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ABSTRACT

The epithelial barrier in the gastrointestinal (GI) tract is a protective interface that endures 
constant exposure to the external environment while maintaining its close contact with the 
local immune system. Growing evidence has suggested that the intercellular crosstalk in 
the GI tract contributes to maintaining the homeostasis in coordination with the intestinal 
microbiome as well as the tissue-specific local immune elements. Thus, it is critical to map 
the complex crosstalks in the intestinal epithelial-microbiome-immune (EMI) axis to identify 
a pathological trigger in the development of intestinal inflammation, including inflammatory 
bowel disease. However, deciphering a specific contributor to the onset of pathophysiological 
cascades has been considerably hindered by the challenges in current in vivo and in vitro 
models. Here, we introduce various microphysiological engineering models of human 
immune responses in the EMI axis under the healthy conditions and gut inflammation. 
As a prospective model, we highlight how the human “gut inflammation-on-a-chip” can 
reconstitute the pathophysiological immune responses and contribute to understanding 
the independent role of inflammatory factors in the EMI axis on the initiation of immune 
responses under barrier dysfunction. We envision that the microengineered immune models 
can be useful to build a customizable patient's chip for the advance in precision medicine.

Keywords: Immune response; Microphysiological system; Gut inflammation-on-a-chip; 
Microbiome; Co-culture; Organoid

INTRODUCTION

The gastrointestinal (GI) epithelial barrier is a complex interface that endures constant 
exposure to the external environment (i.e., pathogen, microbiome, diets, or compounds) 
while also maintaining its close contact with the local immune system (1). Although 
epidemiological and clinical studies have identified unique profiles of the intestinal 
microbiome in health and disease (2,3) as well as shown the beneficial effects of probiotics 
(4,5) and fecal microbiome transplantation (6,7), the mechanistic processes involved in 
epithelial-microbiome-immune (EMI) axis are not fully understood.
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Studying the human gut microbiome using in vitro models has been challenging because 
many commensal gut microbiome is oxygen-sensitive (8) and unculturable (9). The 
conventional static culture formats often cause the overgrowth of gut bacteria when co-
cultured with epithelium, thus hampering the in vitro demonstration of host-microbiome 
crosstalk (10). Animal models harbor a vastly different composition of the microbiome 
population compared to that of humans, which compromises the translational value of 
experimental results (11). Moreover, although animal models have been used to induce 
disease-like symptoms and test for the validation of therapeutics, there have been notable 
limitations in the independent manipulation of the individual contributing factors 
(±immune element, ±gut microbiome), spatiotemporal modulation of the inflammatory 
triggers (e.g., before/after Ag presentation, directional introduction of the particular 
immune trigger), or in situ visualization at high resolution in real-time (e.g., time-lapse 
imaging of the fluorescently labeled cells under the controlled high-power magnification 
imaging). Thus, developing a translatable in vitro platform utilizing the gut-on-a-chip 
technology that allows the mechanistic investigation of the EMI axis is a promising 
technology in disease modeling (Fig. 1A and B). In this review, we aim to review the 
physiological role of the individual components in the EMI axis, unique techniques that have 
been developed to overcome the difficulty of mimicking such axis, and the future direction 
with the in vitro study of the EMI.
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Figure 1. Microfabrication of a human gut-on-a-chip and microfluidic cultures of the EMI axis. (A) The gut-on-a-chip microfluidic device is fabricated using 
soft lithography method by placing each compartment in a layer-by-layer approach to build the central cell culture chamber with an upper (blue) and a lower 
(orange) microchannel (1 mm×1 cm×200 μm, width×length×height) and bi-lateral vacuum chambers (grey). (B) A schematic flowchart shows sequential steps 
to recreate intestinal EMI in a gut-on-a-chip by coating the central cell microchannels using ECM (“coating ECM”), followed by the attachment of epithelium 
(“seeding epithelium”), application of flow and mechanical stretching motions (“flow, stretching”), and maintenance of the steady-state physiological milieu 
including gut microbiome and immune cells (“EMI axis”). An inset photograph (top middle) shows a fully equipped gut-on-a-chip device linked to the silicone 
tubing that supplies culture medium (purple or yellow-green arrow heads) or cyclic vacuum suctions that induce peristalsis-like motions (green arrow heads). 
Schematics of the representative experimental steps (middle row) and corresponding micrographs of either the device or the cell morphology (bottom row). 
A zoomed-in snapshot in the left bottom shows the part (a light grey dashed box) of a PDMS porous membrane (25 μm in thickness). A phase contrast image in 
“seeding epithelium” shows the formation of an intestinal epithelial monolayer in the upper microchannel. An image in “flow, stretching” displays the villous 
growth under mechanically dynamic physiological conditions at ≤100 h since seeding. Finally, an overlaid image in the “EMI axis” shows the villus morphology 
(grey) and green fluorescent protein-labeled E. coli (green) after the co-culture for 24 h. Bars, 100 μm. Images were reprocessed from the references (65,66). 
ECM, extracellular matrix.
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EMULATING THE IMMUNE RESPONSE DURING THE 
INTESTINAL INTERCELLULAR CROSSTALK
The EMI axis
There has been substantial progress in developing a microfluidic system modeling 
the physiology and pathology of the GI tract (12-16). The human intestine is the most 
representative organ for the processes by which the tissue-specific immune system 
constitutively exerts homeostatic intercellular crosstalk with the host cells as well as the gut 
microbiome (17). Due to the spatial proximity (18) and biological interactions at the mucosal 
microenvironment (19), the major contributors involved in the multi-component interactions, 
including intestinal epithelium, gut microbiome, and the tissue-specific immune elements 
can be referred to as new terminology, “EMI axis.” These contributing cells should be involved 
in modeling the pathophysiology of inflammatory immune responses in a defined spatial 
structure. The prerequisites of each element to build inflammation models are summarized.

