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SUMMARY

The presence and potential functions of resident plasmacytoid dendritic cells (pDCs) in peripheral 

tissues is unclear. We report that pDCs constitutively populate naïve corneas and are increased 

during sterile injuries or acute herpes simplex virus 1 (HSV-1) keratitis. Their local depletion leads 

to severe clinical disease, nerve loss, viral dissemination to the trigeminal ganglion and draining 

lymph nodes, and mortality, while their local adoptive transfer limits disease. pDCs are the main 

source of HSV-1-induced IFN-α in the corneal stroma through TLR9, and they prevent re-
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programming of regulatory T cells (Tregs) to effector ex-Tregs. Clinical signs of infection are 

observed in pDC-depleted corneas, but not in pDC-sufficient corneas, following low-dose HSV-1 

inoculation, suggesting their critical role in corneal antiviral immunity. Our findings demonstrate a 

vital role for corneal pDCs in the control of local viral infections.

Graphical Abstract

In Brief

Jamali et al. show that the cornea, as an immune-privileged tissue, hosts resident pDCs, which 

mediate immunity against HSV-1 by secreting IFN-a via TLR9 and preserving Tregs. pDCs 

minimize the clinical severity of HSV-1 keratitis, infiltration of immune cells, nerve damage, and 

viral dissemination to TG and dLNs.

INTRODUCTION

The cornea is among the very few tissues that enjoy immune privilege and can tolerate 

constant exposure to foreign antigens, allergens, and pathogens without eliciting significant 

immune responses during homeostasis. Although corneal immune privilege has historically 

been attributed to lack of resident immune cells during steady state, recent studies have 

demonstrated that the cornea is endowed with resident immune cells, including conventional 

dendritic cells (cDCs) and macrophages (Hamrah et al., 2002, 2003c; Brissette-Storkus et 

al., 2002).

Corneal infections can be associated with devastating consequences, among which herpes 

simplex virus 1 (HSV-1) keratitis is the leading cause of infectious blindness in developed 

countries (Liesegang, 2001). Interestingly, via unraveled mechanisms, clinical corneal 

manifestations of primary ocular HSV-1 infection are rare (Darougar et al., 1985; Liesegang 

et al., 1989). However, reactivation of latent virus in the trigeminal ganglion (TG) can result 
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in corneal inflammation, ulceration, scarring, melting, perforation, and blindness 

(Liesegang, 1999; Rowe et al., 2013).

Constitutive expression of Toll-like receptor (TLR)7 and TLR9, along with interferon (IFN) 

response factor 7, enables pDCs to specialize in sensing microbial nucleic acids and 

uniquely equips them for contributing to defense against viral infections (Dalod et al., 2002; 

Honda et al., 2005; Ito et al., 2005; Smit et al., 2006), through production of high levels of 

type I IFNs (IFN-α/β) (Cella et al., 1999; Asselin-Paturel et al., 2001; Björck, 2001; 

Dzionek et al., 2001; Nakano et al., 2001). In mice, pDCs express PDCA-1, Siglec-H, 

CD45R/B220, Ly6C, Gr-1 (Ly6G/Ly6C), Ly49Q, and low to intermediate levels of CD11c 

and are negative for other lineage markers, such as CD19, CD3, and Ly6G (Asselin-Paturel 

et al., 2001; Nakano et al., 2001; Blasius et al., 2006; Zhang et al., 2006; Blasius et al., 2007; 

Caminschi et al., 2007; Segura et al., 2009; Reizis et al., 2011; Rogers et al., 2013). Human 

pDCs express CD123 (IL3R), BDCA-2, and BDCA-4 and lack CD11c (Dzionek et al., 

2000, 2001). Although pDCs are confined mainly to the secondary lymphoid organs 

(McKenna et al., 2005), sparse numbers of pDCs can be found during steady state in non-

lymphoid tissues (Lund et al., 2006; de Heer, 2004; Coates, 2004; Omatsu et al., 2005). 

Although pDCs are recognized as powerful orchestrators of innate and adaptive immune 

responses (Cella et al., 1999; Siegal et al., 1999; Cao and Liu, 2007; Villadangos and Young, 

2008), their significance in priming effector or regulatory T cells (Tregs) in responses to 

viral pathogens remains controversial (Swiecki et al., 2010; Cervantes-Barragan et al., 2012; 

Lynch et al., 2018).

Herein, we show that human and murine corneas harbor a heretofore undetected population 

of tissue-resident pDCs during steady state and that their local depletion results in severe 

keratitis, poor viral clearance, increased inflammation, systemic viral dissemination, and 

mortality. Local adoptive transfer of pDCs enhances IFN-α levels, improves viral clearance 

in the cornea, and reduces severity of keratitis. Furthermore, we show that the impact of 

pDCs in HSV-1 keratitis can be attributed to a TLR9-dependent secretion of IFN-α and 

preservation of Tregs in the draining lymph nodes (dLNs).

RESULTS

The Cornea Is Endowed with Resident pDCs during Steady State

Recent work has identified a critical role for both TLR9 and type I IFNs in viral keratitis. 

