganella spp.)
Ageratina adenophora In vitro assay

• Growth on nitrogen-free
liquid medium [118]

Although it is not clear how bacteria living in a plant can dissolve the insoluble phos-
phate that is located outside of the plant, 50% of the endophytes isolated from ginseng
were able to dissolve phosphate [125]. Comparably high numbers of endophytes isolated
from soybean, cactus, legumes, strawberry, and sunflower were effective phosphate solubi-
lizers [126–128]. Very high phosphate-solubilizing activity was recorded for the Bacillus
species of B. megaterium and B. amyloliquefasciens, which solubilized insoluble zinc and
potassium salts [129].

The utilization of endophytic bacteria inoculants as microbial biofertilizer candi-
dates would provide a promising alternative to chemical fertilizers and for commer-
cial applications. Inoculation of peanut (Arachis hypogaea L.) with the P-solubilizing
nodule endophyte Pantoea J49 increased the aerial dry weight in greenhouse experi-
ments [130]. Pseudomonas letiola mobilized insoluble P and increased the shoot length
and growth of the apple tree variety Ligol [131]. Moreover, inoculation of Rhodococcus
sp. EC35, Pseudomonas sp. EAV, and Arthrobacter nicotinovorans EAPAA enhanced the P-
availability and plant growth of Zea mays in soils amended with tricalcium phosphate [132].
Oteino et al. [133] found that the endophytic Pseudomonas strains L111, L228, and L321
isolated from the leaves of Miscanthus giganteus showed high P solubilization activity.
Pseudomonas fluorescens L321 inoculation resulted in gluconic acid accumulation in the
medium and consequently larger P. sativum L. plants. Joe et al. [134] investigated the effect
of two salt-tolerant and phosphate-solubilizing bacteria (Acinetobacter sp. and Bacillus sp.)
on Phyllanthus amarus and showed that the endophytes were responsible for the better
performance and faster growth of the plants due to the promotion of germination, better P
uptake, and stimulation of the immune system by promoting the biosynthesis of phenolic
compounds, the radical scavenging system, and antioxidative enzymes.
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Chen et al. [135] showed that the endophytic Pantoea dispersa promoted P uptake into
cassava (Manihot esculenta Crantz) roots due to the secretion of salicylic and benzene acetic
acids for more effective P solubilization. Root inoculation with P. dispersa also activated
the natural soil microbial community in the rhizosphere. Such strains could be suitable for
optimizing agro-microecological systems under P limitations. Finally, Castro et al. [136]
used the mangrove endophytic Enterobacter sp. as an inoculum for the production of
seedlings of A. polyphylla trees and found that the endophyte increased shoot dry mass and
the fitness of the seedling.

c. Siderophore Production

Iron is essential for all life and is required as a co-factor of many essential enzymes,
including the biochemical processes involved in nitrogen fixation in nodules. However,
most soil iron is not available for plant absorption because it is present in extremely
insoluble ferric (Fe3+) forms of carbonates, hydroxides, oxides, and phosphates [137] in
the soil. Under iron deficiency, many microorganisms can produce and secrete the low
molecular weight siderophores, which bind Fe3+, Fe2+, and other divalent metal ions which
are essential for plants [138]. Besides delivery to the plants, siderophores also participate in
scavenging undesired metal ions in the rhizosphere to prevent uptake by the roots. These
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include Zn, Cd, Cr, Al, and Pb ions and, also radioactive ions such as U or Np to reduce
toxicity for the plants [139]. Siderophores can also stimulate the plant-induced systematic
resistant response to alleviate the toxicity of trace metals to plant growth [76].

Normally, endophytic bacteria produced siderophores only in soils with iron limita-
tions [140]. Sabaté et al. [83] showed this for siderophores produced by two endophytic
Bacillus spp. strains, which, in promoted the growth of common bean under iron limitation.
Siderophores of the bacterial endophytes also outcompete phytopathogen by binding the
essential elements required for their propagation, thereby protecting the plants [141]. For
instance, endophytic Bacillus spp. inhibit the growth of Fusarium oxysporum by absorb-
ing Fe3+ from the environment through the secretion of siderophores. Lacava et al. [142]
showed that the citrus endophyte Methylobacterium mesophilicum released hydroxamate-
type siderophores into the medium. When the siderophore-containing supernatant was
applied to Xylella fastidiosa subsp. pauca, it promoted the growth and chlorophyll content of
the plants. Similar results were reported for various symbiotic interactions with different
agriculturally relevant hosts in greenhouse experiments.