Epithelium
The intestinal epithelium is a primary cell type to form a physical tissue barrier that provides 
an interface between the lumen and the abluminal compartments. In this microenvironment, 
the EMI axis plays a key role in creating complex intercellular interactions, stimulations, and 
regulations (19). There are various intestinal epithelial cells, such as absorptive enterocyte, 
mucus-producing goblet cells, hormone-secreting enteroendocrine cell, anti-microbial 
peptide-releasing Paneth cells, Ag-permeable microfold (M) cells, and taste-sensing tuft 
cells (20-22). In general, absorptive and goblet cells are major contributors to recreate the 
epithelial barrier function by providing tight junction integrity and mucus layer, respectively. 
Hence, major cell lines such as Caco-2 (human colorectal adenocarcinoma, representing the 
absorptive enterocytes) (23) and HT-29 (human colorectal adenocarcinoma, representing the 
goblet cells) (24) have been predominantly used in biomedical researches or pharmaceutical 
tests. Anticipated physiological functions of intestinal epithelium include the expression of 
tight junction (e.g., zonula occludens 1, occludin, and claudin) (25) and adherence junction 
(e.g., E-cadherin) (26) and mucin (e.g., mucin 2) (27). However, immortalized cell lines are 
often derived from tumor cells (28) or been immortalized with a tumor Ag (29) with limited 
capability to recapitulate a coordinated function of multi-lineage cells (30). In recent days, 
biopsy-derived (31,32) or stem cell-derived (33) intestinal organoid culture method has been 
suggested to present diverse cell lineages compared to the immortalized single-lineage cell 
lines. The organoid cultures, however, have shown critical limitations in co-culturing living 
microbial cells due to the static culture nature and the enclosed lumen (34).