However, resident corneal immune cells (Hamrah et al., 2002, 2003b, 2003c; Brissette-

Storkus et al., 2002), such as cDCs and macrophages, do not express TLR9 in the cornea, 

and their contribution to secretion of type I IFNs upon viral infections is limited (Noisakran 

and Carr, 2000; Wuest et al., 2006; Chintakuntlawar et al., 2010; Conrady et al., 2011), 

suggesting that other hitherto unidentified bone marrow (BM)-derived cells may contribute 

to corneal antiviral immunity. Given that pDCs express TLR9 and can secrete large amounts 

of type I IFNs, we asked whether pDCs reside in naïve corneas. Performing flow cytometry 

on collagenase-digested single-cell suspensions of naïve wild-type (WT) C57BL/6 corneas, 

we observed that after gating out debris (Figure S1A), dead cells (Figure S1B), and doublets 

(Figure S1C), followed by gating on CD45+ cells (Figure S1D), a prominent population of 

PDCA-1+ CD45R/B220+ cells was apparent (constituting 21.3% of CD45+ cells; Figure 
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1A). In addition, we observed PDCA-1+ CD45R/B220neg cells among CD45+ cells, 

constituting 20.8% of PDCA-1+ cells. Fluorescence minus one isotype controls showed that 

CD45+ PDCA-1+ CD45R/B220+ cells also expressed CD11c, Ly49Q, Ly6C, and Gr-1, but 

were negative for CD11b, F4/80, Ly6G, CD3, and CD19 (Figure 1B), indicating the 

presence of bona fide pDCs in the steady state cornea.

Sterile Corneal Inflammation Results in Increased Density of pDCs

To determine the effect of inflammation on pDC homing, we first induced acute corneal 

inflammation in WT C57BL/6 mice by thermal cautery and performed flow cytometric 

analysis on corneal single-cell suspensions. After excluding debris, dead cells, and doublets 

(Figures S1E–S1G) and gating on CD45+ cells (Figure S1H), we observed that the 

frequency of CD45+ PDCA-1+ CD45R/B220+ cells was increased from 0.4% to 1.1% of 

total corneal cells on day 3 after induction of inflammation (Figure 1A). CD45+ PDCA-1+ 

CD45R/B220+ cells also expressed CD11c, Ly49Q, Ly6C, and Gr-1, but did not express 

CD11b, F4/80, Ly6G, CD3, and CD19 (Figure 1B), corroborating their pDC identity. 

Furthermore, we noted an increased density of CD45+ PDCA-1+ CD45R/B220neg cells. 

Considering the expression of PDCA-1 by other immune and non-hematopoietic cells, 

particularly during inflammation, these cells may constitute a variety of cells (Bierly et al., 

2008; Vinay et al., 2010, 2012; Bao et al., 2011; Blasius et al., 2006).

GFP-Tagged pDCs Reside in Corneas of Transgenic DPE-GFP × RAG-1−/− Mice

Having established that pDCs inhabit naïve corneas, we next took advantage of transgenic 

DPE-GFP × RAG-1−/− mice, in which pDCs selectively express GFP (Iparraguirre et al., 

2008), in order to examine their morphology and precise micro-anatomical distribution. 

Examining freshly excised unfixed corneas of DPE-GFP × RAG-1−/− mice, we observed that 

central (Figure 1C) and peripheral corneas (Figure 1D) harbored resident GFP+ pDCs. To 

confirm the identity of GFP+ cells as pDCs, we performed flow cytometry on single-cell 

suspensions on day 3 following thermal cautery (to boost pDC numbers for robust analysis 

with fewer animals). As expected, fluorescent minus one staining indicated that corneal GFP
+ cells expressed CD45, PDCA-1, CD45R/B220, and Gr-1; however, they were negative for 

CD3, CD19, and CD68, consistent with a pDC identity (Figure 1E). Next, to assess if type 

of inflammation may alter the identity of the GFP+ corneal cells, we assessed DPE-GFP × 

RAG-1−/− corneas (WT C57BL/6 mice as controls) on day 7 following suture placement 

(Figures S1I–S1K). GFP+ cells costained for CD45, PDCA-1, CD45R/B220, and Gr-1, but 

not for CD3 and CD19 (Figure S1K), resembling our observation after thermal cautery. 

Conversely, we observed that GFP+ cells constituted 76.1% of CD45+ PDCA-1+ CD45R/

B220+ cells (Figure S1L). To further validate the identity of GFP+ cells, we assessed the 

expression of E2–2/Tcf4 (a specific transcriptional regulator of the pDC lineage; Cisse et al., 

2008) and CD45R/B220 by single-cell quantitative real-time PCR on sorted GFP+ corneal 

pDCs in comparison with WT splenic pDCs and macrophages (Figures S1M–S1P). Corneal 

GFP+ cells expressed high levels of E2–2/Tcf4 and CD45R/B220, further confirming their 

identity as pDCs (Figures S1Q).
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Multi-photon Microscopy (MPM) and Transmission Electron Microscopy (TEM) Reveal the 
Morphology and Location of Corneal pDCs in the Anterior Stroma

Next, seeking to assess corneal pDC morphology, we demonstrated using TEM that in naïve 

corneas, pDCs exhibited foot-like processes extending from the cell body (Figure 1F; 

Figures S2A and S2B, asterisk). Furthermore, an eccentric nucleus (Figure 1F; Figures S2A 

and S2B, denoted “N”) with predominant heterochromatin, numerous discernible vacuole-

like endosomes, lysosomes, or other vesicles was noticeable. In comparison, cDCs exhibit a 

small central cell body with long thin dendrites, a central nucleus with a large amount of 

euchromatin surrounded by smooth endoplasmic reticulum, and numerous vacuole-like 

endosomes (Hamrah et al., 2003c).