Indirect Plant Growth Promotion

A. Stress Tolerance

Plants are exposed to various stresses [143], which are the result of antagonistic
or toxic substances in their environment, nutrient or essential ion limitations, or biotic
stress inducers [144]. Both biotic and abiotic stresses contribute about 30–50% of the
agricultural loss worldwide [145]. Temperature, salinity, drought, trace metals, flooding,
and nutrient deficiency are considered the major abiotic stresses (Figure 5). Biotic stresses
are induced by pathogenic microorganisms up to insects or nematodes. Therefore, future
studies aim to develop eco-friendly technologies which increase plants’ resistance to
both abiotic and biotic stresses. A promising strategy is the generation of stronger and
healthier plants with an improved immune system. Not surprisingly, endophytes have
long been known to fulfill these criteria and provide excellent systems for agricultural
application, as well as the identification of the molecular mechanisms by which they
promote plant fitness. The microbial strategies range from the immediate activation of
responsive systems which directly and specifically counteract the stress [146] and the
production of anti-stress metabolites [147] that strengthens the plants, to a broad spectrum
of immune responses which ultimately protect the plants better when exposed to different
stresses. Understanding the mechanism behind these strategies may provide us with
molecular and biochemical tools for agricultural applications.
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Endophytic bacteria support plants to combat drought stress via the production
of volatile compounds, abscisic acid, ACC-deaminase, and IAA. Moreover, enhanced
antioxidant activity and osmotic adjustment participate in the endophyte effects [148].
Razzaghi-Komaresofla et al. [149] introduced salinity-tolerant Staphylococcus sp. strains
which improved the growth and salt tolerance of Salicornia sp. plants either individually
or in combination. Endophyte-managed host resistance to pathogens also includes niche
competition by the production of defensive metabolites such as antibiotics, antimicrobial,
and structural compounds, as well as the induction of immunity or systemic resistance in
the host plant [150].

Plants experiencing biotic and abiotic stress produce elevated concentrations of ethy-
lene [151], which is are synthesized from ACC [152]. Production of the defense hormone
ethylene restricts growth and hence affects the development of the plant in general [153].
Afridi et al. [154] reported the improved growth and stress tolerance of two wheat vari-
eties inoculated with ACC-producing bacterial endophytes. An advantage of ethylene-
producing endophytes may be the local synthesis of the hormone in the symbiotic tissue,
which might ensure that ethylene-induced defense occurs only in tissues that are exposed to
stress. Endophyte-produced ACC-deaminase can alleviate the impact of elevated ethylene
concentrations on stressful plants through the hydrolysis of ACC into α-ketobutyrate and
ammonia. The stressed plant could utilize the ammonia and energy liberated from ACC
decomposition for growth [155,156]. Multiple combinations of the beneficial features of
endophytes, such as combinations of ethylene, siderophore, or exopolysaccharide produc-
tion; nitrogen fixation; and phosphate solubilization are important to strengthen the plants
under stress or nutrient limitations [148,157,158]. Interestingly, some endophytic bacteria
possess sigma factors (Table 4), which are used to change the expression of some genes
under unfavorable conditions to reduce negative impacts [106]. Data represented in Table 4
showed some examples of stresses and the mechanisms utilized by bacterial endophytes to
alleviate these stresses.

Table 4. List of some examples of stress conditions and the mechanisms of resistance/alleviation by specific
bacterial endophytes.

Stress
Condition

Bacterial
Endophytes Used Plant Host Effect/Mechanism of Resistance References

Drought stress Azospirillum spp. Maize

- Accumulation of the abscisic acid that
regulated plant water balance and osmotic
stress tolerance

[78]

Cold tolerance Burkholderia
phytofrmans PsJN Grapevine plant

- Altering the photosynthetic activity and
metabolism of carbohydrates involved in
cold stress tolerance

- The bacterium promoted acclimation and
resulted in lower cell damage, higher
photosynthetic activity, and accumulation
of cold-stress-related metabolites such as
starch, proline, and phenolic compounds

[159,160]

Drought stress
Burkholderia

phytofirmans PsJN,
Enterobacter sp. PsJN

Maize

- Minimized drought stress
- Higher leaf relative water content (30%)
- Lower leaf damage in terms of relative

membrane permeability
- Increasing shoot biomass, root biomass,

leaf area, chlorophyll content,
photosynthesis, and the photochemical
efficiency of PSII

[161]
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Table 4. Cont.

