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Abstract

Biogeochemical models use meteorological forcing data derived with different approaches

(e.g. based on interpolation or reanalysis of observation data or a hybrid hereof) to simulate

ecosystem processes such as gross primary productivity (GPP). This study assesses the

impact of different widely used climate datasets on simulated gross primary productivity and

evaluates the suitability of them for reproducing the global and regional carbon cycle as

mapped from independent GPP data. We simulate GPP with the biogeochemical model

LPJ-GUESS using six historical climate datasets (CRU, CRUNCEP, ECMWF, NCEP,

PRINCETON, and WFDEI). The simulated GPP is evaluated using an observation-based

GPP product derived from eddy covariance measurements in combination with remotely

sensed data. Our results show that all datasets tested produce relatively similar GPP simula-

tions at a global scale, corresponding fairly well to the observation-based data with a differ-

ence between simulations and observations ranging from -50 to 60 g m-2 yr-1. However, all

simulations also show a strong underestimation of GPP (ranging from -533 to -870 g m-2 yr-1)

and low temporal agreement (r < 0.4) with observations over tropical areas. As the shortwave

radiation for tropical areas was found to have the highest uncertainty in the analyzed histori-

cal climate datasets, we test whether simulation results could be improved by a correction of

the tested shortwave radiation for tropical areas using a new radiation product from the Inter-

national Satellite Cloud Climatology Project (ISCCP). A large improvement (up to 48%) in

simulated GPP magnitude was observed with bias corrected shortwave radiation, as well as

an increase in spatio-temporal agreement between the simulated GPP and observation-

based GPP. This study conducts a spatial inter-comparison and quantification of the perfor-

mances of climate datasets and can thereby facilitate the selection of climate forcing data

over any given study area for modelling purposes.
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Introduction

Biogeochemical models are widely used to refine and upscale field measurement of spatiotempo-

ral carbon exchange and great advances have been made in developing these models in the last

decade (e.g. [1–4]). Furthermore, biogeochemical models are used to predict future carbon bud-

gets under different scenarios providing descriptions of future potential biogeochemical condi-

tions essential to assess socioeconomic, technological and environmental conditions, emissions of

greenhouse gases and aerosols, as well as climate [5, 6]. These models are usually driven by climate

data and simulate the spatio-temporal vegetation dynamics as well as the carbon fluxes and water

flows through the ecosystem [7–9]. However, the choice of historical climate dataset input can

cause considerable uncertainty in estimated Gross Primary Production (GPP, the total amount of

carbon captured by vegetation via photosynthesis) with outputs fluctuating by 9% to 20% [10–12].

The choice of the climate dataset also has a pronounced impact on the spatial patterns of simu-

lated GPP [11, 13]. Therefore, the selection of historical climate datasets plays a crucial role in

both exploring and quantifying the ecosystem response to climate through ecosystem models.

Uncertainty among different historical climate datasets exist at present, which mainly differ

in the source and the processing of the raw data. Such climate grids are derived either from

quasi-point based measurements and subsequent spatial interpolation, model-based reanalysis,

or generated as an observational-reanalysis hybrid. Measurement-based datasets, e.g. Climatic

Research Unit (CRU; [14]), are produced by statistical interpolation of climate station records,

e.g. by using the Climate Anomaly Method [15]. Reanalysis is a different approach that uses a

combination of meteorological forecast model output and assimilated observations. Unlike the

observational based datasets, which are based on statistical principles, reanalysis datasets are

built on physical principles describing the variable in question [16], by combining climate

model output with a large amount of different observational data, such as land cover, trace

gases, aerosols, solar variations and wind speed. As a third type, observational-reanalysis

hybrid datasets combine observations and reanalysis data [17, 18].