MPM of corneal explants from DPE-GFP × RAG-1−/− mice allowed three-dimensional (3D) 

reconstruction of pDC morphology without potential artifacts due to tissue processing (Ward 

and Rehg, 2014; Franek et al., 2016). MPM revealed that corneal pDCs were restricted to 

the anterior stroma, in close proximity to the epithelium, and were not detected in the 

corneal epithelium or posterior stroma (Figure 1G; Video S1). GFP+ pDCs exhibited a round 

cell body, lacking dendritic processes, but possessed round-ended, stub-like, extensions from 

the cell body (Figure 1G, asterisk) similar to TEM images, compared with resident GFP+ 

cDCs in naïve corneas of a CD11c-GFP-DTR mouse (Figure 1H). However, on day 3 after 

thermal cautery, in addition to pDCs with a similar morphology (Figure 1I), but with more 

elongated cell bodies (Figure 1I, white arrowheads) and numerous thin dendritiform 

processes (Figure 1I, arrows), some pDCs showed a rounder cell body lacking the 

aforementioned round-ended, stub-like extensions (Figure 1I, red arrowheads). Moreover, 

during chronic inflammation induced by suture placement, pDCs were confined to the 

anterior stroma (Video S2) and, similar to thermal cautery, could be observed with two 

distinct morphologies.

Corneal pDCs Express TLR7 and TLR9

pDCs are known for their unique pattern recognition receptor repertoire, TLR7 and TLR9. 

Considering general concerns regarding the accuracy of TLR immunohistochemistry, we 

performed single-cell quantitative real-time PCR on sorted corneal GFP-tagged pDCs from 

naïve DPE-GFP × RAG-1−/− mice compared with sorted WT splenic pDCs and 

macrophages to corroborate their TLR7 and TLR9 expression (Figures S1M–S1P). mRNA 

expression for TLR7 and TLR9 by corneal pDCs was higher than for both macrophages and 

splenic pDCs (Figure 1J). As peripheral barrier tissue-resident pDCs may serve as the first 

line of defense against invading pathogens, corneal pDCs may have higher expression of 

TLRs that serve as sensors for microbial attacks.

Distribution of pDCs in Naïve and Inflamed Corneas

Resident immune cell density, including that of cDCs and macrophages in the cornea, 

follows a decremental gradient toward the center (Hamrah et al., 2002, 2003c). Thus, in 

order to assess the differential tissue distribution of pDCs in WT corneas, we performed 

immunofluorescence staining followed by confocal microscopy on corneal whole mounts of 

WT C57BL/6 mice. Considering that flow cytometry analysis indicated that a significant 

fraction of corneal CD45+ PDCA-1+ CD45R/B220+ cells are in fact pDCs, quantification of 
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CD45+ PDCA-1+ or CD45+ PDCA-1+ CD45R/B220+ cell density by confocal microscopy 

should closely mirror that of pDCs. In line with our findings in DPE-GFP × RAG-1−/− mice, 

CD45+ PDCA-1+ cells were detected at a higher density in the corneal periphery (Figures 

S2C–S2E) than the center (Figures S2F–S2H). Triple staining with CD45, PDCA-1, and 

another pDC-associated marker, CD45R/B220 (Figure S2I), confirmed the presence of 

CD45+ cells, co-expressing PDCA-1 and CD45R/B220 (Nakano et al., 2001; Gilliet et al., 

2002). Staining with isotype controls for PDCA-1 (Figure S2J) or CD45R/B220 (Figure 

S2K) was negative.

To assess how acute and chronic inflammation affect distribution of corneal CD45+ 

PDCA-1+ cells, we stained whole mounts with CD45 and PDCA-1 at different time points 

after induction of inflammation (Figures S2L–S2N). We also performed triple staining with 

CD45, PDCA-1, and CD45R/B220 at one time point after induction of inflammation to 

confirm that the majority of CD45+ PDCA-1+ cells also express CD45R/B220 (Figure S2O). 

We observed that after an initial decrease in the density of CD45+ PDCA-1+ cells in both 

corneal periphery and center at day 1, they increased in the periphery and central cornea 

following both cautery and suture placement (Figure S2P). In the chronic inflammation 

model, CD45+ PDCA-1+ cells continued to increase, whereas in the acute inflammation 

model, in which localized epithelial defects heal after a few days (Williamson et al., 1987), 

CD45+ PDCA-1+ cells peaked by day 3 and then returned to steady-state numbers by day 14 

(Figure S2P).

Corneal pDCs Density Increases during Acute HSV-1 Keratitis

Next, we aimed to assess the role of corneal pDCs during HSV keratitis. We initially 

evaluated the impact of acute HSV keratitis on pDC density using flow cytometry. We 

observed a dramatic increase in the frequency of CD45+ PDCA-1+ CD45R/B220+ cells at 

day 5 post-inoculation (p.i.) from 0.4% of corneal cells to 1.7% (Figure 1K). Consistent with 

our findings on naïve and inflamed corneas, CD45+ PDCA-1+ CD45R/B220+ cells 

expressed CD11c, Ly49Q, Ly6C, and Gr-1, but they were negative for CD11b, F4/80, Ly6G, 

CD3, and CD19 (Figure 1L).

To assess tissue distribution of pDCs during HSV-1 keratitis, we next performed confocal 

microscopy on corneal whole mounts of sham- and HSV-1-infected corneas at different time 

points (Figure S2Q). As early as day 1 p.i., PDCA-1+ cell density significantly increased in 

both peripheral and central corneas in comparison with sham-infected corneas, with a more 

prominent increase at later time points (Figure S2R).

Corneal Inflammation Alters Migratory Kinetics of pDCs

In order to assess if inflammation affects migratory kinetics of corneal pDCs, we performed 

intravital MPM on naïve DPE-GFP × RAG-1−/− mice (Video S3), after induction of sterile 

inflammation by thermal cautery (Video S4) and suture placement (Video S5), as well as 

following HSV-1 inoculation (Video S6). Figure 2A demonstrates representative tracking of 

cell movement for pDCs in different conditions. Cell displacement for pDCs was increased 

after inflammation (Figure 2B). In fact, although only subtle movements were observed in 
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pDCs in naïve corneas (Video S3), pDCs traveled longer distances in inflamed corneas 

(Videos S4, S5, and S6; Figure 2C).