Stress
Condition

Bacterial
Endophytes Used Plant Host Effect/Mechanism of Resistance References

Drought stress Gluconacetobacter
diazotrophicus

Sugarcane
(Saccharum

officinarum)/shoot

- Activation of different genes (ERD15
DREB1A/CBF3 and DREB1B/CBF)

- Production of plant hormones (IAA)
- Production of proline
- Activation of the ABA and ethylene

pathways

[162]

Drought stress Pseudomonas
azotoformans

Alyssum serpylli-
folium/leaves

- Improve relative water content
- Improve chlorophyll content
- Improved oxidative enzyme production

(SOD, POD, and CAT)
- Improved proline production
- Increase plant biomass

[163]

Drought stress Bacillus
amyloliquifaciens Grapevine/roots

- Melatonin secretion
- Reduced MDA, H2O2, and O2

− [164]

Drought stress Pantoea alhagi Alhagi sparsifolia/
leaves

- Enhancement of the production of IAA,
siderophores, soluble sugar, ammonia, EPS,
protease enzymes

- Decreased the accumulation of MDA
- Reduce chlorophyll degradation

[165]

Drought stress
Bacillus subtilis and

Paenibacillus
illinoinensi

Capsicum
annuum/root

- Improvement total biomass, root length,
photosynthetic activity, proline contents,
transpiration, and cell turgor

[166]

Drought stress Bacillus pumilus Glycyrrhiza
uralensis

- Improvement root length
- Enhancement of oxidative enzymes (CAT)
- Improvement of antioxidant activity (GPX)
- Reduced accumulation of MDA, H2O2,

and O2
−

[167]

Drought stress

Bacillus sp. strain
Acb9, Providencia sp.

strain Acb11,
Staphylococcus sp.

strain Acb12,
Staphylococcus sp.
strain Acb13 and
Staphylococcus sp.

strain Acb14

Ananas comosus

- Enhancement of shoot and root length, and
root numbers

- IAA production
- Nitrogen fixation
- ACC-deaminase synthesis.
- Active metabolites have antifungal

activities

[168]

Drought stress Sinorhizobium meliloti Medicago
sativa/root

- Induced the superoxide dismutase (SOD)
gene

- Upregulation of FeSOD and CU/ZnSOD
[169]

Salinity Pseudomonas
pseudoalcaligenes Rice

- Induced the accumulation of higher
concentrations of glycine betaine-like
compounds.

[170]

Salinity

Pseudomonas
fluorescens

YsS6 and P. migulae
8R6

Tomato plants

- Reduced ethylene levels due to ACC
deaminase activity

- Higher gain of biomass and a greater
number of flowers and buds

[156]

Salinity and trace
metals

Pseudomonas stutzeri
A1501 Rice

- Enhancement of plant growth through
secretion of ACC deaminase [171]
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Table 4. Cont.

Stress
Condition

Bacterial
Endophytes Used Plant Host Effect/Mechanism of Resistance References

Salinity

Bacillus sp., Pantoea
sp., Marinobacterium
sp., Acinetobacter sp.,

Enterobacter sp.,
Pseudomonas sp.,

Rhizobium sp. and
Sinorhizobium sp.

Psoralea corylifolia
L.

- Enhanced phytohormone production
(IAA)

- Enhanced seed germination
- Enhanced plant vigor index

[172]

Trace metal
(copper-

contaminated
soils)

Pantoea agglomerans
Jp3-3 and

Achromobacter
xylosoxidans strain

Ax 10

Brassica sp
- ACC deaminase production
- Improved copper uptake by the plants [173,174]

Salinity Bacillus subtilis strain
BERA 71

Acacia gerrardii
Benth./root

- Inoculated into Cicer arietinum seeds and
enhanced their growth under saline
condition through enhanced plant biomass
production; enhanced photosynthetic
pigments; reduced ROS levels; enhanced
antioxidant enzymes (POD, CAT,
glutathione reductase); increased content
of total phenols; decreased accumulation
of sodium; increased accumulation of N, K,
Ca, and Mg; and accumulation of proline