This study is motivated by two factors: Firstly, as there is no general agreement about which

historical climate data set is most suitable for driving biogeochemical models, several of the

currently available historical climate datasets are widely used for contemporary research on

estimations of GPP [2, 4, 19–21], yet very few studies (e.g. [12,13]) have investigated the differ-

ence in reproducing the carbon cycle associated with the use of climate datasets. The suitability

of contemporary historical climate datasets for accurately estimating GPP at global and

regional scales is therefore currently not well known. Secondly, users of biogeochemical mod-

els normally rely on the climate dataset for which the model was calibrated to reproduce the

carbon cycle with the least uncertainty for a particular region. However, climate datasets might

vary in quality in a spatially explicit way governed by the processing algorithm and underlying

density of available calibration points. There are also incidences in which the user can not

choose the dataset for which the model was calibrated, e.g. in a model comparison study where

different models need to be driven by similar input data, or if the calibration dataset has a

lower temporal resolution than what is required by a specific task. Therefore, this study fills a

current research gap by evaluating the six most commonly used climate datasets (CRU,

CRUNCEP, ECMWF, NCEP, PRINCETON, WFDEI; See Methods) and their relative perfor-

mance of estimating terrestrial GPP within a spatially explicit biogeochemical model to high-

light the associated uncertainty. Such quantification is expected to facilitate the selection of

relevant climate forcing data when performing GPP modelling over any given study area.

Here we focus on terrestrial GPP, a fundamental driver of plant biochemical processes and

an important component of the global carbon cycle [22]. In biogeochemical models, GPP rep-

resents the origin of carbon within the system, which controls many other processes (e.g.

Climate dataset selection on simulations of terrestrial GPP
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carbon allocation, plant allometry and tissue turnover) in the models [2, 4, 19–21]. GPP is

mainly influenced by climate forcing (e.g. temperature, water, light, and atmospheric CO2 con-

centration), and also influenced by nutrient availability and disturbances (e.g., storms, harvest-

ing, and insect attacks). We use the biogeochemical model Lund-Potsdam-Jena General

Ecosystem Simulator (LPJ-GUESS [3, 21]) as a representative model to simulate GPP and

compare results to an independent observation-based GPP product, (even though climate data

is also used to generate the observation-based GPP product; see discussion for more details).

The observation based GPP product is derived from a global network of eddy covariance mea-

surements in combination with remote sensing data and is used as a benchmark to evaluate

the performances of the climate datasets. We analyze the differences in magnitude and spatio-

temporal pattern of GPP globally and over five vegetated land cover classes to assess their rela-

tive performance of reproducing the carbon cycle during the period 1982–2010.

Methods

Biogeochemical model (LPJ-GUESS)

LPJ-GUESS is a process-based biogeochemical model, designed for both regional and global

studies [21]. It requires time series data of climate forcing (i.e. air temperature, precipitation

and shortwave radiation) and atmospheric carbon dioxide concentrations as input. It explicitly

represents vegetation cover (by indicating the occurrence of Plant Functional Types, PFTs),

age cohorts, gap dynamics and biogeochemical cycles. Vegetation physiological processes such

as photosynthesis, canopy conductance, phenology, and carbon allocation are incorporated in

the model. LPJ-GUESS uses a detailed individual-based representation of forest stand structure

and dynamics for PFTs co-occurring in a number of patches or local stands, representative for

the landscape of a grid cell. Each PFT is characterized by properties such as growth form, leaf

phenology, life history and bioclimatic limits, which govern their performance and competi-

tive interactions under the forcing conditions and realized ecosystem state of a particular grid

cell [20, 23]. In total 11 PFTs are used within this study and their prescribed parameters can be

found in Smith et al. [3]. We employ LPJ-GUESS version 3.0 [3] which uses nitrogen dynamic

based on the CENTURY model [24, 25]. All simulations are initialized with a 500 years spin-

up, which comprises an internal 40000 years spin-up mechanism for soils, to equilibrate soil

and vegetation pools, by recycling de-trended 1979–2010 climate forcing fields and applying

constant CO2 concentration and nitrogen deposition from the first year (1979). Subsequently

transient GPP is simulated with time evolving CO2 concentrations from Keeling and Whorf

[26], nitrogen deposition from Lamarque et al. [27] and climate forcing. The managed land

use fraction is obtained from Hurtt et al. [28].