Furthermore, corneal pDCs showed a higher mean speed during inflammation (Figure 2D; p 

< 0.001). Median speeds of pDCs after thermal cautery (3.2 μm/min) and HSV-1 infection 

(3.4 μm/min) were comparable, with slightly higher speed after suture placement (4.2 μm/

min), but were lower than previously reported for cDCs in dLNs (Bousso and Robey, 2003; 

Mempel et al., 2004), likely because of high density of collagen fibers in the cornea that 

might hinder cell movements. Furthermore, we observed no significant difference in the 

meandering index (a measure for directionality) of corneal pDCs after thermal cautery, 

suture placement, and HSV-1 inoculation. These findings suggest that although resident 

corneal pDCs exhibit minimal movements during steady state, they are more motile in 

inflammatory microenvironments.

Corneal pDC Depletion Exacerbates Severity of Acute HSV-1 Keratitis

In order to investigate the functional role of pDCs in acute HSV keratitis, we locally 

depleted corneal pDCs in BDCA2-DTR mice, in which pDCs are selectively ablated 

following exposure to diphtheria toxin (DT) (Swiecki et al., 2010). Administration of 30 ng 

DT did not alter the structural integrity of the cornea (Figure S3A). A single subconjunctival 

injection of DT led to approximately 97% depletion of corneal pDCs (Figures S3B and -

S3C); however, pDCs gradually repopulated, reaching more than 80% of their baseline 

density by day 6 (Figure S3C). Therefore, we repeated DT injections every 2 days in order 

to continuously maintain local corneal pDC depletion (Figure S3C). Notably, pDC depletion 

remained confined to the cornea, as the density of pDCs in the BM, dLN, and TG remained 

unchanged (Figure S4).

To assess the role of corneal pDCs during acute HSV keratitis, pDC were depleted 2 days 

prior to ocular HSV-1 inoculation. Clinical keratitis severity, judged by the degree of corneal 

opacification, was markedly exacerbated in pDC-depleted mice as early as day 3 p.i. 

(Figures 3A and 3B). Confocal micrographs of HSV-infected corneal whole mounts showed 

increased CD45+ immune cell density in pDC-depleted corneas (Figures 3C and 3D).

Patients with HSV-1 keratitis present with a dramatic loss of subbasal corneal nerves within 

the first week of infection (Hamrah et al., 2010), a finding that has more recently been 

confirmed in murine models of HSV keratitis (Yun et al., 2014; Chucair-Elliott et al., 2015; 

Hu et al., 2015). In order to understand the potential role of pDCs in this process, HSV-

infected corneas were stained for the neuronal marker β-III-tubulin, and corneal nerve 

density was assessed. As early as day 1 p.i., more profound nerve loss was observed in pDC-

depleted corneas (Figures 3E and 3F) compared with controls. Next, we sought to pinpoint 

the cellular reservoir for HSV in pDC-depleted corneas by double staining HSV-1-

inoculated corneas for HSV-1 (using a polyclonal antibody against all viral envelope 

glycoproteins and at least one core protein) and β-III-tubulin (Figure 3G). Despite the 

augmented nerve loss in HSV-infected pDC-depleted corneas, the proportion of corneal 

nerves that contained detectable HSV-1 was dramatically enhanced in pDC-depleted corneas 

on day 1 p.i. (Figure 3H). Thus, pDC depletion and subsequent higher viral titers result in 

increased nerve infection.
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Depletion of Corneal pDCs Results in Increased HSV-1 Spread and Mortality

In order to determine if the increased keratitis severity was associated with increased viral 

load, HSV titers were measured in homogenized HSV-inoculated corneas. Compared with 

the sham-depleted group, pDC depletion was associated with higher viral titers as early as 

day 1 p.i. and remained elevated through day 7 p.i. (Figure 4A). Next, we assessed whether 

the increased neuronal viral load in pDC-depleted corneas affected viral transmission to the 

TG and dLNs. Quantitative real-time PCR showed a 2.8-fold increase in HSV-1 gB RNA in 

the TG following corneal pDC depletion as early as day 1 p.i., peaking on day 5 p.i. 

Moreover, viral clearance from the TG was delayed as evidenced by greater HSV gB RNA 

level on day 7 (Figure 4B). Similarly, increased HSV RNA was detected in the dLNs at day 

4 p.i., peaking on day 5, and decreasing on day 7, with pDC depletion resulting in 

significantly increased HSV gB RNA levels and delayed viral clearance (Figure 4C).

HSV-1 keratitis by the virulent McKrae strain of HSV-1 can result in viral transmission to 

the CNS and death (Knotts et al., 1974). Of note, we observed that pDC-depleted animals 

began to die on day 4 p.i., and none survived beyond day 18; however, approximately 35% 

of the control group were still alive on day 20 (Figure 4D). These findings highlight a 

critical protective role for corneal pDCs against local viral invasion, dissemination, and 

prevention of death.

Corneal pDCs Secrete IFN-α in a TLR9-Dependent Fashion in Acute HSV-1 Keratitis

To explore the mechanism by which pDCs protect against HSV-1 in the cornea, we next 

assessed their IFN-α expression (Cella et al., 1999; Asselin-Paturel et al., 2001; Björck, 

2001; Dzionek et al., 2001; Nakano et al., 2001; Dalod et al., 2002). Following ocular 

inoculation of HSV-1 in WT mice, both IFN-a mRNA (Figure 5A) and protein levels (Figure 

5B) were increased on day 1 p.i. and peaked on day 3. As expected, pDC depletion was 

associated with a markedly attenuated IFN-a response to HSV infection on day 3, at both 

mRNA (Figure 5C) and protein levels (Figure 5D), suggesting that corneal IFN-α secretion 

during acute HSV keratitis is largely pDC dependent.

