
ARTICLE

3D printed biomimetic cochleae and machine
learning co-modelling provides clinical informatics
for cochlear implant patients
Iek Man Lei1,2, Chen Jiang1,3,4, Chon Lok Lei 5,6, Simone Rosalie de Rijk 3, Yu Chuen Tam 7,

Chloe Swords 8, Michael P. F. Sutcliffe1, George G. Malliaras 1, Manohar Bance3,9✉ &

Yan Yan Shery Huang 1,2,9✉

Cochlear implants restore hearing in patients with severe to profound deafness by delivering

electrical stimuli inside the cochlea. Understanding stimulus current spread, and how it

correlates to patient-dependent factors, is hampered by the poor accessibility of the inner ear

and by the lack of clinically-relevant in vitro, in vivo or in silico models. Here, we present 3D

printing-neural network co-modelling for interpreting electric field imaging profiles of

cochlear implant patients. With tuneable electro-anatomy, the 3D printed cochleae can

replicate clinical scenarios of electric field imaging profiles at the off-stimuli positions. The co-

modelling framework demonstrated autonomous and robust predictions of patient profiles or

cochlear geometry, unfolded the electro-anatomical factors causing current spread, assisted

on-demand printing for implant testing, and inferred patients’ in vivo cochlear tissue resis-

tivity (estimated mean = 6.6 kΩcm). We anticipate our framework will facilitate physical

modelling and digital twin innovations for neuromodulation implants.
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The use of neuromodulation implants and bioelectronic
devices has been increasing rapidly and is anticipated to
form a new era of medicine1,2. By delivering local electrical

stimuli to tissues, these electronic implants restore lost neural
functions in tissues or nerves or modulate signalling patterns for
therapeutic outcomes2,3. Cochlear implants (CIs) are by far the
most widely used neuromodulation electronic implants, with well
over 500,000 CIs having been implanted worldwide4, and their
prevalence is only expected to grow more rapidly with the pro-
jected increase in the elderly population1,4. Bypassing the mal-
functioning peripheral auditory mechanisms by direct neural
stimulation, the CI electrode array is designed to restore sound
perception. It also attempts, in broad terms, to reproduce the
tonotopic architecture of the cochlea by delivering frequency-
specific programmed stimulation at localised regions of the
cochlear lumen; this, in turn, stimulates separate auditory neural
elements5,6 (Fig. 1a), with lower sound frequencies represented
apically and higher frequencies basally.

A major limitation of today’s neural prostheses is their
imprecise control of the administered stimulus, arising from the
intrinsic conductive nature of biological tissues7,8 and particularly
of the biological fluids in the inner ear5,9. This limitation is well
exemplified by the ‘current spread’ problem of CIs, where the
uncontrolled spread of electrical stimulus leads to off-target
excitation of the neighbouring auditory nerve fibres (thus causing
a mismatch or ‘smeared’ representation in the perceived sound
from that intended)9 (Fig. 1a). Cochlear anatomy, tissue

conductivity and implant positioning are suggested to be the
primary patient-specific factors controlling the intracochlear
voltage distribution induced by CIs9–12. In particular, cochlear
anatomy (in terms of size and shape) is variable13, with different
levels of volumetric conductance of cochlear fluids affecting the
intracochlear voltage induced by stimulation. Moreover, patho-
physiological conditions could affect the electrical conductivity of
the cochlear bony walls, and thus CI induced electric fields14. As
the cochlea is embedded deep inside the temporal bone and has a
complex anatomy, its electrical characteristics are difficult to
quantify in a living subject. As a result, a model that deciphers
how different characteristics of a patient’s cochlea affect the sti-
mulus spread would be a valuable tool for predicting and opti-
mising the stimulus signals and provide insights into factors
controlling the large variation in patient-specific CI performance
and sound perception.

Although various physical and computational models have
been developed for CI testing9,12,15–17, they are insufficient to
evaluate the stimulus spread in human cochleae. Animal models
are well-established for in vivo CI testing, but due to the drastic
differences between the cochlear anatomies of humans and
animals18, incomplete insights into human responses are
obtained1,3. Though human cadavers can provide anatomical
fidelity, they are limited in supply and have altered electrical
properties due to preservation and post-mortem changes19. In
silico approaches, such as finite element modelling (FEM), can
overcome ethical, sample availability and cost issues20. However,

Fig. 1 3PNN co-modelling approach with embedded 3D printing of biomimetic cochleae for reproducing the CI stimulus spread characteristics. a
Schematic of the auditory system and the cochlea with a CI implanted. The ‘current spread’ problem induced by a stimulating electrode of the CI electrode
array is indicated. b Schematic of the routine CI assessment process; 1. Preoperative CT scan of a patient’s cochlea, which typically only has sufficient
resolution to reveal the ensemble spiral-shaped cavity of a cochlea; 2. Implantation of the electrode array of a CI in the scala tympani of the cochlea; 3.
Acquisition of an intra-operative EFI (electric field imaging) profile from a patient, which is derived from recording the induced intracochlear voltage V
measured at each electrode upon injecting consecutive current pulses at each electrode in the array. The voltage measurements are then converted to
transimpedance magnitude |z| by normalising the voltage V with the stimulation current impulse Istim (|z|= V/Istim). The off-stimulation (off-diagonal)
measurements in the EFI present information about the tissue impedance9. c Overview of the 3PNN co-modelling framework for providing clinical
informatics. d Schematic of the embedded 3D printing strategy to produce the electro-mimetic bone matrices and the biomimetic cochleae.
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existing FEM modelling is limited by several factors, including
scant knowledge of the electrical properties of live human
cochlear tissues to fit different in vivo cases21, the inability to
capture patient-dependent anatomically-guided CI positioning
and the underdetermined boundary conditions and physical/
empirical law descriptions15 (discussed in Supplementary Fig. 1a).

Here, we establish a library of 3D printed cochlear models
(n= 82) for robust modelling of clinical CI testing data. These 3D
printed cochleae capture the diverse geometries that human
cochlear lumens can take, along with a spectrum of bone tissue
resistivities, using ranges reported in in vivo human studies.
Supplementary Video 1 shows CT scans of exemplar 3D printed
biomimetic cochleae. Using these models, a broad spectrum of
clinically representative electric field imaging (EFI) profiles
(normalised intracochlear voltage distribution along the CI elec-
trode array) is acquired. Then, by inputting EFI profiles acquired
from the biomimetic cochleae as the training dataset, we establish
a neural network machine learning model termed 3PNN (3D
printing and neural network co-modelling, overview shown in
Fig. 1c), which provides powerful clinical informatics such as
deciphering patient-specific attributes of CI current spread and
inferring patient-dependent cochlear tissue resistivity.

Results
Designable electro-mimetic bone matrices. The human cochlea
is a spiral-shaped hollow organ embedded in the temporal bone
(Fig. 1a). Since there were no established reports of in vivo
cochlear tissue conductivities, our first goal was to establish a
printable material system that could emulate the range of
reported bone tissue conductivities (hereafter, termed electro-
mimetic bone matrix). In vivo human studies estimated that the
electrical resistivities of human skulls vary widely between 0.6 to
26.6 kΩcm, depending on the site, composition, age and
porosity22–26 (Supplementary Fig. 2).