Historical climate datasets

We force LPJ-GUESS with six different historical climate datasets (Table 1) to simulate global

terrestrial GPP. The datasets differ in their spatial and temporal resolution, available time

period, and how they are derived. They are derived from quasi-point based measurements

(CRU and CRUNCEP), model-based reanalysis (NCEP and ECMWF), or hybrid datasets

combining both observation and reanalysis data (WFDEI and PRINCETON). To enable a

direct comparison between simulations, the datasets are rescaled to a common spatial (0.5

decimal degree) and temporal scale (monthly observations, since CRU is provided only as

monthly data). To allow this, we use bilinear interpolation to convert NCEP to 0.5 degrees,

and temporally convert CRUNCEP, ECMWF, NCEP, PRINCTON and WFDEI from daily to

monthly time scales. These monthly datasets are subsequently interpolated to daily values uni-

formly within LPJ-GUESS [21]. Since LPJ-GUESS treats all dataset in the same way, it offsets

Climate dataset selection on simulations of terrestrial GPP
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at least part of interpolation induced bias. We use the common time period 1979–2010 and the

climate variables precipitation, shortwave radiation, and air temperature for all datasets. For

CRU, the cloud cover is converted to shortwave radiation within the biogeochemical model

using the method by Harris et al. [29]. All data are available on the DataGURU server (https://

dataguru.lu.se/).

Observation-based GPP product

We evaluate the simulated GPP with a benchmark GPP product derived from eddy covariance

measurements from Jung et al. [34] (herein after, JUNG11). JUNG11 is derived from long-

term and high-quality measurements of carbon dioxide, water, and energy fluxes from the

Flux Network (FLUXNET). These in situ measurements are very sparse at the global scale, and

need to be extrapolated in space, in order to be applicable for global scale studies. Jung et al.
[34] used a semi-empirical model (Model Tree Ensembles; MTE), to upscale measurements

from local to global scales using remotely sensed fraction of Absorbed Photosynthetically

Active Radiation (fAPAR), gridded climate, and the Synergetic land cover product (SYN-

MAP). The long-term mean climatic information used in JUNG11 is derived from CRU data

[35] as well as other climate datasets, e.g. global grids of monthly precipitation from GPCC

[36] and the ECMWF ERA interim reanalysis product of Simmons et al. [37]. In this study, the

observation-based JUNG11 dataset is assumed to represent “true” information of GPP, though

we are well aware of the uncertainties related to this product, e.g. the uncertainties originating

from flux measurements and upscaling station-based fluxes to global scale [34].

Comparison of GPP estimates with the different climate datasets

Two of the most commonly used metrics to compare model estimates with observations, are

the Pearson correlation coefficient (r) and root mean square deviation (RMSD). Despite their

popularity, both metrics have disadvantages, as r only measures the strength of relationship

between two data series, but does not indicate if the data series have similar magnitude.

RMSD, on the other hand, assesses if the absolute values of two series match, but does not indi-

cate the agreement of pattern of the data series. Moreover, RMSD is dimensional, which ham-

pers inter-comparability between analysis outputs. To consider both the strength of the

relationship and similarity in magnitude, Willmott [38] proposed an index of agreement (IoA,

d) for evaluating model prediction (P) against measured observations (O), as follows:

d ¼ 1 �

Pn
i¼1
ðPi � OiÞ

2

Pn
i¼1
ðjPi � Oj þ jOi � OjÞ2

ð1Þ

Table 1. Main datasets used, type, spatial resolution and time period.