Next, to test whether IFN-α response to HSV-1 by pDCs was dependent on TLR9, an 

endosomal sensor of CpG-rich microbial DNA that is highly expressed in pDCs (Vremec et 

al., 2007), we treated sham- or pDC-depleted corneas with control oligonucleotide (ODN) 

1826 or phosphorothioate CpG 1826 ODN (CpG-ODN; a synthetic TLR9 agonist) and 

measured IFN-α mRNA and protein levels in the corneal stroma 24 h after ODN 

inoculation. In sham-depleted corneas, treatment with CpG-ODN was associated with 

increased stromal IFN-α mRNA (Figure 5E) and protein levels (Figure 5F), indicating that 

as expected, TLR9 induces type I IFN secretion (Lund et al., 2003; Vremec et al., 2007). In 

contrast, in pDC-depleted corneas, the increase in IFN-α mRNA and protein levels 

following CpG-ODN treatment was attenuated, demonstrating a vital role of pDCs in IFN-α 
secretion in the corneal stroma following TLR9 stimulation.

Next, to assess if the pDC response to HSV-1 is TLR9 mediated, we exposed sorted splenic 

GFP+ pDCs (Figure S1R) to CpG-ODN or UV-inactivated HSV-1 in the presence of either 

TLR9 antagonist (ODN 2088) or ODN 2088 negative control (ODN 2088 control) 

Jamali et al. Page 8

Cell Rep. Author manuscript; available in PMC 2020 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Yoshizaki et al., 2016). In line with our in vivo experiments, in vitro pDC exposure to either 

CpG-ODN or HSV-1 induced robust expression of IFN-α, which was effectively blocked by 

the TLR9 antagonist (Figure 5G), indicating that the pDCs response to HSV-1 requires 

direct TLR9 stimulation. Having observed the in vitro effects of TLR9 on pDC-derived IFN-

α response, we measured IFN-α and viral gB levels in the cornea following HSV-1 infection 

following blockade of TLR9 through the TRL9 antagonist or its control. Although HSV-1 

keratitis was accompanied by a considerable increase in corneal IFN-α levels, the increase 

was substantially inhibited by application of a TLR9 antagonist (Figure 5H). Furthermore, 

administration of a TLR9 antagonist was accompanied by elevated viral gB RNA in the 

cornea (Figure 5I), confirming the critical role of TLR9 signaling in immune response 

during HSV-1 keratitis.

Corneal pDCs Prevent Re-programming of Tregs to Effector Ex-Tregs in Acute HSV-1 
Keratitis

To study the significance of pDCs in modulating adaptive immune responses, we assessed if 

pDCs affect the survival of Tregs, an important cellular player in ameliorating immune 

responses in HSV-1 keratitis (Suvas et al., 2004; Sehrawat et al., 2008; Veiga-Parga et al., 

2012). Thus, we generated BM-chimeric mice, using WT C57BL/6 mice as recipients and 

mixture of BM cells from BDCA-2-DTR and Treg fate matting (FM) mice as donors, to 

concurrently deplete pDCs and assess the fate of Tregs. Confocal microscopy on corneal 

whole mounts of sham- and pDC-depleted chimeric mice on day 7 p.i. with HSV-1 indicted 

infiltration of both corneal Foxp3-eGFP+ Tdtomato+ Tregs (Figure 5J, white arrows), as well 

as Foxp3-eGFPneg Tdtomato+ ex-Tregs. pDC depletion was accompanied by increased 

infiltrating Foxp3-eGFPneg Tdtomato+ ex-Treg density compared with sham-depleted mice 

(Figures 5J and 5K). Next, we assessed ex-Treg density in dLNs to evaluate if the higher 

density of infiltrating corneal ex-Tregs upon pDC depletion is due to Treg re-programming 

in dLNs. After gating on live cells (Figures S5A and S5B), removing the doublets (Figures 

S5C and S5D), and gating on CD45+ CD4+ T cells (Figures S5E and S5F), we observed that 

corneal pDC depletion resulted in a 2.5-fold increase in the density of Foxp3-eGFPneg 

Tdtomato+ ex-Tregs (Figure 5L), suggesting that pDC depletion facilitated re-programming 

of Foxp3-eGFP+ Tregs to Foxp3-eGFPneg ex-Tregs in dLN. Next, phenotyping Foxp3-

eGFPneg ex-Tregs, we observed that in both control and pDC-depleted mice, the majority of 

Foxp3-eGFPneg ex-Tregs expressed IFN-γ, suggesting their re-programming to effector T 

cells (Figure 5M). To assess if pDCs directly affect Treg survival, we next isolated splenic 

Tregs from Treg FM mice and cultured them with different densities of splenic pDCs sorted 

from WT C57BL/6 mice under stimulation of UV-irradiated HSV-1. On day 3 following co-

culture, we performed immunofluorescence staining for PDCA-1 on the samples, followed 

by flow cytometry. After removing debris, dead cells, doublets, and pDCs (Figures S5G–

S5O), we gated on Foxp3-eGFPneg Tdtomato+ ex-Tregs and observed that whereas upon 

exposure to UV-irradiated HSV-1, Tregs convert to ex-Tregs, in the presence of pDC at 

densities of 1:10 and 1:1, pDCs considerably prevented the re-programming of Tregs to 

effector ex-Tregs (Figure 5N).