To reproduce the mesoscale electrical properties of bone, we
take inspiration from the micro-architecture of bones, which
consists of conductive fluid-filled interconnected pores sur-
rounded by a poorly conductive mineralised phase27. Thus, we
structured an electro-mimetic bone matrix that exhibits inter-
connected saline-filled channels inside a crosslinked PDMS
(polydimethylsiloxane) elastomer. The interconnected channels
were created by embedded printing a Pluronic F127 sacrificial ink
in pre-crosslinked PDMS (Fig. 1d and Supplementary Video 2),
permitting flexible and precise tuning of the void density and,
therefore, the resistivity of the electro-mimetic bone matrices
(Supplementary Fig. 3e). Comparing our printing method with
stereolithography, Pluronic F127 can be easily removed after
printing28 and further enhances the wettability of PDMS due to
its amphiphilic nature. The channels were then filled with
physiological saline, which we hypothesise is important to
emulate the electrical impedance properties of bone tissues, as
pores in bone are normally wet with extracellular fluids. The
electrochemical impedance spectroscopy (EIS) measurements in
Fig. 2a and Supplementary Fig. 4 show that an electro-mimetic
bone matrix can be designed to exhibit impedance properties
matching those of a cadaveric cochlear bone in a human head for
the entire frequency range (f= 10 Hz–100 kHz) studied in EIS. In
particular, the Fourier fundamental frequency associated with the
EFI stimulation pulse, (estimated to be f ~14 to ~20 kHz
depending on CI type), lies in the frequency-independent
impedance magnitude plateau region. By varying the void
fraction in the electro-mimetic bone matrix from 20 to 84%,
the resistivity of the matrix that is derived from the impedance
magnitude plateau can be tuned from 0.2 to 23.4 kΩcm (Fig. 2b),
covering almost the entire reported resistivity range of live human
skull tissues22–26 (0.6–26.6 kΩcm, Fig. 2c).

Figure 3 shows a material property chart summarising the
electrical resistivity and Young’s modulus for a range of biological
tissues and polymeric materials. The 3D printed electro-mimetic

a
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fvoid = 0.10
23.4 kΩcm

fvoid = 0.29
1.9 kΩcm

fvoid= 0.84
0.2 kΩcm

Impedance magnitude plateau (> ~300 Hz)

Fig. 2 Electrical properties of electro-mimetic bone matrices. a Bode plot showing the impedance properties of a cadaveric cochlea in a human head, and
3D printed cochlear models made of an electro-mimetic bone matrix and a hydrogel. The frequency range associated with the impedance magnitude
plateau is indicated. b µ-CT reconstructed images (top) and optical microscopic images (bottom) of the electro-mimetic bone matrices at different
volumetric void fractions (fvoid). Scale bar of the optical microscopic images= 500 µm. The resistivities of the matrices were determined from their plateau
impedance magnitude and the size of the samples. n= 3 independent samples. c Resistivity of the electro-mimetic bone matrices (plateau value, n= 3
independent samples) as a function of fvoid, compared to the reported resistivities of bovine cortical and trabecular bones27. The relationship between the
resistivity of the electro-mimetic bone matrix and fvoid is well-described by a percolation equation of a conductor-insulator composite54 (Supplementary
Fig. 3e). Data were presented as mean values ± SD.
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bone matrices cover a wide resistivity range, which cannot be
imitated by a single printable material (i.e. thermoplastics or
hydrogels) alone or a hydrogel-fillers matrix (i.e. bioceramics and
PDMS microbeads dispersed in hydrogels) (Supplementary
Fig. 5a). Apart from electrical resistivity, we suggest that Young’s
modulus of the model is also an important consideration for
electronic implant testing. Adopting PDMS as the solid phase of
the electro-mimetic bone matrix not only facilitates the ease of
embedded printing, but also imparts favourable mechanical
properties as a CI testing platform. With Young’s modulus in the
106 Pa range, we estimate that the force associated with CI
electrode insertion will not induce a significant deformation to
the matrix (Supplementary Note 1). At the same time, the
compliance of the matrix mitigates mechanical damage to the fine
electrodes of a CI, which is commonly experienced when
inserting CI electrode arrays repeatedly in cadaveric samples
(modulus of hard tissues >109 Pa). Hence, multiple insertions can
take place for the same CI electrode array, which is of practical
importance due to the time-consuming fabrication and costs
associated with a fully functioning CI. Overall, the above results
suggest the electro-mimetic bone matrices be a suitable material
system for creating electroanatomical models of human cochleae.

3D printed biomimetic cochleae. Clinically, a CI electrode array
is inserted into the scala tympani, one of the three cochlear
ducts14 (Fig. 1a). As a coarse-grained approach to replicate the
electroanatomical features of a CI implanted cochlea, we
approximate the cochlea as one ensemble spiral cavity with
continuously narrowing diameter and omit the inner soft-tissue
membranous structures inside the cochlea, such as the basilar
membrane and Reissner’s membrane. This is because, firstly, in a

typical patient’s preoperative CT scan as routine clinical assess-
ment (Fig. 1b), the scan resolution only permits the identification
of the shape of the ensemble cochlear lumen and not the fine
microanatomical soft-tissue structures (Supplementary Fig. 6);
and secondly, our preliminary finite element modelling shows
that the effect of the basilar membrane and the Reissner’s
membrane inside a cochlea on the off-stimulation EFI profile is
likely to be insignificant, as the boundary impedances are
dominated by surrounding bone tissues (see Supplementary
Fig. 1b). Therefore, we constructed the biomimetic cochleae by
embedded 3D printing a tapered and spiral-shaped cochlear
lumen cavity inside an electro-mimetic bone matrix (Fig. 1d and
Supplementary Video 2). The spiral-shaped cavity was filled with
physiological saline to mimic the ionic conduction milieu in the
cochlea (perilymph) (Supplementary Fig. 3c) and the conduction
properties at the electrode-electrolyte interface.

Since the size and the shape of a cochlea is unique to each
individual and can vary greatly from person-to-person13,29,30, we
assign four geometrical descriptors to parametrically describe the
reported anatomical variations in CI implanted human cochleae;
they are basal lumen diameter, taper ratio, cochlear width and
cochlear height (see definitions in Fig. 4a and Supplementary
Table 1). For electroanatomical modelling of cochleae, we
incorporated a fifth descriptor, the matrix resistivity, which is
controlled by the void fraction of the electro-mimetic bone
matrix. In total, 82 biomimetic cochleae were printed at different
combinations of model descriptors. With this physical model
library, we artificially reconstructed a broad spectrum of the
electroanatomical features of human cochleae with even feature
distributions.

Figure 4b shows high-resolution µ-CT scans of a cadaveric
cochlea and an exemplar 3D printed biomimetic cochlea with a
CI inserted. It is worth noting that the CI electrode-to-spiral
centre distance displayed in the 3D printed cochleae matches
closely with the electrode-to-modiolus distances measured
clinically from patients’ CT scans31 (Fig. 4c(i)). Despite only
four geometric descriptors being used to describe patient cochlear
geometry, biomimetic cochleae with similar patients’ geometric
descriptors can approximately capture the overall contour of the
cochlear lumen which encapsulates the length of the CI array (up
to 1.5 turns, n= 3, see corresponding analysis in Supplementary
Fig. 7a). Hence, similar plain X-ray imaged electrode positions
and the angular insertion depths were observed in the biomimetic
cochleae and in the patients implanted with the same type of CI
(Fig. 4c(ii) and Supplementary Fig. 7b). Statistically, the
dependence of the CI angular insertion depth on the cochlear
width was also similar, comparing the biomimetic cochlea data
and the patient data (Supplementary Fig. 7c). This gives further
confirmation that the 3D printed cochleae have adequate
structural rigidity and anatomy to provide geometrically-guided
implant insertion and positioning. It should be noted that since
the 3D printed cochleae do not present the intracochlear
membrane structures, the associated volume restriction effects
on CI electrode positioning might not be fully captured in the 3D
printed models.