Dataset Type Spatial resolution Time period Reference

CRU TS 3.21 Climate 0.5 degree 1901–2012 [14]

CRUNCEP v5 Climate 0.5 degree 1901–2013 [30]

ECMWF/ERA Interim Climate 0.5 degree 1979–2014 [31]

NCEP-DOE II Climate 2.5 degree 1979–2014 [32]

Princeton_V2 Climate 0.5 degree 1901–2012 [17]

WFDEI_GPCC Climate 0.5 degree 1979–2010 [18]

ISCCP Radiation 0.5 degree 1984–2000 [33]

JUNG11 GPP 0.5 degree 1982–2011 [34]

https://doi.org/10.1371/journal.pone.0199383.t001
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The upper limit of IoA (d) is one which indicates a perfect match, while the lower limit is

zero which indicates complete disagreement. The metric describes the relative co-variability of

P and O related to the observed mean (O).

We use Willmott’s IoA to quantify the match between simulated GPP and JUNG11. If two

datasets differ by only 5% we define their result as equal to allow for some small statistical dif-

ferences. Furthermore, we use the correlation coefficient (r) and annual means as an evalua-

tion measure to assess the IoA result and link it to temporal patterns or magnitude differences.

The comparisons are conducted globally and for five vegetated land cover classes derived from

Ahlström et al. [39] during 1982–2010 (S1 Fig).

Radiation correction

Simulated GPP has its largest deviation among the datasets for the tropical region (according

to initial calculations; S2 Fig). A previous study [12] also revealed that climate dataset induced

uncertainty in GPP estimates simulated by LPJ-GUESS was mainly caused by the uncertainty

in shortwave radiation over tropical regions. Therefore, we test whether bias correcting the

shortwave radiation variable of the tested climate datasets using the International Satellite

Cloud Climatology Project (ISCCP) radiation data results in an improvement of the simulated

GPP. The ISCCP radiation product is derived from an advanced radiative transfer model

(NASA Goddard Institute for Space Studies) by using improved cloud climatology and ancil-

lary data sets [33, 40]. ISCCP has been used as the reference radiation in previous studies, e.g.

[41, 42].

The bias correction of shortwave radiation is done only for tropical regions, where simu-

lated GPP is particularly sensitive to shortwave radiation [12], the largest deviation in simu-

lated GPP is shown (S2 Fig) and the largest difference in shortwave radiation among the

datasets is present. The differences of the monthly mean shortwave radiation between the

tested climate datasets and the ISCCP radiation during the common 17 years (1984–2000) is

used to correct the original monthly data from the tested climate datasets (Rorig
t ) during 1982–

2010 using Eq 2.

Rcorr
t ¼ Rorig

t þ ðRref � Rorig Þ; ð2Þ

where Rcorr
t is the bias corrected shortwave radiation for month t. Rorig and Rref are the monthly

mean of the tested climate datasets and the ISCCP radiation during 1984–2000, respectively.

This bias correction adjusts for biases in annual averages and seasonal distribution, while pre-

serving the inter-annual variability.

Results

The agreement between the simulated GPP and the GPP provided by JUNG11 is compared for

each grid cell at a 0.5 degree scale using IoA (Fig 1). Our result shows that simulations of GPP

using CRU climate data (CRU GPP) have the highest spatial agreement with the reference

dataset (31% of global vegetated grid cells where CRU GPP produce the highest IoA). Areas of

best agreement are mainly located in the Northern boreal forest but large clusters are also

observed in parts of Europe and the United States (Fig 1A). We further found that for a major-

ity of the area (40%, mainly occupied by tropical and dry area), one single dataset was identi-

fied with an agreement at least 5% higher (as measured by IoA) than the other datasets

(marked as green in Fig 1B). We also found a low IoA for the tropical forest region (Fig 1C),

namely tropical Asia, central Africa and tropical South America as well as for desert areas in

Africa and Australia. This is in accordance with the simulated GPP showing an expected low

Climate dataset selection on simulations of terrestrial GPP

PLOS ONE | https://doi.org/10.1371/journal.pone.0199383 June 21, 2018 5 / 15

https://doi.org/10.1371/journal.pone.0199383


mean IoA (<0.5) for Tropical Forests (TF) (Fig 2A) across all datasets with a large bias (Fig

2B) as well as poor temporal correlation (Fig 2C), among which CRUNCEP performs slightly

better (r = 0.53). However, at a global scale, the simulated GPP magnitude is relatively close to

JUNG11 estimates (Fig 2B). On average simulated GPP is only 6 g m-2 yr-1 higher than

JUNG11, indicating a compensation of regional discrepancies according to overestimation in

non-TF and underestimation in TF.