Jamali et al. Page 9

Cell Rep. Author manuscript; available in PMC 2020 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Resident Corneal pDCs Mediate Corneal Immunity to Acute Primary HSV-1 Keratitis

Considering that in contrast to the clinical findings in the periocular skin (a tissue with no or 

sparse tissue-resident pDCs during steady state) (Wollenberg et al., 2002; Kohrgruber et al., 

2004), clinical presentation of corneal involvement in primary HSV-1 infection is rare in 

humans (Darougar et al., 1985; Liesegang et al., 1989), we next tested if the lack of clinical 

findings during primary ocular HSV-1 infection may be attributed to the presence of tissue-

resident corneal pDCs. Thus, we inoculated corneas of either sham- or pDC-depleted mice 

with a lower dose of HSV-1 (103 plaque-forming units [PFU]), the peak amount of HSV-1 

detected in murine tears following HSV-1 infection (Ghiasi et al., 2001). On day 3 after low-

dose challenge, clinical assessment of corneas revealed a marked increase in the frequency 

of mice showing corneal opacification following pDC depletion (16.6% versus 83.3%; 

Figure 6A). On day 5 p.i., while corneal opacity was apparent in all pDC-depleted mice, 

only 25% of sham-depleted controls showed corneal opacity (Figure 6B). Furthermore, 

corneal pDC depletion was associated with enhanced viral dissemination to the corneal 

stroma and TG (Figures 6C and 6D), suggesting that the presence of corneal pDCs prevents 

the clinical presentation of primary HSV-1 infection in the cornea.

Local Adoptive Transfer of pDCs Prevents Corneal Manifestations in Acute HSV-1 Keratitis

Observing the critical role of pDCs in minimizing the severity of corneal manifestations in 

acute HSV-1 keratitis, we next evaluated if local adoptive transfer of pDCs can diminish the 

clinical severity and enhance viral clearance. Thus, we adoptively transferred 104 splenic 

pDCs 24 h prior to HSV inoculation to WT C57BL/6 mice. Adoptive transfer of pDCs was 

accompanied by decreased clinical severity on day 5 p.i. (Figures S6A and S6B). 

Assessment of corneal IFN-α level and viral load demonstrated that adoptive transfer of 

pDCs to corneas was associated with higher levels of IFN-α mRNA in the corneal stroma 

(Figure S6C) and lower viral gB RNA load (Figure 6D) in the cornea, suggesting enhanced 

viral clearance.

Human Corneas Host Resident pDCs

To assess if our findings are clinically relevant to humans, we investigated if pDCs reside in 

naïve human corneas by performing flow cytometry in donor corneas. After gating out dead 

cells and debris, and gating on CD45+ cells (Figures S7A–S7C), we observed that similar to 

our findings in mice, approximately 18.7% of CD45+ cells expressed specific human pDC 

markers BDCA-2 and BDCA-4 (Figure S7D).

DISCUSSION

The Cornea Hosts a Resident Population of pDCs

To the best of our knowledge, this is the first comprehensive report on the constitutive 

presence, morphology, and distribution of tissue-resident pDCs in the cornea and their 

pivotal role in successfully combating corneal HSV-1 infection. Herein, we show that pDCs 

in the corneal barrier tissue play a pivotal protective role during acute HSV-1 infection by 

limiting viral replication, nerve damage, immune cell infiltration, and viral spread to extra-

ocular tissues, contributing to attenuating symptoms of clinical keratitis and mortality. 
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Furthermore, pDCs limit viral disease through direct TLR9-mediated IFN-α secretion and 

by preventing Treg re-programming to effector ex-Tregs. Thus, our findings suggest corneal 

pDCs may contribute to immunity of the cornea to primary HSV infection.

We demonstrate that in naïve corneas, CD45+ CD45R/B220+ PDCA-1+ pDCs are CD19neg 

CD3neg CD11bneg, indicating that they are distinct from B cells, T cells, or cDCs. 

Furthermore, their Ly6C, Ly49Q, and low CD11c expression emphasizes their phenotypical 

difference from previously identified stromal and epithelial cDCs in the cornea (Hamrah et 

al., 2002, 2003a, 2003b, 2003c). Identification of pDCs by TEM was based on the 

morphologic characteristics and localization of pDCs in the stroma, close to the epithelium. 

A limitation was lack of immuno-gold staining for pDC markers. We further observed 

presence of resident CD45+ BDCA-2+ BDCA-4+ pDCs in naïve human corneas. Although 

expression of these markers is considered a characteristic for pDCs, recent studies suggest 

that certain subpopulations of immune cells, such as AS-DCs, pre-cDCs, and transitional 

DCs, may express these markers as well (See et al., 2017; Villani et al., 2017; Leylek et al., 

2019). These findings place the cornea among the very few non-lymphoid tissues in which 

resident pDCs have been reported, albeit in scarce numbers (Jameson et al., 2002; 

Bilsborough et al., 2003; Blasius et al., 2004; Omatsu et al., 2005; Lund et al., 2006). Our 

observation that the cornea, an immune-privileged barrier tissue, hosts pDCs during steady 

state, in light of the tolerogenic properties of pDCs (Goubier et al., 2008; Jongbloed et al., 

2009; Rogers et al., 2013), may put forward possible roles of pDCs in the maintenance of 

immune privilege. Whether other immunologically privileged sites harbor pDCs during 

steady state, and if pDCs contribute to the preservation of immune privilege, deserve further 

studies.