[175]

Salinity

Curtobacterium
oceanosedimentum

strain SAK1,
Curtobacterium

luteum strain SAK2,
Enterobacter ludwigii
strain SAK5, Bacillus

cereus strain SA1,
Micrococcus

yunnanensis strain
SA2, Enterobacter

tabaci SA3

Oenothera biennis
L., Artemisia

princeps Pamp,
Chenopodium

ficifolium Smith,
and Echinochloa
crusgalli/roots

- This endophytic bacterial species
inoculated into rice plants under salt stress
alleviate stress through enhanced
phytohormone production (IAA and
gibberellins), enhanced organic acid
production, reduced ABA content,
improved sugar and GSH contents,
improved flavin monooxygenase and
auxin efflux genes

[176]

Salinity Bacillus spp.,
Enterobacter spp.

Thymus
vulgaris/leaves,
stems, and roots

- Improvement of plant growth through the
production of auxins, nitrogen fixation,
phosphate solubilization, and extracellular
lytic enzyme activities

- Reduced antioxidant enzymes in the
inoculated plant (tomato)

- Secretion active compounds against the
plant pathogen (F. oxysporumen)

[177]

Trace metals (Cd,
Zn, Pb, and Cu)

Mesorhizobium loti
HZ76 and

Agrobacterium
radiobacter HZ6

Robinia
pseudoacacia/root

nodules

- Enhanced IAA production
- Enhanced ACC deaminase
- Production of siderophores
- Enhanced plant biomass production

[178]
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Table 4. Cont.

Stress
Condition

Bacterial
Endophytes Used Plant Host Effect/Mechanism of Resistance References

Trace metal (Cd
and Ni)

Enterobacter ludwigii
strain SAK5 and
Exiguobacterium

indicum strain SA22

-

- Enhanced plant growth in presence of
trace metal through upregulation of trace
metal resistance genes and increased ABA
concentrations

[179]

Trace metal (Ni)

Stenotrophomonas sp.
S20, Pseudomonas sp.

P21, and
Sphingobium sp. S42

Tamarix chinensis
- Enhanced IAA production, siderophore

production, and ACC deaminase [180]

O2
−, superoxide anion radical; H2O2, hydrogen peroxide; MDA, malondialdehyde; SOD, sodium dehydrogenase; POD, peroxidase; CAT,

catalase, ABA, abscisic acid; EPS, exopolysaccharide; GPX, glutathione peroxidase; ROS, reactive oxygen species.

B. Endophyte-Based Phytoremediation

Phytoremediation is a promising tool for cleaning soil, water and air of contaminants,
and endophyte-assisted phytoremediation is used for metal bioremediation in the soil to
allow or promote plant growth in previously contaminated soils [137]. Other investigations
reported the use of endophytic remediation for contamination with organic contami-
nants [181], hydrocarbons [182], explosives [183], herbicides [184], tannery effluent [185],
and uranium [186].

Eevers et al. [187] examined the effect of Enterobacter aerogenes UH1, Sphingomonas taxi
UH1, and Methylobacterium radiotolerans UH1 on the growth of zucchini plants on 2,2-bis(p-
chlorophenyl)-1,1-dichloro- ethylene (DDE)-contaminated fields. Plants inoculated with the
three strains separately or in combination showed an increased weight. Mitter et al. [188]
planted sweet white clover plants on soils contaminated with diesel (up to 20 mg/kg).
Plants inoculated with the hydrocarbon-degrading endophytes EA4-40 (Pantoea sp.), EA1-
17 (Stenotrophomonas sp.), EA6-5 (Pseudomonas sp.), and EA2-30 (Flavobacterium sp.) showed
increased biomass and successfully overcame the growth inhibition observed for non-
inoculated plants. Wu et al. [189] isolated the endophytic Bacillus safensis strain ZY16 from
the roots of Chloris virgate. This strain exhibited multifunctional properties, including
efficient degradation of the C12–C32 n-alkanes of diesel oil and polycyclic aromatic hy-
drocarbons under hypersaline conditions, as well as production of biosurfactants, which
resulted in stronger growth and biomass production in the inoculated plants compared
with the controls. These studies indicated that bacterial endophytes have an important
dynamic role in the management of abiotic stress and could efficiently be applied for
environmental clean-up for sustainable agriculture development.