The comparison of climate data inputs (Fig 3) shows that the zonal mean of the annual tem-

perature is similar among the six climate datasets (Fig 3A) and the precipitation datasets also

agree relatively well (Fig 3B) except around the equator and in latitudes below 30-degree South

which can be partly attributed to the small number of grid cells in that region. The highest var-

iability is found for the shortwave radiation data (Fig 3C) where the largest discrepancies are

found in low latitudes (20˚S-20˚N), with the CRU shortwave radiation standing out with an

average ~14% lower value compared to the mean of the other datasets.

To evaluate the influence of the shortwave radiation on the simulated GPP for tropical for-

est (TF), we bias corrected the shortwave radiation datasets using ISCCP data [33]. The cor-

rected shortwave radiation in tropical forests increased for all climate datasets as compared to

the original shortwave radiation. The average increase is lowest for CRUNCEP [30] with 4.9

W m-2 and highest for CRU [14] with 57.4 W m-2 (S3E Fig). By using the bias corrected short-

wave radiation (bar with black outline, Fig 4) over the tropical forest, the average annual GPP

shows a 7.5% overall increment while CRU increases with 16.8% and ECMWF shows an

increase of 11.7%, and GPP is on average 23.0% closer to the JUNG11 value for all datasets

(Fig 4B). This increase in agreement is especially pronounced for the simulation using

Fig 1. Global maps of climate dataset performance. Panel a) indication of which climate dataset is producing the

highest Index of agreement (IoA; calculated at monthly scale) to JUNG11 (1982–2010). The bars show a global total

fraction of vegetated grid cells for which the climate dataset is giving the highest IoA. Panel b) shows how many

datasets producing GPP simulations with a similar agreement (within 5%) as the one identified in (a). Panel c) displays

the maximum IoA between simulated GPP and JUNG11 for each grid cell.

https://doi.org/10.1371/journal.pone.0199383.g001
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ECMWF climate data [31], being 48.1% closer to the JUNG11 value after bias correction.

There is no significant difference (p>0.05, using one-way ANOVA test) between CRUNCEP

simulations with and without bias correction, further confirming that CRUNCEP shortwave

radiation has the smallest deviation from the ISCCP data in tropical forest, which could partly

explain why CRUNCEP has the relatively higher agreement with JUNG11 over tropical forest

in Fig 2A.

Fig 2. Comparison of monthly IoA, annual mean GPP and monthly temporal correlation during 1982–2010 as

estimated by LPJ-GUESS forced by six climate datasets versus the observation-based GPP product JUNG11. Panel

(a) shows the IoA, panel (b) shows the average difference and the last panel (c) shows the temporal correlation

coefficient between simulated GPP and observations for each land cover class: global; semi-arid ecosystems (SS);

tundra and arctic shrub land (TS); grasslands and land under agriculture (GC); tropical forest (TF); extra-tropical

forest (ExTF) includes boreal and temperate. The map of land cover classes can be seen in S1 Fig. The spatial

distribution of GPP magnitude can be found in S2 Fig.

https://doi.org/10.1371/journal.pone.0199383.g002

Fig 3. Comparisons of the climatological zonal mean of annual average (1982–2010) of three climate variables

among the six climate datasets, i.e. CRU [14], CRUNCEP [30], ECMWF [31], NCEP [32], PRINCETON [17] and

WFDEI [18]. The variables are temperature (panel a), precipitation (panel b) and shortwave radiation (panel c). The

black line in panel (c) shows the zonal mean of annual average (1984–2000) of ISCCP radiation [33]. The comparisons

are conducted for terrestrial areas only. The spatial distribution of each climate variable can be found in S4–S6 Figs.