Next, we acquired intracochlear EFI profiles (normalised
intracochlear voltage distribution) in our cochlear models with a
CI1J (Advanced Bionics HiRes 90 K® implant with HiFocusTM 1 J
electrode) electrode array inserted. EFI samples the intracochlear
voltage (V) along with the electrode array in response to a current
injection or a stimulation impulse (Istim) at each electrode (Fig. 1b).
The off-stimulation measurements in EFI profiles contain informa-
tion about the induced voltage spread characteristics of the cochlea.
EFIs and similar measures (e.g. transimpedance matrix from

Electro-mimetic bone matrices 
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Fig. 3 Wide resistivity tuneability and adequate mechanical properties of
electro-mimetic bone matrices. A map of resistivity versus Young’s
modulus of human tissues, thermoplastics, the hydrogel-fillers matrices and
the electro-mimetic bone matrices (plateau values) was tested in this study
(n= 3 independent samples). The compositions of the hydrogel and
hydrogel-fillers matrices tested here are listed in Supplementary Fig. 5a.
Young’s modulus of the electro-mimetic bone matrix was estimated by
scaling Young’s modulus of pure PDMS (1.7MPa at a curing temperature of
60 °C55) linearly with the fvoid of the matrix. Tissues and thermoplastics
data and Young’s modulus of hydrogels were compiled from
literature22–27,56–60. Data of the electro-mimetic bone matrices are
presented as mean values ± SD.
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Cochlear Corporation® or Impedance Field Telemetry from MED-
EL®) are commonly used as part of the routine CI clinical
assessment.

To further demonstrate the importance of having a realistic
bone matrix resistivity in reproducing the patient EFI profile, we
also fabricated models made of materials with contrasting
conduction properties, hydrogels (representing the highly con-
ductive case) and solid PDMS (representing the insulating case).
Figure 4d shows the mean patient EFI profile derived from 97
patients compared with the EFI profiles of the 3D printed models
with different matrix material properties. We found that the solid
PDMS model led to a steeper and extremely asymmetrical EFI
profile (as seen in the stimulation at the medial electrode),
strongly mismatched with real patient profiles. In comparison,
the conductive hydrogel model resulted in a low magnitude EFI
profile, which sits outside the patient population EFI. By
replicating realistic bone resistivities with electro-mimetic bone
matrices, our biomimetic cochlea can be designed to match real
patient stimulus spread characteristics.

Clinically validated 3PNN shows high statistical predictive
performance. By training a neural network (NN) machine
learning model with the dataset of EFI profiles acquired from the
3D printed biomimetic cochleae, a 3D printing and neural net-
work co-modelling (3PNN) framework (Fig. 5a) was established
to model the relationship between EFIs and the electroanatomical
features of the CI implanted biomimetic cochleae. Reasons for
using neural network modelling instead of other existing com-
putational models are discussed in Supplementary Note 2. To
support various application needs, we developed forward-3PNN
and inverse-3PNN. Forward-3PNN is used when patients’
cochlear geometry is known (i.e. through a preoperative CT scan),
and the algorithm can predict the most probable off-stimulation
EFIs arising from different electroanatomical descriptors of a
cochlea. The patient-specific EFI prediction covers the initial
2–18.5 mm section of a CI electrode array from different manu-
facturers that may have different electrode positions and spacings.
Inverse-3PNN is used when a patient EFI is given, and the
algorithm can infer the most probable distribution of the

a

c(i)

c(ii)

d

Fig. 4 3D printed biomimetic cochleae replicate the broad anatomical spectrum of human cochleae, enable geometrically-guided CI positioning and
give patient-relevant EFI profiles. a µ-CT reconstructed images of the spiral lumen of the biomimetic cochlea with different geometric features. Scale
bar= 2mm. Four geometric descriptors are used—basal lumen diameter, taper ratio, cochlear width and cochlear height. Detailed definitions and the range
of the descriptors tested in this study can be found in Supplementary Table 1. b µ-CT reconstructed images of (i) a cadaveric cochlea and (ii) the lumen of
an exemplar 3D printed biomimetic cochlea with CI electrode array (marked green) implanted. Scale bar= 2mm. c(i) The electrode-to-spiral centre
distance (n= 48) of the biomimetic cochleae, compared to the electrode-to-modiolus distance of human cochleae with the same CI electrode type
implanted (HiFocusTM 1 J electrode array), replotted from literature31. c(ii) Example showing overlapped CT and x-ray images of the CI electrode positions
in a patient’s cochlea and in a biomimetic cochlea that has similar geometric descriptors to the patient (n= 3, Supplementary Fig. 7b). Scale bar= 2mm. d
Comparison of the mean patient EFI profile (n= 97), and the EFI profiles obtained from 3D printed models made of hydrogel, solid PDMS and electro-
mimetic bone matrix (3.6 kΩcm). The mean patient EFI was derived from 97 clinical EFIs that are not paired with CT information (with 91 independently
acquired by Advanced Bionics® and six acquired by CI1J from our own repository), on the assumption that the insertion depths follow the suggested
insertion depth of CI1J. EFIs induced by the stimulations of the basal electrode (electrode 15), the medial electrode (electrode 9) and the apical electrode
(electrode 2) were shown.
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electroanatomical descriptors (i.e. the four geometric descriptors
and the cochlear tissue resistivity) of the patient’s cochlea. The
broad applicability of 3PNN on different electrode types (HiFo-
cusTM 1 J electrode array (CI1J), HiFocusTM SlimJ electrode array
(CISlimJ), Cochlear TM Nucleus® slim straight electrode CI622 and
Cochlear TM Nucleus® slim straight electrode CI522) is validated
in Supplementary Figs. 9–13, with its clinical predictive power
demonstrated below.