C. Disease Control

Currently, agrochemicals are considered the main method for combatting microbe-
induced plant diseases; however, many of the applied substances have toxic effects on
animals and humans. The application of endophytic bacteria is of great interest as an
environmentally friendly alternative to agrochemicals [190].

Endophytes can restrict pathogen invasion into plants via direct and indirect mech-
anisms. The direct mechanism describes a competition between endophytes and phy-
topathogens in which the endophytes restrict pathogen growth, e.g., through the secretion
of inhibitory metabolites. In the indirect mechanisms, the endophytes stimulate the plant’s
immune system or increase the plant’s resistance toward the phytopathogens via upregu-
lation of the defense genes [52]. Bacterial endophytes and phytopathogens have similar
colonization patterns in the host plants and, consequently, they compete during invasion
into host cells. Therefore, endophytes could be used as potential biocontrol agents to re-
strict pathogen entry into the host cell. The endophytic species Pseudomonas fluorescens and
Pseudomonas aeruginosa produce 2, 4-diacetylphloroglucinol, penazine-1-carboxylic acid, py-
oleutirin, pyrrolnitrin, or hydrogen cyanide, which suppress the growth of phytopathogenic
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fungi [191]. The most common endophytic bacterial species used in phytopathogen control
are Bacillus species, since they produce lipopeptides, which hydrolyze fungal hyphal mem-
branes [192,193]. The destabilization of the fungal membrane promotes nutrient leakage
and hence reduces the virulence of fungi [191]. The indirect mechanisms include the
stimulation of a jasmonate/ethylene-based defense response against necrotrophic microbes
and a salicylic acid-based defense against biotrophic microorganisms [191,192].

D. Competition for Space and Nutrients

Niche competition means the competition of endophytes with deleterious pathogens
for space and substrates. Blumenstein et al. [194] examined the competitive interaction
between endophytes and the aggressive pathogen Ophiostoma novoulmi, which is the
causative agent of the virulent Dutch elm disease. Based on the carbon utilization pro-
files, they showed that the endophytes showed extended niche overlap with the virulent
pathogen; however, since the endophytes were more efficient at utilizing the applied car-
bon substrates, they were able to out-compete the pathogens. Another example described
endophyte-produced siderophores that supplied sufficient iron to the endophytes but not
the pathogen [195]. The chelated iron also became available to the host plant [52], which
ultimately inhibited pathogen growth in the host plant by restricting mycelial growth and
spore germination [196].

a. Antibiosis

Antibiosis is the synthesis and release of molecules that kill or inhibit the growth of
the target phytopathogen [54], which results in plant disease control. The antibiotics and
volatile organic compounds (VOCs) comprise ketones, alcohols, esters, terpenes, aldehydes,
sulfur compounds, and lactones. VOCs, with their low molecular weights, can directly
affect the growth of the phytopathogens at low concentrations, although the mechanisms
are not well understood, since their perception systems are unknown [197,198]. Jasim
et al. [199] reported the biosynthesis of iturin, surfactin, and fengycin by an endophyte
Bacillus species from Bacopa monnieri. Besides toxic effects to pathogens, numerous en-
dophytic bacterial VOCs control the symbiotic relationship in an extremely competitive
environment for the host [200]. They might stimulate the propagation of the endophytes
but not the pathogens.

b. Parasitism

Parasitism happens when one microbe feeds on another, e.g., a phytopathogen. This
results in complete or partial lysis of its cellular structures. In particular, antagonistic
bacteria feed on the fungal phytopathogen cell wall materials such as proteins, chitin, and
glucans [201]. Bacteria form lipopolysaccharides and produce cell wall lytic enzymes for
the infection of their hosts [202], and these cell wall lytic enzymes also cause hydrolysis of
the cell wall of the fungal pathogen [203].

c. Induced Systemic Resistance (ISR)

Beneficial bacterial induce ISR in plants, which stimulates their local and systemic
defensive responses, thus protecting the host against pathogen attacks. Besides the classical
salicylic acid-based ISR, several endophytes also activate jasmonic acid- and ethylene-
assisted immune responses [204]. An example of the latter mechanism includes the endo-
phytic Bacillus velezensis YC7010, which confers systemic resistance in Arabidopsis seedlings
against the insect pests Myzus persicae and the green peach aphid [205]. The different
strategies are summarized in Table 5 and examples are provided in Figure 6.
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Table 5. Different strategies used by endophytic bacteria to resist phytopathogens.