https://doi.org/10.1371/journal.pone.0199383.g003
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The overall effect of correcting shortwave radiation over the tropical forest on simulated

global annual mean GPP (Fig 4A) is only 1.2% compared to simulations based on uncorrected

shortwave radiation data. The effect of the radiation correction on the temporal correlation

(0.6%) and IoA (0.7%) is also negligible on the global scale (Fig 4). The climate induced spread

of simulated GPP among climate datasets tested at global scale was reduced from 11.0% to

10.8% by correcting shortwave radiation over the tropical forest.

Discussion

This study evaluates six climate datasets and their influence on gross primary productivity

(GPP) simulated by a biogeochemical model (LPJ-GUESS). Given that GPP is the main driver

for a number of vegetation based processes our results can also help to improve the estimation

of a variety of other state variables (e.g. net primary productivity). LPJ-GUESS is a well-estab-

lished biogeochemical model that has been evaluated and applied in a wide range of studies

and shows relatively similar behavior and predictive skills compared to other biogeochemical

Fig 4. Comparison of annual mean GPP, monthly temporal correlation and monthly IoA during 1982–2010 estimated by LPJ-GUESS before

and after tropical forest radiation correction. Panels (a-b) show annual mean GPP, panels (c-d) show temporal correlation and panels (e-f) show

the IoA. Bars with a black outline represent simulations based on shortwave radiation corrected by ISCCP data. The extent of tropical forest (TF) is

shown in S1 Fig. The red error bars show the inter-annual variability.

https://doi.org/10.1371/journal.pone.0199383.g004
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models [43–45]. This is especially true for GPP, given that most biogeochemical models (e.g.

HYLAND, LPJ-DGVM, OCN, ORCHIDEE, SDGVM and TRIFFID) use the same photosyn-

thesis model [46] at their core [9, 39, 47]. LPJ-GUESS may thus be considered a generic repre-

sentative for biogeochemical models as a group and very likely reproduces spatial and

temporal characteristics of primary productivity.

The datasets investigated are all widely used in studies focusing on modeling the carbon

cycle and the results show that the differences are most pronounced for shortwave radiation.

CRU shortwave radiation is calculated from cloud cover, which is derived from observations of

sun hours, by using the method of Harris et al. [29]. CRUNCEP shortwave radiation on the

other hand is rescaled from the NCEP-NCAR [48] reanalysis data by using the MTCLIM model

[49], which reduces the magnitude of NCEP-NCAR shortwave radiation to better match

observed radiation at FLUXNET sites [30]. The reanalysis shortwave radiation from ECMWF

and NCEP (here we use DOE II which differs from NCEP-NCAR) are produced by different

radiative transfer schemes from Mlawer et al. [50] and Chou [51], respectively. These schemes

describe how solar irradiance is attenuated by the absorption and scattering (due to e.g. water

vapor, oxygen, trace gases, clouds, and aerosols) when passing through the atmosphere before

reaching the land surface. PRINCETON shortwave radiation is based on interpolating the

NCEP-NCAR reanalysis product and downscaling to 0.5 degree prior to bias correction using

CRU data [17]. WFDEI shortwave radiation is derived from the ERA-40 reanalysis product [52]

and the dataset is adjusted by using CRU cloud cover [53]. Given the manifold methodological

differences, it is a challenge to determine whether all datasets are equally reliable or if any of

them is better suited for a certain study region or purpose than others.