We validated the clinical applicability of 3PNN using routinely
acquired clinical data of different implant types. In total, 31 paired
sets of patient’s CT scan and EFI profile were used for validation.
They were acquired using either a CISlimJ (n= 17), a CI622
(n= 6) or a CI522 (n= 8). Here, we assumed the inputs of the
stimulating and the recording electrode positions follow the
manufacturers’ suggested insertion depths (Supplementary
Table 2) for predicting the most likely outcomes. Starting with
our forward-3PNN, we predicted the patients’ off-stimulation EFI
profiles based on the four geometric descriptors measured from
their CT scans, while taking the matrix resistivity input as
9.3 kΩcm (the mean reported resistivity of live human skulls22–26,
see Supplementary Fig. 2a). Without any model adjustment for the
different CI types, 28 out of the 31 EFI reconstructions achieve a
MAPE (median absolute percentage error) <12% (Fig. 5b and
Supplementary Fig. 11), despite of the limited resolution of
patients’ cochlear CT scans, and the substitution of the unknown
patient cochlear tissue resistivities with the reported mean human
skull resistivity. For a selected patient (subject 4CI522) whose EFI
profile matches the population mean EFI (n= 97), forward-3PNN
was shown to achieve a MAPE= 8.6% for the EFI reconstruction
(Fig. 5bi and Supplementary Fig. 12b, c). The capability of 3PNN

to give patient-dependent EFI predictions is confirmed in
Supplementary Table 3 which cross-compares the MAPEs
calculated between the patients’ EFIs and the 3PNN predictions,
and the MAPEs between the patients’ EFIs and the population
mean. Next, we validated our 3PNN by inversely inferring the
distribution of the four cochlear geometric descriptors that could
match a patient’s off-stimulation EFI profile with a similarity
>89% (Similarity (%)= 1 –MAPE (%)). Comparing the predicted
distributions of the geometric descriptors with the corresponding
patient’s features measured from their CT scans, the median
MAPE is ≤8% (Fig. 5c and Supplementary Fig. 13). The above
high statistical prediction accuracy demonstrates the capacity of
3PNN to autonomously predict clinical EFIs or patients’ cochlear
features for different electrode types without further need to adjust
the machine learning model that is trained by the dataset acquired
from the CI1J.

Effect of cochlear electroanatomy on CI voltage spread. With
the validated 3PNN model, we proceeded to investigate how
the CI voltage spread characteristics could be affected by the
four geometric descriptors and the matrix resistivity. Using for-
ward-3PNN, we simulated EFI profiles by sweeping through
different combinations of the five model descriptors (examples
shown in Supplementary Fig. 14). In total, we sampled 3125
(5 × 5 × 5 × 5 × 5) combinations to represent the entire modelling
space of the five model descriptors and predicted their off-
stimulation EFIs. To parameterise the voltage spread character-
istics for each predicted EFI profile, we fitted a power law fol-
lowing Eq. (1), to each stimulus spread toward the apex and
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Fig. 5 Clinical validation of 3PNN. a Schematic of the workflow of 3PNN. 3PNN was developed by training a neural network machine learning algorithm
with the EFI profiles acquired from the 3D printed biomimetic cochleae. 3PNN maps the correlation between the five model descriptors and the most
probable EFI profile as a function of CI electrode position. The hyperparameters of 3PNN were tuned using tenfold cross-validation to achieve the best
predictive performance (Supplementary Fig. 9). b Validation of forward-3PNN for predicting patient off-stimulation EFIs (matrix resistivity
input= 9.3 kΩcm). (i) Representative off-stimulation EFI predictions for different CI electrode types, as compared to the corresponding clinical patient
data; and (ii) boxplots summarising the overall performance of forward-3PNN, with the median MAPE of each CI electrode type indicated on the figure. Full
validation results can be found in Supplementary Fig. 11. c Overall performance of inverse-3PNN for inferring the patients’ cochlear geometric descriptors
for different CI electrode types, with the median MAPE stated for each descriptor. Full validation results of inverse-3PNN can be found in Supplementary
Fig. 13. In b(ii) and c the line in each box represents the median, with the box denoting the interquartile range and the whiskers denoting the ±1.5 of the
interquartile range.
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toward the base (detailed example shown in Supplementary
Fig. 15),

jzj ¼ V
Istim

¼ Ajxj�b þ C ð1Þ

djzj
dx

¼ �Abx�b�1 ð2Þ

where |z| is the transimpedance magnitude, V is the voltage
between the recording electrode and the ground electrode, Istim is
stimulation impulse current, x is the distance between the sti-
mulating and the recording intracochlear electrodes along the CI,
A and b are fitting coefficients and C is baseline constant of the
EFI, which is defined as the minimum value of the EFI. Equation
(1) was adopted here because, theoretically, volume conduction
from a point source in a homogeneous medium should follow an
inverse relationship with the form of jzj ¼ 1

4πσr (where σ is the
conductivity of the homogeneous medium and r is the distance
between the stimulating and the recording intracochlear
electrode)32, and the constant C captures the baseline feature of
EFIs as |z| approaches the baseline when x→∞. Our goodness-
of-fit test in Supplementary Fig. 16 also supports the use of Eq.
(1) to describe EFI features. To quantify the slope of the stimulus
spreads, we computed the derivative of Eq. (1) fitted EFI with
respect to x (as shown in Eq. (2)) for toward the apex or toward
the base directions, and used the mean slope at the x= 1 mm
position (Slopex¼1mm) as an indicator of the sharpness of voltage
drop toward the apex and the base of the cochlea.

As shown in Fig. 6a, we found that the voltage drop is
shallower (smaller Slopex¼1mm value) in cochleae with larger basal
lumen diameter and less tapered cochlear lumen (i.e. taper ratio
closer to 1). Therefore, we predict that cochleae with these
geometric features could experience broader ‘current spread’,
which may activate neurons over a broader spatial region (thus
broader spectral convolution). It should be noted, however, that
the activation function for neurons should also be considered for
a more sophisticated prediction of the induced firing of
neurons33. To further evaluate the relative importance of each
descriptor on EFI and its parametric fitting coefficients (i.e.
Slopex¼1mm and the baseline constant C in Eq. (1)), we performed
a global sensitivity analysis (see Methods, Supplementary Fig. 17
and Supplementary Tables 4, 5). The finding suggests that the
taper ratio is the most important factor affecting the sharpness of
voltage drop (Slopex¼1mm), whereas the matrix resistivity and the
cochlear width are the dominant factors affecting the baseline
constant (C in Eq. (1).

On-demand creation of biomimetic cochleae inheriting patient
EFIs. The clinical validation of 3PNN demonstrates that the 3D
printed biomimetic cochleae can reproduce the off-stimulation
EFIs of CI users with high fidelity, despite the physical simplicity
of the models. With this validated platform, we further demon-
strate its application to construct on-demand cochlear models
that can yield patient-specific off-stimulation EFI profiles. To do
this, we first used inverse-3PNN to obtain the distribution of the
model descriptors that could match each patient’s off-stimulation
EFI profile with an average similarity over 90% (Fig. 6b(i) and
Supplementary Fig. 18). Subsequently, embedded 3D printing was
used to fabricate a patient-specific biomimetic cochlea exhibiting
the features of the median set of the model descriptors inferred
from inverse-3PNN. As shown in Fig. 6b(ii), the EFI profiles
measured from the 3D printed biomimetic cochleae show a good
resemblance to their corresponding patients’ off-stimulation EFI
profiles, with MAPE <12%, while the patients’ EFI profiles show a
dissimilarity of >30% MAPE.