Immune components
Immune surveillance is critical to promote host defense as well as homeostasis (35-37), 
where tissue-specific immune elements control the primary immune responses in concert 
with systemic immunity. In the intestinal lamina propria, professional Ag-presenting cells 
(38,39) including dendritic cells (DCs), macrophages, and B lymphocytes as well as other 
local immune cells such as intraepithelial lymphocytes (40), innate lymphoid cells (41), and 
Th or Treg (42) closely communicate and interact to contribute to the intestinal homeostasis. 
In this unique spatial coordination, DCs (43) and macrophages (44) in the lamina propria 
collect exogenous Ags (e.g., infectious bacteria) (45) and share the epitopes of molecular 
components with B lymphocytes (46). In this event, the B cells that are homing from the 
mesenteric lymph node to the lamina propria transform into the IgA-producing plasma 
cells and produce secretory antimicrobial IgA (47,48). As given this example, immune cells 
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continuously interact with endogenous or exogenous Ags as well as with other adjacent 
cells, then contribute to induce inflammatory responses. Thus, involving the right type of 
tissue-specific immune cells in intestinal inflammation models is an essential design step 
to demonstrate immune-mediated interactions. Recently, incorporation of immune system 
components into these microphysiological systems (MPS) was accomplished, and a major 
advance in such technological breakthrough includes the spatiotemporal induction of 
immune cells as well as living microbial cells in the model. Currently, most of in vitro models 
that demonstrate human immune reactions have relied on the PBMCs derived from a drawn 
blood sample (13). Alternatively, the differentiated immune cells (e.g., DCs from monocytes) 
(14) can be enriched in vitro and introduced into the MPS model to induce physiological 
immune tolerance in the gut (14,15). However, compared to animal models, it has been still 
nascent to recreate a tissue-specific immunity in an in vitro model, which remains a critical 
unmet in disease modeling.

Gut microbiome
The gut microbiome can contribute to maintaining, and perturbing, the EMI axis by 
producing short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate 
(49), and by releasing bacterial endotoxins (e.g., LPS) (50) or secreting polysaccharide A 
(51). SCFAs are the primary bacterial metabolites that are used as a major energy source 
for intestinal epithelium (52). The human commensal gut microbiome plays a pivotal 
role in degrading non-digestible fibers (i.e., prebiotics), including inulin (53), fructo-
oligosaccharide (54), and galacto-oligosaccharides (55), and producing the SCFAs via 
symbiotic cross-feeding interactions in the colon (56). In addition, the intestinal microbiome 
can shape host immunity, where another major role of SCFAs is the orchestration of the 
balance of Th vs. Treg cells (49). Thus, stable maintenance of this syntrophic intercellular 
interaction of the commensal gut microbiome is important to sustain the physiological 
intestinal homeostasis in the EMI axis in a model (57). It is noted that the majority of 
intestinal bacteria are obligate anaerobic bacteria (58), and these anaerobic gut bacteria 
support intestinal homeostasis in the EMI in a mucosal anoxic-oxic interface (AOI) (59). The 
recent development of an AOI in a microfluidic gut-on-a-chip (60) enabled us to investigate 
the key physiological interactions of obligate anaerobic gut bacteria with the intestinal 
epithelium. We will further discuss how these technical challenges have been overcome in 
the in vitro recreation of AOI in the following section.