Previously, we and others have reported the presence of different subsets of APCs in the 

naïve cornea (Hamrah et al., 2002, 2003b, 2003c; Brissette-Storkus et al., 2002; Nakamura 

et al., 2005; Yamagami et al., 2005; Hamrah and Dana, 2007; Mayer et al., 2007). Our 

current novel discovery of resident corneal pDCs sheds additional light on the diversity of 

the corneal immune system, demonstrating the multiple layers of defense in this vital barrier 

organ that is needed to preserve vision (Figure 7). Using four-dimensional (4D) MPM, we 

demonstrated that pDC kinetics are significantly altered following inflammation, with pDCs 

becoming highly motile. The alterations in the migratory pDC kinetics may be mediated 

through chemokines or by induction of corneal edema during inflammation that may 

facilitate pDC movement.

Protective Role of pDCs in HSV-1 Keratitis

Studies of pDCs have thus far been hampered by the lack of an easily accessible in vivo 
models whereby they can be studied under physiological and pathological conditions. 

Identification of resident corneal pDCs, a tissue that has been used to study biological 

processes, including angiogenesis, lymphangiogensis, and immune responses, as well as the 

advantage of local pDC depletion, can now facilitate in vivo studies of peripheral tissue 

pDCs.

We observed that pDC depletion leads to increased leukocyte recruitment to HSV-1 infected 

corneas. This in line with other groups’ findings that pDC depletion is associated with 
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increased recruitment of cDCs and macrophages, secretion of pro-inflammatory cytokines, 

and higher viral load in the lungs and dLNs of mice infected with respiratory syncytial virus 

(Smit et al., 2006; Wang et al., 2006). Similarly, Soloff et al. (2012) showed that pDC 

depletion in mice with lethal influenza virus infection leads to considerable influx and 

activation of APCs. In contrast, Wolf et al. (2009) showed that Ikarosl/l mice exhibit delayed 

increase in number of neutrophils and T cells in bronchoalveolar lavage of mice infected 

with influenza virus. However, this observation might be attributed to depletion of multiple 

other immune cells in addition to pDCs in this model.

Furthermore, Swiecki et al. (2013) reported that pDCs are important players in immune 

responses against systemic HSV-1 and HSV-2, but not local subcutaneous HSV-2 vaginal 

infection in mice. They observed that systemic depletion of pDCs does not affect viral load 

or IFN-α levels in the vagina of mice with local in-travaginal HSV-2 infection. However, 

depletion of pDCs was accompanied by decreased serum IFN-α level, natural killer (NK) 

cell activity, and mouse survival in systemic infection with HSV-1 or HSV-2 (Swiecki et al., 

2013). In contrast, Yoneyama et al. (2005) showed that pDCs drive IFN-α production and 

promote antiviral cytotoxic T cell generation and viral clearance in the dLNs of mice with 

hind foot HSV-1 infection. Similarly, Vogel et al. (2014) showed that upon exposure to 

HSV-1, pDC-derived IFN-α activates NK cell activation in vitro. Taken together, these 

findings suggest that type and dose of pathogen, route of entry, and possibly pDC density at 

the entry site may affect antiviral responses to HSV infection. Current evidence on the role 

of local pDCs in the protection of a non-lymphoid barrier tissue against viral infection are 

scarce (Lund et al., 2006; Smit et al., 2006). Rather, it has been proposed that pDCs may 

represent a failsafe mechanism critical only for defense against systemic viral infections, 

once other mechanisms of protection in place at barrier tissues have been overwhelmed 

(Kumagai et al., 2007; Zucchini et al., 2008; Swiecki et al., 2013). Thus, our study provides 

important evidence on the direct and critical role of local pDC in the protection of a non-

lymphoid tissue from viral infection.

Significance of TLR9 and IFN-α in the Corneal Immune Response in HSV-1 Keratitis

Our experiments highlighted the essential role of TLR9 signaling for HSV-1-induced 

production of IFN-α in pDCs, as administration of TLR9 antagonist abolished the increase 

in the transcription of IFN-α. Studies in TLR9-knockout (KO) or IFN-α R-KO mice have 

demonstrated the critical role of these molecules for the induction of CXCL9 and CXCL10, 

the downstream recruitment of T cells and neutrophils in the cornea, and the control of viral 

shedding, highlighting the importance of IFN production in HSV keratitis (Conrady et al., 

2011). Additionally, IFN-α has also been shown to limit the progress of infection from 

peripheral tissues to the nervous system (Halford et al., 1997). It has recently been shown 

that the corneal epithelium can produce IFN-α through TLR-dependent and TLR-

independent innate sensor mechanisms (Hayashi et al., 2006; Kumar et al., 2006; Li et al., 

2006; Conrady et al., 2012; Royer and Carr, 2016; Cui et al., 2017). Furthermore, recent 

studies have highlighted the importance of stimulator of IFN genes (STING), a cytoplasmic 

pathway of DNA recognition, in mediating immune responses to HSV-1. Interestingly, 

however, corneal inoculation with HSV-1 in STING-deficient mice had only a modest effect 

on type I IFN expression (Parker et al., 2015), further suggesting implications for other 
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pathways of foreign DNA recognition, such as by endosomal TLRs during HSV-1 keratitis. 

Thus, although the key roles of TLR9 and IFN-α in HSV-1 keratitis and the secretion of 

IFN-α by the corneal epithelium are well established, the identity of TLR9+ cells and 

stromal sources of IFN-α in the cornea had remained elusive. Our discovery of a resident 

pDC population finally solves this mystery and clearly demonstrates the crucial role pDCs in 

HSV-1 keratitis.