Beyond the application of reproducing patient-specific EFI
profile with a physical 3D printed model, our platform further
points to the potential occurrence of atypical EFI profiles, such as
the ‘mid-dip’ characteristics observed in patients. The ‘mid-dip’
characteristic (Fig. 6c), which is distinguished by a dip in the EFI
profile at the medial electrodes, has not been given a clear clinical
explanation. It is uncertain whether unusual implantation
orientations or patient-specific cochlear biologic properties could
be the origin. By visualising the positions of electrodes in our 3D
printed models with µ-CT imaging, we found that the electrode
position, which was guided by the cochlear geometry, could be a
potential explanation. In the model with the ‘mid-dip’ character-
istics, the electrode positions appear to change abruptly (left panel
in Fig. 6c(iii)), where electrode 8 (e8) was adjacent to two ‘near-
wall’ electrodes (e9 and e10) that were in close proximity to the
spiral centre. This sudden decrease in the electrode-to-wall
distance can potentially cause a slight increase in the EFI profile,
hence a dip at e8 in the profile. On the contrary, in the model
without the ‘mid-dip’ characteristics, the electrode positions
changed gradually. This suggests that the relative position of the
electrode to the neighbouring electrodes and the lumen wall can
be one of the causes giving rise to the mid-dip abnormality in the
EFI profile.

Informing patient-specific cochlear tissue resistivity. As the
absolute resistivity of patients’ temporal bones near the cochlear
vicinity cannot be measured noninvasively in living subjects, our
inverse-3PNN further presents a unique capability in inferring
the resistivities of patients’ cochlear tissues based on their indi-
vidual EFI profiles. Supplementary Fig. 19 shows the ranges of the
patient-specific resistivities (n= 37), which were deduced with
unknown geometric descriptors for subjects1J 1–6 and with paired
preoperative CT (thus known patient geometric descriptors) for
the remaining 31 subjects. All the predicted patient resistivity
ranges (0.6–20.3 kΩcm) lie within the reported resistivity range of
live human skulls (0.6–26.6 kΩcm)22–26. In particular, the mean
predicted patient cochlear resistivity (6.6 kΩcm, n= 37) is close
to the mean reported resistivity of live human skulls (9.3 kΩcm).

Discussion
We created a physical library of 3D printed biomimetic cochlear
models that statistically captures the reported broad spectrum of
off-stimulation EFI profiles of CI patients, which are dependent
on the patterns of electrical conduction through tissues. The 3D
printed cochlear models can be used multiple times (Supple-
mentary Fig. 5c, d) and were designed with impedance-tuneable
electro-mimetic bone matrices that display suitable mechanical
stiffness for geometrically-guided CI electrode insertion while
limiting damage to CI electrodes during insertion. Com-
plementary to FEM, the 3D printed biomimetic cochleae offer a
robust physical means to replicate the dynamics of ionic con-
duction and the electron-ion interaction in cochleae with
implanted CIs. This is useful as it bypasses the sensitivity in the
choice of boundary conditions that are required in FEM (Sup-
plementary Fig. 1a), and it intrinsically captures physical phe-
nomena that could be difficult to replicate fully in FEM.

The use of standard-of-care patient CT scans in 3PNN is
practical for clinical translation because high-resolution micro-CT
scans cannot be performed in living patients. As the associated
resolution of clinical CT scans does not allow for detailed con-
struction of cochlear surface contours, nor the inclusion of the
membranous structures (~2 to 4 µm thick as reported in
literature10,34), 3PNN does not aim to capture the thorough
structural details of human cochleae. Several potential sources of
uncertainty are noted in 3PNN. These include the discrepancy
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caused by the absence of the intracochlear membranes in the 3D
printed models, the uncertainties in the measurements of the low-
resolution clinical CT scans, the deviations in the vertical position
of CI electrode array in the cochlear lumen, the deviations in the
CI electrode insertion depth due to different surgical practices and
the dimensional discrepancy between the patient’s cochlea and the
cochlear lumen described using the four geometrical descriptors.
Their potential effects on EFIs are summarised in Supplementary
Table 6. In addition, the 3D printed cochleae did not account for

the frictional force generated during CI electrode insertions
beneath the basilar membrane in human cochleae, which may
occasionally cause electrode array buckling or even intracochlear
trauma affecting CI performance35,36. We suggest that friction
could have attributed to the localised buckling configuration of the
CI electrode array captured in the 3D model giving the ‘mid-dip’
EFI. Future studies can explore the possibility of incorporating the
membranous structures into 3D printed cochlear models, and
coupling computational mechanics in the modelling process.
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Fig. 6 Broad applicability of 3PNN for clinical informatics. a (i) Schematic showing the stimuli spreads towards the apex and the base of the cochleae in
an EFI. (ii) The trend of Slopex¼1mm of the stimulus spreads toward the cochlear apex and the cochlear base across each model descriptor. The line in the
box represents the median of the Slopex¼1mm of 625 (5 × 5 × 5 × 5) predicted samples, with the box denoting the interquartile range and the whiskers
denoting the ±1.5 of the interquartile range. n= 625 inferred using the model descriptors sampled uniformly in the modelling space. b (i) Schematic
showing the process to generate the patient-specific biomimetic cochlear model, where inverse-3PNN was used to deduce the distribution of the model
descriptors best-fitting the patient off-stimulation EFI, and the patient cochlear model was then fabricated by 3D printing with a predicted set of the model
descriptors (Supplementary Fig. 18). (ii) Comparison of the off-stimulation EFIs of two patients and the off-stimulation EFIs acquired in their corresponding
biomimetic cochleae. c The electrode positions in a model showing an atypical ‘mid-dip’ EFI profile (left) and a model with a typical EFI profile (right). (i)
Reconstructed 3D µ-CT volumes of the cochlear lumens of the biomimetic cochleae with a CI electrode array inserted (marked green). Scale bar= 2 mm;
(ii) Off-stimulation EFI profiles of the models with the peaks indicating the maximum |z| of the spread distributions at off-stimulation positions; (iii) Top
view and (iv) side view of the cochlear lumens of the models, showing the positions of the electrodes in the lumens of the models relative to the lumen
wall. Distance in the negative direction refers to the distance towards the cochlear centre, vice versa. Electrode 8 (red) and electrodes 9–10 (blue) are
highlighted to contrast the electrode contour which generates the mid-dip EFI.
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Adopting machine learning along with parametric descriptions
of the cochlear geometry, 3PNN requires only a fraction of the
computation time per EFI prediction (estimated 300 times faster)
compared to our FEM models (for Intel i5 CPU). The fast and
automated nature of 3PNN facilitates the generation of sufficient
amount of simulated data for deciphering trend and sensitivity in
a high dimensional problem. This is imperative for solving the
‘volume conduction’ problem, the first step in computational
neuroengineering for modelling electrical stimulation in a biolo-
gical structure20. Our work also suggests that the intracochlear
excitation spread can be largely reproduced by physically repli-
cating the volumetric conduction within the cochlear lumen and
the cochlear tissue vicinity without biological components. Fur-
ther studies that evaluate the correlation between the intraco-
chlear voltage distribution and the excitation of neural cells will
be of particular benefit to expand the use of 3PNN in modelling
the signal perception at the neuronal level.

Our framework could potentially provide the first approach to
readily infer the in vivo bulk resistivity of individual patient’s
cochlear bone matrix via CI telemetry. Validation of the accuracy
of the cochlear tissue resistivity prediction is not performed in the
current work; this is because, as of yet, there is no reported
method to measure cochlear tissue resistivity in live patients. In
the present work, a default resistivity value of 9.3 kΩcm (mean
resistivity of a live human skull) was used to approximate the
patient-specific resistivity of cochleae tissues in forward-3PNN.
Thus, providing future validation to the inferred mean cochlear
tissue resistivities (e.g. 6.6 kΩcm, n= 37) can potentially further
improve the predictive power of forward-3PNN. Alternatively,
future investigations which explore the correlation between the
3PNN inferred cochlear tissue resistivity and the cochlear phy-
siological and pathological status may provide a foundation for
the use of CI telemetry as a diagnostic indicator. This might
enable the detection of early abnormalities after CI implantation,
without resorting to imaging methodologies that use ionising
radiation in patients (which particularly should be avoided in
children).