Prerequisites for modeling the EMI axis
Reverse engineering
Based on the reverse engineering approach (61), experimental demonstration of the EMI 
axis in vitro requires the “breakup” of individual components and their functionality from 
the complex microenvironment of the gut into the level of single components. Next, each 
component needs to be integrated independently, or collectively, to reform the sequence 
of interactions that induce intercellular crosstalk with a spatiotemporal resolution. As a 
reductionist's approach, simplified but physiologically relevant inter-connectivity between 
different cell types in the EMI axis can be established by adding the uncoupled elements (i.e., 
microbiome, epithelium, and immune cells) one-at-a-time or by removing a particular cell 
type in a defined culture format. More importantly, once a system is accessible to reconstitute 
a functional simulacrum in vitro, different types of cells from various sources (e.g., different 
patient donors, a defined pathobiont in the GI diseases, a distinct consortium of microbial 
communities, or differentiated immune cells after the clonal expansion) can be adapted to 
better mimic individual target tissues and organs.
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Recreating the tissue interface
Since these multiple cell types within the EMI axis are localized in the three-dimensional (3D) 
microenvironmental structure, recreating the lumen-capillary or lumen-lymphatic tissue 
interface is of great importance when working to demonstrate a polarized tissue organization 
and directional stimulation of microbial (i.e., luminal) or immune cells (i.e., capillary or 
lymphatic) in the model. To recreate an organ-level, tissue-specific microenvironment of the 
human living gut, the establishment of an intact intestinal epithelial barrier is a prerequisite 
to building the lumen-capillary tissue interface (25,26). The intestinal epithelial layer needs 
to possess similar compositions of differentiated lineages, including absorptive, mucus-
secretory, enteroendocrine, and paneth cells (27,62-64). As previously mentioned, mucus 
production, expression of tight junction proteins, and production of antimicrobial peptides 
are major functional prerequisites in an epithelial layer. Also, the histogenesis of the 3D 
villus microarchitecture that displays the crypt-villus characteristics is also important for 
illustrating the effect of 3D topology on microbial niche formation, stem cell regeneration, 
and immune-microbiome interactions. Another key requirement in the intestinal modeling 
is the demonstration of physical deformations that mimics the biomechanics of bowel 
movement, so-called peristalsis (12,65). The macroscopic mechanical deformations and the 
microscopic villus motility are necessary, not only for showing the mixing and propulsion 
of bolus (66) but also for reflecting the villous morphogenesis (12), regenerative cellular 
signaling (67), and epithelial differentiation (68).

Microbial co-culture
Typically, microbial co-culture can be performed by adding an inoculum of microbial cells 
on the apical compartment of the epithelial monolayer that has reasonable barrier integrity 
for a limited period within a day (69). As previously discussed, this limited culture period is 
mainly due to the overgrowth of microbial cells, where an accumulation of bacterial organic 
wastes rapidly diminishes the pH of culture medium, followed by the damage of epithelial 
barrier. Thus, the proposed model should maintain a controlled microbial population 
without undesirable bacterial overgrowth (66). To study on a longitudinal host-microbiome 
interaction and monitor how the immune cells respond to the microbiome and their 
products in the EMI axis, it is necessary to recreate an intact epithelial layer that provides 
a physical barrier and prevents aberrant transmigration of microbial cells from the lumen 
to the capillary side. This physical compartmentalization also contributes to control the 
infiltration of immune cells from the vascular side to the lumen side. In this experimental 
setup, it is critical to flow culture medium and exert mechanical deformations to suppress 
bacterial overgrowth (60,66,68). Moreover, the majority of the gut microbiome comprises 
obligate anaerobic bacteria. Thus, it is also critical to create a local oxygen gradient and 
establish an in vitro AOI in the model. An AOI can be accomplished by several approaches. 
The easiest method is to perfuse anoxic and oxic culture media into the upper and lower 
microchannels, respectively, of a two-channel microfluidic device (e.g., gut-on-a-chip) 
(60). This method has the advantage to circumvent using complex equipment, including 
an anaerobic glove box or an oxygen controller (70). Alternatively, the “human-microbial 
crosstalk (HuMiX)” model employs the perfusion of anoxic and oxic culture media by 
continuously infusing the nitrogen gas into the adjacent microchannel. The oxygen level can 
be detected by an oxygen sensor (71) and controlled, in which a facultative and an obligate 
anaerobic bacteria were co-cultured in the HuMiX model to assess the effect on the epithelial 
cells. Another method to grow anaerobic gut bacteria is to fabricate the anaerobic chamber 
while using a calibrated optical probe system to verify the hypoxic conditions within the 
microfluidic culture system (70). An AOI can lead to better stability in the maintenance 
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of diverse composition of the fecal gut microbiome, which may allow us to investigate the 
host-microbiome crosstalk to the homeostasis of the GI tract of the intestinal disease (60). 
Such an AOI together with physiological flow and mechanical motions in an organ-on-a-
chip may overcome the limited longitudinal host-microbiome crosstalk observation in the 
conventional static in vitro cultures (60,70,71).