Strategy Used Mechanisms References

Competition for space
and nutrients

Competitive root colonization, capacity to stick onto the root, differentiating
the growth phase, efficacy to utilize the organic acids existing in the root

exudates and hence synthesize different components
[206,207]

Competition with
ferric iron

- Siderophore production chelates ferric iron and hence reduces it for
pathogen growth. [196]

Detoxification of
virulence factors

- Production of fusaric acids, which detoxify the toxins produced by
phytopathogens

- Reduced quorum-sensing efficacy through degrading autoinducer
signals, hence inhibiting the expression of various virulence genes

[54,208]

Antibiosis

- Production of active compounds such as 2-hexyl-5-propyl resorcinol;
pyoluteorin, phenazines, and volatile hydrogen cyanide (HCN)-like
compounds; pyrrolnitrin; D-gluconic acid; 6-pentyl-α-pyrone; and the
volatile 2,3-butanediol

- Production of active lipopeptide substances such as iturin, surfactin,
polymyxin, fengycin, and bacitracin.

- Production of phenols, pyrrolnitrin, phloroglucinol, and volatile organic
compounds (VOCs)

[200,209–212]

Induced systemic
resistance (ISR)

- ISR enhanced by the production of pyocyanin, salicylic acid, and
siderophores

- ISR enhanced via the reaction between chemical elicitors such as chitosan
and their derivatives, and endophytic microbes

- Production of antioxidant enzymes enhanced ISR

[213–216]

4.2. Biotechnological Applications
4.2.1. Production of Bioactive Metabolites for Agricultural and Medical Applications

Endophytic bacteria produce diverse bioactive metabolites that can be used in medicine
as well as in agriculture for plant growth promotion and pesticides. The following examples
describe some of the metabolites with biotechnological relevance.

Pharmaceutical Applications

Newman and Cragg [217] argued that endophytes produced approximately half of
the new drugs introduced in the market from 1981 to 2010. They are used as insecticides,
antioxidants, antimicrobial agents, anticancer, and antidiabetic compounds, among others
(Figure 7) [218]. Many metabolites used as anticancer or antimicrobial agents have multiple
targets in plants, animals, and human pathogens and offer many prospects in veterinary
and medical therapy. Several of them are also considered eco-safe [219].

Medicinal plants have long been used to cure many diseases. More recently, it became
obvious that many of their important chemical ingredients were derived from endophytes
or the association of the medicinal plants with them. Alvin et al. [220] isolated endophytes
from medicinal plants producing polyketides and small peptides, which displayed antitu-
berculosis activity. The secondary metabolite profiles produced by Acinetobacter baumannii
associated with Capsicum annuum L. uncovered phenolic compounds with peroxidant
and antioxidant abilities [221]. Many peptides with antibacterial, antifungal, anticancer,
immunosuppressive, and antimalarial properties have been identified, and several of them
are interesting because of their target-specificities [222].
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4.2.2. Industrial Applications

The extracellular hydrolytic enzymes produced by bacterial endophytes are required
for host cell infection and triggering ISR [223]. The osmoregulation and antioxidant
enzymes of the bacteria are involved in mitigating salinity stress on the metabolism of the
host plant [224]. Microbial synthesis of biologically active compounds such as enzymes and
secondary metabolites have been used for the manufacture of industrial products, including
food and food supplements [225], biofuels [226], pharmaceuticals [227], detergents [228],
and biopesticides [229].

For example, Ntabo et al. [230] isolated endophytic bacteria from Kenyan mangrove
plants and showed that they produce proteases, pectinases, cellulases, amylases, and
chitinases with putative industrial value. The endophytic Pseudomonas aeruginosa L10,
associated with the roots of Phragmites australis, efficiently degraded hydrocarbons and
produced a biosurfactant [231]. Baker et al. [232] studied endophytic bacteria associated
with Coffea arabica L. and found that they could degrade caffeine, which has potential use
in the decaffeination of beverages.
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4.2.3. Nano Biotechnology

Nanoparticles have numerous technological and industrial applications in electronics,
the energy industry, medicine, catalysis, and biotechnology [233–238]. Biological methods
for the synthesis of nanoparticles provide many advantages over physical and chemical
methods, avoiding the need for high energy and the absence of any toxic waste, which
makes it simple, economical, and environmentally friendly [239–241].