Overall, 3PNN was demonstrated to be predictive for corre-
lating the off-stimulation EFI and the geometric parameters
collected from clinical patient CTs, without the need for model
adjustment and re-calibration. This was validated with clinical
EFI data of four different CI types (up to a position of 18.5 mm
along the cochlear lumen), and 28 out of 31 predictions show
good accuracy, MAPE <12% (median MAPE= 8.6%). Therefore,
the co-modelling framework has the potential capability of
forecasting the stimulation performance of CIs from different
manufacturers, hence assisting the development of CI electrode
arrays tailored to patient’s cochlear anatomy. Comparing to
conventional animal and cadaver models, the ‘print-and-learn’
modelling concept proposed here offers a physical-manipulatable,
ethical and economic approach, which may help reduce the need
for animal experiments. Complemented with FEM, 3PNN could
form a building block for future cochlear digital twins for CI
testing. With the rising usage of neuromodulating electronic
implants, we anticipate that our ‘print-and-learn’ co-modelling
concept could facilitate the physical modelling and digital twin
innovation of other bioelectronic implant prototypes, beyond its
applications in CIs.

Methods
3D printing material preparation. The fugitive ink was prepared by dissolving
30 w/v% Pluronic F127 (P2443, Sigma-Aldrich) in a 1 w/v% NaCl (10616082,
Fisher Scientific) solution. For creating 3D printed models made of PDMS or
electro-mimetic bone matrices, PDMS elastomer (SylgardTM 184 Dow, 10:1 base
polymer to curing agent ratio) was used. The pre-crosslinked mixture was poured
into a petri dish and degassed in a vacuum desiccator for at least 3 h prior to
printing. For preparing 3D printed models made of hydrogels, hydrogels were

prepared with 1 w/v% NaCl solution as the base solution according to their weight/
volume concentration (w/v%) listed in Supplementary Fig. 5a. The types of
hydrogels investigated were gelatin from porcine skin (G1890, Sigma-Aldrich),
xanthan gum (G1253, Sigma-Aldrich), agarose (A9539, Sigma-Aldrich), gellan
gum (P8169, Sigma-Aldrich); the types of fillers were talc (243604, Sigma-Aldrich),
hydroxyapatite (21223, Sigma-Aldrich) and PDMS microbeads.

Embedded 3D printing of biomimetic cochleae. All models were fabricated with
a bespoke multi-material robotic bioprinter. Five model descriptors (basal lumen
diameter, taper ratio, cochlear width, cochlear height, and matrix resistivity) were
used to define the model features. Prior to the fabrication process, the structure of
the microchannels in the PDMS matrix was designed on Slic3R (1.3.0, slic3R.org)
for tuning the void in the electro-mimetic bone matrix to achieve the desired
matrix resistivity (Supplementary Fig. 3a). The correlation between the resistivity of
the electro-mimetic bone matrix and its void fraction can be found in Supple-
mentary Fig. 3e. The printing path of the microchannel structure was then con-
verted to Gcode using Slic3R.

In the fabrication process (Supplementary Video 2), first, the sacrificial
interconnected grid network designed above was embedded printed inside uncured
PDMS using a 30 w/v% Pluronic F127 ink. At ambient temperature, Pluronic F127
ink at 30 w/v% retains its 3D structural integrity inside the PDMS matrix, and the
interconnected network provides sufficient mechanical support for the following
embedded printing of a cochlea-shaped structure. Next, a cochlea-shaped spiral
was printed inside the electro-mimetic bone matrix. The printing path of this
cochlea-shaped structure was defined by the four geometric descriptors and a spiral
trajectory derived from the mathematical model of human cochlear geometry
developed by Pietsch et al.37. The correlation between the dimensions of the
features and the process parameters of the printer can be found in Supplementary
Fig. 22. The distances between the edges of the model and the printed cochlear
lumen are at least 4 mm to ensure that the boundary is far enough and will not
cause any effect on the EFI measurement. The total printing time of a model ranges
from 30 min to 3 h depending on the density of the embedded interconnected
channels. After printing, the matrix was cured at 60 °C in an oven for 3 h and
stored in a bath of 1 w/v% NaCl solution at 4 °C for dissolving the sacrificial
Pluronic F127 embedded in the electro-mimetic bone matrix. The NaCl bath was
changed several times to ensure that all Pluronic F127 inside the matrix was
removed. In total, 82 biomimetic cochlear models with different combinations of
model descriptors were fabricated. The specifications of the 82 models can be
found in Supplementary Table 7.

The hydrogel and hydrogel-fillers models were similarly fabricated but without
the procedure of creating the microchannel networks. The composition of the
models tested in this study can be found in Supplementary Fig. 5a. The hydrogel
and hydrogel-fillers solutions were heated at 40 °C during printing to maintain a
liquid state. The models were then solidified at room temperature via thermal
crosslinking38.

EFI measurements in 3D printed biomimetic cochleae. Prior to measurement,
the 3D printed biomimetic cochleae were flushed with a 1 w/v% NaCl solution to
ensure no bubble was trapped in the microchannels and the cochlear lumen of the
models. 1 w/v% NaCl solution was used here as it has a similar resistivity to the
conductive perilymph inside human cochleae (Supplementary Fig. 3c). All EFI (or
transimpedance matrix) measurements of the 3D printed models were obtained
using either an Advanced Bionics (AB) HiRes 90 K® implant with HiFocusTM 1 J
electrode array (CI1J), an Advanced Bionics HiResTM Ultra implant with HiFo-
cusTM SlimJ electrode array (CISlimJ) or a CochlearTM Nucleus® Profile with a slim
straight electrode (CI522). Both CI1J and CISlimJ have 16 electrodes in total with
electrode 1 being the apical-most electrode and electrode 16 being the basal-most
electrode. CI522 has 22 electrodes in total with electrode 22 being the apical-most
electrode and electrode 1 being the basal-most electrode. The electrode array was
inserted in the cochlear lumen of the model until the distal marker of the electrode
array was positioned at the lumen opening of the model, as illustrated in Sup-
plementary Fig. 23, and the model was placed on top of the extracochlear case
ground of the CI (known as the ‘case ground’ of CI1J and CISlimJ, or the ‘MP2 plate
extracochlear electrode’ of CI522). The EFI profiles were acquired using the tele-
metry function of the CI with either the AB Volta version 1.1.1 software (research
only) or Custom Sound® EP 5.1 (with research option) using the default stimu-
lation and recording settings. The default stimulation and recording setting used in
AB Volta software is a biphasic pulse with pulse width and amplitude of 36 µs
(equivalent Fourier fundamental frequency ~14 kHz) and 32 µA, and a maximum
sampling rate of 56 kHz, whereas Custom Sound® EP 5.1 employs a setting of a
biphasic pulse with pulse width and amplitude of 25 µs (equivalent Fourier fun-
damental frequency ~20 kHz) and 125 µA respectively. During the acquisition of
EFI, each electrode was activated individually at a time in monopolar mode, and
subsequently, other electrodes measured the resulting voltage at their positions. All
electrodes on the electrode array were activated one-by-one to generate the entire
EFI profile. Electrodes 12 and 16 of the CI1J electrode array were missing as
received, but this does not affect the measurements of other electrodes and the
general shape of the EFI profile. For all the data presentations, the on-stimulation
EFI data (contact impedance) were not compared, due to the fact that on-
stimulation EFI data is dominated by the electrode interface resistance9,39 and do
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not inherently reflect the electroanatomical characteristics of human cochleae (or
the 3D printed biomimetic cochleae); and on-stimulation EFI data varies over
time40 and among different CIs.