Modeling the pathophysiology of inflammatory immune responses
MPS to model the physiology of an EMI axis
The MPS refers to a microfluidics-based experimental microcircuit that provides an in 
vivo-relevant and accessible microenvironment driven by a reverse engineering approach 
with high modularity to engineer each comprising element on-demand (61). The human 
gut-on-a-chip is a representative MPS that models the intestinal physiology (66,68) and the 
pathophysiology that occurs in the EMI axis of various GI diseases (12,13). In the following 
sections, we will focus on the introduction and application of the gut-on-a-chip microsystem 
in host-microbe co-cultures and inflammatory immune responses. The gut-on-a-chip is 
made of polydimethylsiloxane (PDMS), a transparent, elastic, and gas-permeable silicone 
material, and has 2 superposed microchannels separated by a porous, flexible, extracellular 
matrix-coated PDMS membrane (Fig. 1A). The human intestinal epithelium can be cultivated 
on the porous membrane in the upper microchannel, forming an intact intestinal epithelial 
barrier and thereby recreating the luminal microenvironment of the gut. On the other side 
of the membrane, either lymphatic or capillary endothelium can be grown, thus creating 
a counter microenvironment in the lower microchannel that represents the lymphatic or 
capillary vasculature. Epithelial cells in the gut-on-a-chip can form a 3D microstructure 
(72) reminiscent of in vivo intestinal villi, where gut microbiome and immune cells can be 
co-cultured in the upper and lower channels, respectively, to recreate the EMI axis on-chip 
(12,13) (Fig. 1B). Optionally, it is possible to grow anaerobic gut bacteria once after the AOI 
condition is established and stabilized (60). Finally, PBMCs as immune elements can be 
introduced into the lower microchannel to emulate the recruitment of immune cells from 
the nearby capillary vasculature (12,13). Recent studies demonstrated the introduction of 
tissue-specific differentiated immune cells such as DCs or macrophages (14), which may lead 
to more physiological biomimicry. However, as previously mentioned, the preparation of the 
various immune elements for the inflammatory modeling of the human intestine has been 
nascent, where aggressive collaborations between biomedical engineers and immunologists 
have been appreciated.

Demonstration of immune-mediated inflammatory responses
Notably, the microengineered models of the human intestinal EMI axis enable us to 
recapitulate the pathophysiology of immune-associated inflammatory responses by 
leveraging the modularity and accessbility (12,13,60,66). For example, a different strain of 
bacteria or a bacterial LPS was introduced to the luminal upper microchannel lined by an 
intact epithelium (50) to interrogate how the specific luminal perturbation provokes the 
epithelial damage and inflammatory reactions. LPS produced by gram-negative bacteria is 
a potent ligand of the TLR4 (50). An excessive amount of LPS (15 µg/mL) introduced to the 
gut-on-a-chip that emulates an outgrowth or infection of Gram-negative bacteria resulted 
in the disruption of the villous epithelial morphology as well as the barrier function (12). 
Interestingly, in vitro immune responses occurred when the microbial and immune cells co-
stimulated the epithelial layer, by which the recruitment of PBMCs, activation of intercellular 
adhesion molecule 1 molecules on the endothelial surface (Fig. 2A), disruption of the 
villous microarchitecture, expression of TLR4 on the villous epithelium, and the directional 
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secretion of pro-inflammatory cytokines (Fig. 2B). On the contrary, an independent 
stimulation of each cell type in the EMI axis did not show any inflammatory responses (12).