Overall, CRU driven GPP results in the best agreement with JUNG11 for the largest area

compared to the other climate datasets, which may be due to the fact that the JUNG11 has

been generated by incorporating CRU data to some extent [34]. However, still in almost 70%

of the vegetated area JUNG11 agrees better with one of the other climate datasets used as input

for simulating GPP. We also used the observation-based MODIS GPP product [54] in our

analyses. Even that the MODIS GPP algorithm includes the NCEP dataset (one of tested data-

sets) as an input of daily meteorological data, the results agreed that CRU is a better climate

forcing in more grid cells than the other datasets tested (S7 Fig). Considering that the long-

term observation and climatic information used in JUNG11 is not entirely from CRU, we

decided to use JUNG11 as the benchmark of this study. Our study shows that the specific

choice of the climate dataset to be used for driving the biogeochemical model (out of the six

historical datasets investigated) is associated with smaller spread in simulated GPP at the

global scale than the spread at the regional scale (Fig 2), which indicates that the choice of the

climate dataset for estimating global GPP is less critical as when estimating GPP at the regional

scale. The largest disagreement of GPP between LPJ-GUESS simulations and JUNG11, is

found in the tropical region. This pattern is consistent with findings that the tropical region

has the largest differences in GPP estimates between process-based models and data-driven

methods [55–57]. We also found the largest disagreement between simulated GPP in the tropi-

cal region, which is attributed to the large bias of shortwave radiation among investigated cli-

mate datasets and the high sensitivity of GPP to shortwave radiation over the tropics [12]. Wu

et al. [12] also showed that differences in shortwave radiation caused large differences in simu-

lated GPP over tropical regions when using LPJ-GUESS, which is likely to be similar for other

biogeochemical models [10]. The bias of shortwave radiation in tropical areas has been attrib-

uted to the sparse meteorological station network [58] and to the high uncertainties in radia-

tion transfer, cloud cover and cloud morphology when producing the climate datasets [11, 59].

We also show that a bias correction of shortwave radiation data (using the ISCCP radiation

data) in the climate datasets causes the simulated GPP to markedly increase in the tropical
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region (e.g. CRU and ECMWF simulations), reducing the gap in simulated GPP compared to

JUNG11. This again suggests that shortwave radiation products currently available for tropical

regions remain highly uncertain. In order to accurately simulate GPP in tropical regions

(which are known to be primarily constrained by incoming solar radiation) we suggest

improving shortwave radiation of the tested datasets, e.g. by bias correcting with advanced

radiation data from ISCCP. ISCCP reduced cloud effects on radiation by using an advanced

radiative transfer model [33, 40], which makes ISCCP radiation data more reliable in cloud-

prone tropical forest areas than the radiation from the tested climate datasets (except CRUN-

CEP). Following the bias correction, we found no significant change for the CRUNCEP simu-

lation, which suggested that the shortwave radiation from CRUNCEP has equally high quality

as ISCCP. The high quality of the shortwave radiation data from CRUNCEP in the tropic is

likely to be one of the reasons for more grid cells of highest IoA being derived from the CRUN-

CEP stimulation in Fig 1A. Furthermore, we found that correcting only for shortwave radia-

tion is not enough to produce an exact match with observation-based estimates as there is still

a substantial gap between model simulations and JUNG11. The ECMWF dataset, character-

ized by the highest precipitation, also showed the highest agreement with JUNG11 after short-

wave radiation correction, which implies that not only the radiation but also the precipitation

over tropical areas might be underestimated in the climate datasets tested. Previous studies

[10, 12] also found that GPP was sensitive to precipitation in tropical areas. Therefore, if aim-

ing at producing a set of climate variables to minimize the discrepancy between modelled and

observed GPP, we recommend also to improve the precipitation variable of tested climate

datasets (e.g. CRUNCEP which has high quality radiation and temperature data) e.g. by bias

correction using high quality precipitation data (e.g. TRMM [60]) in tropical region.

Although correcting the shortwave radiation over the tropical forest reduced the climate

induced spread of simulated GPP among climate datasets tested at global scale from 11.0% to

10.8%, which is within the range of 9%-20% [10–12], the aim of the bias correction was not to

narrow the climate induced spread. We would expect that if correcting all of the three climate

variables there will be no climate induced spread among climate datasets tested. Bias correc-

tion is one way that could help improving the climate variable of a climate dataset in a certain

study area, by using ISCCP, TRMM or other available high quality data. However, the correc-

tion of a given climate variable within a climate dataset should be done with caution, as

improving a single variable from a climate dataset may introduce an imbalance in relation to

other co-varying climate variables of that dataset. Therefore, we consider it preferably to first

select a suitable climate dataset for a study area and then, if deemed necessary, a given variable

of this dataset can additionally be bias-corrected.