Endophytic microbes reduce metallic ions for the production of nanoparticles [242]
(Table 6). Low concentrations of nanosilver particles (AgNPs) synthesized by Pantoea ananatis
showed antimicrobial activity against Candida albicans ATCC 10,231 and Bacillus cereus
ATCC 10876, and higher concentrations were active against multidrug-resistant strains of
Enterococcus faecium ATCC 700221, Escherichia coli NCTC 13351, Streptococcus pneumoniae
ATCC 700677, and Staphylococcus aureus ATCC 33,592 [243]. AgNPs synthesized by endo-
phytic Streptomyces spp. showed antimicrobial, antioxidant, and larvicidal activities [244].
The endophytic Streptomyces spp. isolated from medicinal plants synthesized Cu NPs and
CuO NPs with antibacterial, antifungal, antioxidant, and insecticidal activities [245,246].
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Table 6. Some recent examples of bacterial endophyte-mediated biosynthesis of nanoparticles and their activities.

Nanoparticles Bacterial Endophytes Plant Applications References

Au Pseudomonas veronii Annona squamosa Antibacterial [247]

Au Pseudomonas fluorescens 417 Coffea arabica Antibacterial [248]

CaCl2 Lysinibacillus xylanilyticus Chiliadenus montanus Degradation of cellulase [249]

Cu Streptomyces capillispiralis Convolvulus arvensis Antibacterial and antifungal [245]

CuO Streptomyces zaomyceticus and
Streptomyces pseudogriseolus Oxalis corniculata L.

Antimicrobial,
antiphytopathogen, in vitro

cytotoxicity, larvicidal activity
[246]

MgO Streptomyces coelicolor Ocimum sanctum Active against
multidrug-resistant microbes [248]

ZnO Sphingobacterium thalpophilum Withania somnifera (L.) Antimicrobial [250]

Ag Bacillus siamensis C1 Coriandrum sativum Antibacterial [251]

Ag Pantoea ananatis Monocot plants Anti-multidrug-resistant [243]

Ag Streptomyces laurentii R-1 Achillea fragrantissima Antibacterial, in vitro
cytotoxicity, and textile industry [252]

Ag Streptomyces antimycotics L-1 Mentha longifolia L. Antibacterial, in vitro
cytotoxicity, and textile industry [253]

Ag Pseudomonas poae CO Allium sativum Antifungal [254]

5. Conclusions and Future Prospective

Biotechnology has proven to be applicable in many medical, industrial, and agricul-
tural fields, as it is inexpensive and eco-friendly. Endophytes are plant symbionts; unlike
the rhizosphere and phyllosphere bacteria that live on the plant’s surface, endophytes find
their way into the plants’ endosphere to become protected from inappropriate environ-
mental conditions. Recently, different advanced techniques such as clustered regularly
interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing (GE) have
been used to explain the plant–microbe interaction. These advanced techniques develop
ideal plants/microbes that are relevant for agricultural applications. Endophytes produce
several active metabolites that have positive effects on plant growth, leading to increased
crop yields. Compared with agrochemicals, the presence of endophytes inside the host
plant puts them in direct contact with the plant and becomes more effective. Chemicals
are applied outside the plant, and a large part of them do not benefit the plant and cause
pollution of the environment. Apart from the biotechnological uses of endophytes in
sustainable agriculture, bacterial metabolites include other compounds that can be used
in many technological and industrial applications, as well as their ability to reduce metal
ions to nanoparticles, which can be used in technological, industrial, medical, and elec-
tronic applications. In the future, nanoparticles will be helpful in the formation of new
nano-drugs, nano-pestcides, and nano-fertilizers to suppress plant pathogens and to in-
crease the fertility of soils and plants through providing essential elements. Therefore, the
mechanisms of fabricating specific shapes and sizes using eco-friendly microbes, including
endophytes, require more research. Moreover, the integration of bacterial endophytes into
different biomedical and biotechnological applications is still limited; therefore, it is urgent
to discover new compounds from endophytic bacteria that have biological activities. Much
research is still needed to understand endophytic bacteria and their relationships with
plants, and to optimize the use of their premium metabolic products and formulate them
into products that can be marketed for economic benefit.
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