The pathomimetic gut inflammation-on-a-chip
Since gut inflammation involves multifactorial crosstalk followed by simultaneous 
pathological outcomes, it is challenging to unravel the onset trigger of the complex 
inflammation process. Indeed, it is noted that experimental animal models are impossible 
to independently uncouple the inflammatory factors in the EMI axis and identify a specific 
inflammatory trigger that develops the disease cascade. To surmount this caveat, MPS 
models may be a compelling alternative to dissect the mechanistic contribution of individual 
inflammatory factors in various combinations. The “gut-inflammation-on-a-chip” for 
instance allowed us to match the cells in the EMI axis one-at-a-time and assess inflammatory 
readouts to identify which factor is a critical trigger that initiates the entire inflammatory 
cascade (13). Briefly, an intact intestinal epithelial barrier is necessary and sufficient to 
sustain the physiological homeostatic tolerance in the co-presence of both luminal (e.g., LPS 
or gut bacteria) and immune elements (e.g., PBMCs) (13). Under the complex intercellular 
crosstalk in the EMI axis, spatiotemporal inflammatory responses such as oxidative stress, 
inflammatory epithelial injury, secretion of inflammatory cytokine, immune cell recruitment 
or infiltration, and microbial vascular invasion were observed during the dysregulated 
epithelial barrier, suggesting that the maintenance of a good barrier function is pertinent to 
the intestinal homeostasis (Fig. 3).

Other models for mimicking inflammatory responses in vitro
In a similar approach, there have been a number of MPS models that mimicked the intestinal 
EMI axis to build intercellular inflammatory interactions in vitro. Using a sequentially 
connected porous inserts (15) or a microfluidic device (14), differentiated subsets of immune 
cells, including tissue-specific macrophages or DCs, were added to the MPS device into 
either luminal or vascular compartment to induce immune responses in the intestine (14). 
For example, 2 microbial cells, Lactobacillus rhamnosus and Candida albicans, were co-cultured in 

7/15https://doi.org/10.4110/in.2020.20.e13

Microphysiological Engineering of Intestinal Inflammation

https://immunenetwork.org

A Control Inflammed
+LPS

+PBMC
Endothelium

ICAM-1

En
do

th
el

iu
m

B

Cy
to

ki
ne

 re
le

as
ed

 (n
g/

m
l−1

)

0

12

6

9

3

0

12

6

9

3

Lumen IL-1α
IL-4
IL-10
IFN-γ

IL-1β

IL-1β

IL-6

IL-6

IL-12
TNF-α

TNF-α

IL-2
IL-8
IL-17A
GM-CSF

Capillary

Control +PBMC +LPS +LPS
+PBMC

IL-8

Figure 2. Demonstration of the pathophysiological immune responses in the gut-on-a-chip challenged to LPS and PBMCs. (A) The schematics in the upper 
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aerobic condition on the formed intestinal epithelial layer. Under the formed EMI, probiotic 
effects of L. rhamnosus against C. albicans-induced tissue injury and inflammatory responses 
was tested. However, no mechanical deformations to emulate the bowel movement existed, 
which can affect bacterial growth rate and less physiological. Another MPS model combined 
an ex vivo tissue explant that secures the intestinal EMI axis to an engineered circuit (16). 
This study employed resected large intestine segments of mice and directly connected 
this resected “tube” to the device to maintain the original intestinal architecture and the 
homeostasis created by flowing the culture medium in the luminal side. In this integrative in 
vitro-ex vivo configuration, the differentiated intestinal epithelium, immune cells, and enteric 
neuronal cells were successfully co-cultured to investigate the role of the gut bacteria in 
activation of Th17 or Treg cells as well as the enteric nervous system (16). However, a limited 
longevity of the system due to the use of ex vivo tissue hampers a long-term study of the EMI 
crosstalk, and human intestinal EMI cannot be applied to the devised platform.