Resistivity measurements
Resistivities of NaCl solutions, hydrogels and hydrogel-fillers matrices. Impedance
properties of NaCl solutions at various concentrations (Supplementary Fig. 3c),
hydrogel and hydrogel-fillers matrices (Supplementary Fig. 5a) were measured
using a four-terminal configuration with Solartron 1260 impedance analyser and
SMaRT 3.0.1 software. In this configuration, the current was passed through the
sample using two 1.25 cm2 square electrode plates, and the voltage was measured
using two separate inner electrodes. Resistivity was converted from the plateau
impedance magnitude using the following relation,

ρ ¼ jzjA
d

ð3Þ

where ρ= the resistivity of the sample (plateau value), jzj= the plateau impedance
magnitude, A= the area of the electrode plate in contact with the sample, and
d= the spacing between the two inner electrodes, which was 8.4 mm here.

Resistivities of electro-mimetic bone matrices. The resistivity of the electro-mimetic
bone matrix ρmatrix associated with the plateau impedance magnitude
(~300 Hz–100 kHz) was determined using the transmission line method (n ≥ 3). In
this method, each sample was segmented into at least four segments. The impe-
dance of each segment was obtained using a two-terminal configuration with a
Solartron analyser, and the width of each segment was measured. The total
impedance Ztot can be expressed by Ztot ¼ Zc þ Zsample, where Zc is the contact
impedance between the electrode plates and the samples, and Zsample is the
impedance of the sample. The plateau value of the total impedance magnitudes
jZtotj of the segments were therefore plotted against the widths of the segments L,
and a linear regression was then used to fit the experimental data (see Supple-
mentary Fig. 3d). ρmatrix was determined by multiplying the gradient of the linear
regression ∂jZtot j

∂L with the area of the electrode plate in contact with the sample A,
denoted as follows:

ρmatrix ¼ A
∂jZtotj
∂L

ð4Þ

Electrochemical impedance spectroscopy (EIS) measurements. Electro-
chemical impedance spectroscopy measurements of a human cadaveric cochlea in a
head, and 3D printed cochlear models made of hydrogel and electro-mimetic bone
matrix were carried out using an impedance analyser (RS PRO LCR-6100) with a
three-terminal configuration41. The measurements were taken at frequencies ran-
ging from 10 Hz to 100 kHz, which covers the most common operating frequencies
of CIs.

Micro-computed tomography scans of the 3D printed biomimetic cochleae.
CT scans of samples were acquired using a micro-CT microscope (ZEISS Xradia
510 Versa) with the following scanning parameters: Source filter LE2, tube voltage
80 kV, tube current 88 mA, exposure time 2 s, Bin 2, image taken 1024 and pixel
size 17.8 µm. The volume rendering of the samples was carried out using 3D Slicer
(Version 4.10.2, www.slicer.org/42). The dimensions of the samples were measured
using the measurement tool in 3D Slicer.

To evaluate the positions of electrodes in the samples and to avoid the image
distortion caused by the metallic artefacts from electrodes, pre- and post-insertion
CT scans of the samples were acquired. CT volume of the cochlear lumen of the
sample was rendered from the pre-insertion CT scan where there is no metallic
artefact, whereas CT volume of the electrode array in the sample was rendered
from the post-insertion CT scan. The two CT volumes were then aligned, and the
relative position of each electrode from the centre of the cross-sectional plane of the
cochlear lumen was measured using ImageJ. The 2D images of the electrode array
inside the cochlear lumen of the samples were acquired using the following
parameters: tube voltage 80 kV, tube current 88 mA, exposure time 5 s, Bin 2 and
pixel size 25.6 µm.

Patient EFI profiles and CT scans. The use of anonymous patient EFI profiles
with or without paired CT scans in our study was approved by the University of
Cambridge Human Biology Research Ethics Committee (HBREC.2019.42) and the
Cambridge Biomedical Research Centre (Ref: A095451). Informed consent from
the human participants is not required for this study as the clinical data used here
are retrospective and anonymous. In total, 128 clinical intra-operative EFIs (also
known as transimpedance matrix profiles) were used in this study. Of the 128
profiles, 91 profiles (without paired CT scan data) were kindly provided by
Advanced Bionics® and the rest were obtained from 37 anonymous patients (31
with paired CT scan data and 6 without paired CT data) who have undergone
cochlear implantation at the Emmeline Centre for Hearing Implants in Cambridge,
UK. As the implant types of the EFIs provided by Advanced Bionics® are not
known, their insertion depths were assumed to be equal to the suggested insertion
depth of the HiFocusTM 1 J electrode array. The 37 anonymous EFI profiles
acquired in our centre were randomly chosen to represent the variation in the

patient data without CT scans (n= 97) (Supplementary Fig. 12a). Out of the 37 EFI
profile data sourced from our centre, six profiles were acquired from the Advanced
Bionics HiRes 90 K® implant with HiFocusTM 1 J electrode array, 17 profiles from
the Advanced Bionics HiResTM Ultra implant with HiFocusTM SlimJ electrode
array, six profiles from the CochlearTM Nucleus® Profile Plus with slim straight
electrode CI622 and eight profiles from the CochlearTM Nucleus® Profile with slim
straight electrode CI522. These EFI profiles were collected using the telemetry
function of the CI with either the AB’s Volta 1.1.1 software (research only) and the
Custom Sound® EP 5.1 software (with TIM research option) using the default
stimulation and recording settings.

Thirty-one CT scans of the patients (which had paired EFI) implanted via the
round window approach with either a HiFocusTM SlimJ electrode array (n= 17), a
CochlearTM Nucleus® CI622 electrode (n= 6), or a CochlearTM Nucleus® CI522
electrode (n= 8) were used in the validation of 3PNN. They were obtained as part
of the routine preoperative assessment at our centre, and were acquired in helical
scan mode using Siemens scanners (Siemens Flash and Siemens Definition AS) with
a tube voltage of 120 kV and automatic tube current ranging from 139 to 214mA.
The images were reconstructed at a resolution of 0.4 mm× 0.4mm× 0.4mm using
Siemens 80 u bone reconstruction algorithm in an axial plane.