In order to avoid over-interpretation of model-data mismatches, it is mandatory to also

consider the limitations of the reference data. JUNG11 GPP used in this study was assumed to

represent the “true” GPP but inevitably also includes systematic and random errors and uncer-

tainties. For instance, uncertainties of flux measurements derived from discriminating low

and well mixed fluxes [61], estimation of missing values [62], and flux partitioning (e.g. parti-

tion the observed net ecosystem exchange (NEE) in to GPP and ecosystem respiration) [63,

64]. These uncertainties, furthermore, propagate when extrapolating to the globe by the MTE

approach [34]. One additional complication arises from the possibility that JUNG11 also per-

forms poorly over tropical areas and that disentangling uncertainties within the GPP simulated

by LPJ-GUESS and JUNG11 might be impossible.

One additional limitation of this study is related to the evaluation method. IoA is used as

the main metric for the evaluation since it combines patterns like the Pearson correlation coef-

ficient and information on the magnitude of deviations. However, it is known to be sensitive

to extreme values due to the squared differences which potentially over-weighs the influence
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of the differences between model prediction and observation [65]. Hence, we have comple-

mented this statistical measure with calculations of the average difference and correlation

coefficient.

Conclusion

This study evaluates the performance of the six most commonly used climate datasets (CRU,

CRUNCEP, ECMWF, NCEP, PRINCETON, WFDEI) in estimating terrestrial GPP within a

spatially explicit biogeochemical model by using independent observation-based GPP data.

Our study highlights the need to improve the incoming shortwave radiation estimates from

most of the climate datasets tested (except CRUNCEP) in tropical areas in order to improve

GPP estimates over tropical regions. Our results also allow the assessment of the suitability of

climate datasets with respect to a given research purpose and study area, e.g. the CRUNCEP

dataset works better in tropical regions for simulating GPP (values being in agreement with

observation-based GPP), while the choice of the climate dataset for simulating GPP in Europe

is less critical.

Supporting information

S1 Fig. Map of land cover classes. The source of the data derived from Ahlström et al. [39]

and Wu et al. [12]. The percentage values at the bottom of the map show the fraction of each

land cover class in relation to the global terrestrial area (excluding Greenland).

(TIF)

S2 Fig. Comparison of annual mean GPP during 1982–2010 from model simulations by

using different climate datasets and observation-based estimate (JUNG11). a. global GPP

linear trends. b. GPP zonal means. c-h maps of spatial difference of annual mean GPP between

simulations forced with different climate datasets and observations (g C /m-2).

(TIF)

S3 Fig. Annual mean shortwave radiation during 1982–2010 globally and stratified by land

cover classes. Bars with a black outline represent the simulations based on shortwave radiation

is corrected by ISCCP data.

(TIF)

S4 Fig. Comparison of annual temperature from the climate datasets tested. a. global

annual trends, b. zonal means, c-j. spatial distribution of mean annual temperature.

(TIF)

S5 Fig. Comparison of annual total precipitation from the climate datasets tested. a. global

annual trends, b. zonal means, c-j. spatial distribution of mean annual precipitation.

(TIF)

S6 Fig. Comparison of annual shortwave radiation from the climate datasets tested. a.

global annual trends, b. zonal means, c-j. spatial distribution of mean annual shortwave radia-

tion.

(TIF)

S7 Fig. Global maps of climate dataset performance. Panel a, c, and e show the results when

using MODIS GPP (2000–2010) as the benchmark, and panel b, d and f show the results when

using JUNG11 GPP (1982–2010) as the benchmark. For the description of the figure is

referred to Fig 1 in the main text.

(TIF)
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