FUTURE PERSPECTIVES

The impact of a human MPS platform has been outlined in various contexts in biomedical 
and clinical applications. By leveraging the modular accessibility, a simple microfluidic 
device can grow different types of cells for mimicking the pathophysiological immune 
responses of diverse organs and tissues, by which the tissue-specific immunological 
crosstalk can be uncoupled and recoupled in a defined space and time. By the phenomenal 
advances in stem cell- or tissue-derived organoid cultures, a modular MPS system allows for 
the collection of patient-specific organoids, immune cells, and other surrounding cells (e.g., 
fecal microbiome, tissue-derived mesenchymal stromal cells) (70,73) to build a better model 
that recapitulates a disease-specific milieu in a patient's “avatar model” (Fig. 4). There has 
been substantial progress in developing microfluidic chip systems modeling the physiology 
of various organ systems, including the heart (74), liver (75), lung (76), kidney (77), and GI 
tract (12-16).
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contrary, a compromised epithelial barrier due to the external stimulation (here, DSS treatment) results in 
refractory villous destruction, loss of mucus, and substantial recruitment of activated immune cells (leaky gut). 
Arrows in the left schematic show the direction of fluid flow in each microchannel. Dotted and dashed lines in 
“villus morphology” pinpoint the contour of villi and the location of the basement membrane, respectively. Bar, 
50 μm. Images were reprocessed from reference (13). 
DSS, dextran sulfate sodium.
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There is a notable limitation of the 3D intestinal organoid system, which is that it prevents 
access to the apical side of the epithelium for studying the interactions with dietary 
constituents, microorganisms, and pharmaceutical compounds transported through 
epithelial cells (34,78). However, organoid-derived epithelial layers have been shown to grow 
while maintaining the accessible apical surface on MPS systems (31,32,72). This approach 
may allow for a more physiologic reflection of genetic variants and inter/intra-heterogeneity 
of human chronic diseases such as cancers (79), lead to the discovery of the independent 
effect of disease triggers at various immune microenvironments (13,80,81), and result in 
validation of the pharmacological responses of immunotherapeutic drugs in different race/
ethnicity backgrounds (82,83). It may also be possible to precisely evaluate the independent 
contribution of immune elements on the intestinal tissue homeostasis and regeneration 
using an organ chip model. For instance, germ-free animals often show abnormal or non-
physiological immune activations regardless of a lack of exogenous perturbations, where the 
hyper-reactivity in immune responses resulted in false-positive or negative outcomes (84). 
We envision that the application of the human organ-on-a-chip can be a discerning strategy 
to preclude the possible limitation of germ-free models and to concordantly understand the 
role of immune components in diseases.

Regardless of technological advances and progress, there are several challenges to be further 
delineated and discussed. A notable limitation includes the restricted resource of human 
immune cells, suggesting that substantial collaborations between biomedical engineers and 
immunologists to explore a robust protocol for the enrichment of patient-specific immune 
cell subtypes (e.g., induced pluripotent stem cell-derived immune cells) (85). A considerable 
collaboration with experts in the biobanking communities (86) and scientists who have 
explored liquid biopsy technologies (87) is a crucial component for securing precious and 
valuable bioresources. There may be an alternative avenue for immunologists to contemplate 
using the MPS as a comparative model to build a rare immunological disease that has been 
poorly established using mouse models (88). The transdisciplinary approach may contribute 
to bridge the gap between in vivo, ex vivo, in vitro, and in silico models and reinforce to discover 
the breakthrough to explore disease mechanism and test new therapeutics.
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Figure 4. Reconstitution of the patient-specific EMI axis in the gut-on-a-chip MPS. The gut-on-a-chip that 
conveys donor-specific primary intestinal cells from patient cohorts with different GI diseases may reconstitute 
the patient's intestinal microenvironment in a modular way. Epithelium, gut microbiome, and immune cells 
isolated from the biopsy, stool, and blood samples can be used to recreate a patient-specific EMI axis under a 
physiologically active microenvironment. 
AP, apical; BL, basolateral.
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As a concluding remark, advances in human organs-on-chips and their integrations can 
potentially contribute to unraveling the immunological contributions in health and disease. 
We envision that a pertinent gut inflammation-on-a-chip model will be a cornerstone in the 
development of new disease models that include tissue-specific or systemic immune cells as 
well as the disease-specific immune milieu.
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