Development of 3PNN. 3PNN was developed by employing a multilayer per-
ceptron (MLP), a class of feedforward artificial neural network (NN), to learn the
mapping from the inputs (the five model descriptors of the biomimetic cochleae,
the stimulus position and the recording position) to the outputs (EFI, also known
as transimpedance matrix profiles) (see Fig. 5a, for detail of the choice of the model
see Supplementary Note 2). An MLP model is a fully connected network that
consists of an input layer, hidden layers and an output layer of perceptrons (or
nodes), and by varying the weight of how each of the nodes are connected, it
approximates the complex relationship between the inputs and the output43. The
activation function of the nodes was chosen to be the rectified linear unit (ReLU)
function. Tensorflow44 (version 2.1.0), an open-source Python library, was used to
construct the MLP models. 3PNN was trained using backpropagation with the
Adam stochastic optimisation method45. Since 3PNN was developed based on the
EFI profiles acquired by AB HiFocusTM 1 J electrode array with electrodes at
2–18.5 mm along the cochlear lumen46, the predictable positions of EFIs are 2–
~18.5 mm along the cochlear lumen.

The performance of NN models depends on a good setting for
hyperparameters, a grid search varying the number of hidden layers from 1 to 10
(1, 2, 3, 5, 10) and nodes from 16 to 64 (16, 24, 32, 64) was performed to determine
the best performing hyperparameters (see Supplementary Fig. 9 for detail of the
hyperparameter tuning). The best performing hyperparameters were defined as the
hyperparameters that yield the highest average R2 score and the smallest average
median absolute percentage error (MAPE) in tenfold cross-validation47. We found
that the model trained with 1 hidden layer and 32 nodes has the highest average R2

score (0.87) and the smallest MAPE (11.9%). After tuning the hyperparameters, the
3PNN was retrained on the full dataset with the best performing hyperparameters
to produce the final model.

The inverse prediction was carried out by the Approximate Bayesian
Computation-Sequential Monte Carlo (ABC-SMC) algorithm48. ABC is a
computational framework under Bayesian statistics that uses a sequence of
intermediate threshold [ε0 > ε1 > ε2 > ε3 >…. > εf] to converge towards the optimal
approximate posterior distribution through a number of intermediate posterior
distributions. Here, the algorithm infers the distribution of the model descriptors
that leads to an EFI profile with a MAPE less than a predefined threshold (εf) to the
given EFI profile. εf was determined as the smallest MAPE the programme could
reach from the previous threshold level within 2 h when running the programme
with a threshold sequence from 20 to 2% in increments of 0.5% (predictions with
unknown geometric descriptors) or 0.1% (predictions with known geometric
descriptors), which is subject to the noise level of the data. To approximate the final
posterior distribution (which does not have a closed-form expression), for each
inverse prediction, 1000 samples of the posterior distribution of the model
descriptors were plotted. PINTS49, an open-source Python package, was used to
perform the inference and sampling.

Clinical predictions of 3PNN. As this study aims to predict the most likely EFI
outcomes, in all predictions, the stimulating and the recording electrode positions
were assumed to follow the CI specification, as shown in Supplementary Table 2. In
the validation of forward-3PNN, patients’ model descriptors measured from their
CT scans and the mean reported resistivity of live human skulls (9.3 kΩcm) were
used as the inputs in the forward predictions of patient EFIs. EFI arising from off-
stimulation positions up to 18.6 mm along the cochlear lumen were predicted and
compared with the corresponding EFI measurements acquired in patients. Each
forward prediction takes ~0.4 s. For all inverse predictions performed in this study,
patients’ model descriptors were predicted using their off-stimulation EFI profiles
up to 18.6 mm along the cochlear lumen. Supplementary Table 8 summarises the
values of the final MAPE threshold, εf, used in the inverse predictions in this study.

Production of 3D printed models that give patient-specific EFI profiles. Two
extreme on-demand 3D printed models that give patient-specific EFI profiles were
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fabricated using the medians of the predicted model descriptors acquired from
inverse-3PNN, as stated in Supplementary Fig. 18 (matrix resistivity 6.5 versus
0.7 kΩcm, taper ratio 0.95 versus 0.71, basal lumen diameter 2.4 versus 2.3 mm,
cochlear width 9.6 versus 11.8 mm and cochlear height 4.3 versus 3.9 mm). The
EFIs of the models were measured using a HiFocusTM 1 J electrode array, which is
the same type of electrode implanted in the patients.

Sensitivity analysis for 3PNN. Sobol’s method50, a global sensitivity analysis
technique for nonlinear models, was employed to investigate the contribution of
each 3PNN model descriptor to the model output (EFI) and its summary statistics
(Supplementary Fig. 17 and Supplementary Tables 4, 5). A total of 1.68 × 105

samples of model descriptors were generated using Saltelli’s sequence51. On top of
the EFI output, for the ease of interpretation, two summary statistics were analysed
in this study; they are the baseline (the coefficient C in Eq. (1)) and the slope at
x= 1 mm (the coefficient product Ab in Eq. (2)) of the EFI outputs. The sensitivity
of each model descriptors on the EFI and its summary statistics were quantified
using the Sobol first-order sensitivity indices (Si), which describe the contribution
to the variance of the EFI or its summary statistics caused by one model descriptor
only; the second-order indices (Sij), describing the contribution to the output
variance due to the interaction of two model descriptors; and the total-order
indices (ST), measuring the all order effect contribution to the output variance for
each model descriptor. The analyses were performed using a Python open-source
package SALib52. Full results of the Sobol sensitivity analysis are available from the
GitHub repository53.

Statistical method. Median absolute percentage error (MAPE) was chosen as the
error measure in this study because it presents the percentage change due to the
error and avoids being too sensitive to outliers. The MAPE between the predicted
EFIs ðEFIpredÞ and the experimental EFIs ðEFIexpÞ, and the MAPE between the
predicted geometric descriptors and the actual CT-measurements were evaluated
using Eqs. (5) and (6) respectively, where aij;exp and aij;pred are the entries in EFIexp
and EFIpred, and GCT and fG1; G2; ¼ ; G1000g are the CT-measured geometric
features and the 1000 predicted geometric features. Similarity is defined by Eq. (7).

EFIexp ¼
a11;exp � � � a1j;exp

..

. . .
. ..

.

ai1;exp � � � aij;exp

2
664

3
775 ð5:1Þ

EFIpred ¼
a11;pred � � � a1j;pred

..

. . .
. ..

.

ai1;pred � � � aij;pred

2
664

3
775 ð5:2Þ

MAPEEFI ¼ median of
ja11;pred � a11;exp;j

a11;pred
;
ja12;pred � a12;exp;j

a12;pred
; � � � ; jaij;pred � aij;j

aij;pred

( )
´ 100%

ð5:3Þ

MAPEgeometricfeatures ¼ median of
G1 � GCT

GCT
;
G2 � GCT

GCT
; � � � ; G1000 � GCT

GCT

� �
´ 100%

ð6Þ

Similarityð%Þ ¼ 100ð%Þ--MAPEð%Þ ð7Þ

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data of the 3PNN validation, Sobol sensitivity analysis, the stimulus spread
trend, the resistivity prediction and the uncertainty sensitivity analyses have been
deposited in Github and in Zenodo under accession code 535339453. Other data
generated in this study are provided in the Source Data file. Restrictions apply to the
availability of the clinical EFI and CT scan data, as non-restricted access to this
information could compromise patient confidentiality. These data will be made available
upon request to the corresponding authors and in compliance with the ethical guideline
used in the current study. Source data are provided with this paper.

Code availability
The code of the neural network model and the Sobol sensitivity analysis used in this
study are available on Github and through Zenodo53.
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