Although the corneal epithelium contributes to IFN-α production during HSV-1 keratitis, 

high levels of IFN-α are observed in the corneal stroma (Conrady et al., 2011). We 

demonstrate that depletion of pDCs results in near total lack of IFN-α production, 

suggesting that pDCs are the main source of IFN-α in the corneal stroma. These data 

highlight the significance of pDCs and TLR9 signaling in IFN-α secretion during viral 

infections, as suggested by previous reports (Gurney et al., 2004; Krug et al., 2004; Smit et 

al., 2006; Wang et al., 2006; Kader et al., 2013; Schijf et al., 2013). Nevertheless, the 

signaling mechanism of TLR9 in corneal pDCs in HSV-1 keratitis needs to be further 

investigated. Although our observations suggest a critical role for TLR9 in the induction of 

IFN-α by pDCs, a recent study has shown that in MyD88 and TRIF-KO mice inoculated 

with a low dose (103 PFU) of HSV-1, viral titers in the cornea were comparable with WT 

mice (Conrady et al., 2012). Thus, potential dose-dependent activation of diverse pathways 

of TLR signaling and IFN production such as potential MyD88-independent pathways needs 

to be considered in future studies.

Impact of pDCs in Maintaining Functional Tregs in HSV-1 Keratitis

Tregs are vital modulators of adaptive immune responses to viral infections (Veiga-Parga et 

al., 2013), including HSV infections (Milman et al., 2016; Soerens et al., 2016). In HSV-1 

keratitis, Treg depletion enhances disease severity via decreasing corneal macrophage and 

neutrophil recruitment (Veiga-Parga et al., 2012), effector T cell generation, activation, and 

migration to the cornea (Suvas et al., 2004; Veiga-Parga et al., 2012), and adoptive transfer 

of induced Tregs decreases clinical severity of the disease (Sehrawat et al., 2008). Recently, 

it has been shown that Tregs can acquire pathogenic effector T cell phenotype and secret 

IFN-γ, and their adoptive transfer can cause similar severity of keratitis compared with 

CD44hi effector CD4 T cells (Bhela et al., 2017). Nevertheless, prior reports are 

controversial on the role of pDCs in induction of effector T cells over Tregs. Although 

earlier studies had suggested that pDC depletion leads to reduced generation of CD4+ T cells 

directly through IFN-α and decreased CD8+ T cells (Swiecki et al., 2010; Cervantes-

Barragan et al., 2012), a recent study has suggested that pDC depletion accompanies 

reduced generation of neuropilin-1+ Tregs in viral challenges (Lynch et al., 2018). Our 

findings suggest that pDCs modulate adaptive T cell responses to HSV-1 keratitis, by 

directly promoting Treg survival and preventing Treg re-programming to effector ex-Tregs.

Role of pDCs in Preventing Nerve Damage and Viral Dissemination

The observed higher rate of death upon pDC depletion in acute HSV keratitis can be 

explained by enhanced viral dissemination to extra-ocular tissues, resulting in the spread of 

the virus to the central nervous system and subsequent death. In contrast to pDCs, we 

recently demonstrated that depletion of cDCs in the cornea in HSV-1 keratitis is associated 
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with decreased systemic spread of the virus to dLNs and TGs. cDCs also played an 

important role in limiting clinical keratitis and local corneal damage, but in contrast to pDCs 

they allowed systemic viral spread (Hu et al., 2015).

HSV keratitis is accompanied by nerve loss in both patients and murine HSV models 

(Hamrah et al., 2010; Cruzat et al., 2011; Yun et al., 2014; Chucair-Elliott et al., 2015). We 

show that although pDC depletion is associated with increased corneal nerve loss, it is also 

associated with increased neuronal invasion in the remaining nerves. In comparison, local 

depletion of cDCs, but not macrophages, in the cornea enhances subbasal nerve loss in 

HSV-1 keratitis; however, cDC depletion is accompanied by a decrease in neuronal invasion. 

Thus, although cDCs may facilitate infection of the nerve axons and transmission of the 

virus to the TG, pDCs prevent this process mainly by restricting the viral load. Although we 

have recently shown that corneal nerve loss in HSV keratitis can take place independent of 

leukocyte infiltration, Yun et al. (2014) demonstrated that depletion of CD4+ T cells limits 

corneal nerve damage in HSV keratitis, suggesting involvement of multiple contributors in 

the process of nerve damage. Thus, the mechanism of nerve damage and regeneration in 

HSV keratitis need to be further elucidated.

Recently, it has been shown that HSV-1 can directly infect the cornea primarily through the 

“front door” (Kaye et al., 1992; Kovacs et al., 2009; Shah et al., 2010), where it is then 

transmitted to the TG via sensory corneal nerves and remains latent. However, the reason 

why primary corneal infections do not typically result in clinical corneal manifestations has 

remained elusive (Darougar et al., 1985; Liesegang et al., 1989). Furthermore, although 

asymptomatic individuals shed the virus in their tears (Okinaga, 2000; Abiko et al., 2002; 

Khodadoost et al., 2004; Kaufman et al., 2005), it is not yet characterized how this persistent 

shedding does not result in more common HSV keratitis. We inoculated mouse corneas with 

a lower dose of HSV-1 and observed that while the low viral dose causes subtle clinical 

signs in a minority of pDC-sufficient mice, the majority of pDC-depleted corneas exhibit 

overt opacification. Nevertheless, consistent with prior reports, despite the lack of 

remarkable corneal manifestations in sham-depleted mice, HSV-1 could yet disseminate to 

corneal stroma and TG in both group of mice (LeBlanc et al., 1999). These findings suggest 

that lack of clinical findings in the cornea during primary HSV-1 infection may in part be 

explained by presence of tissue-resident pDCs, which minimize viral burden. Furthermore, 

local adoptive transfer of pDCs to cornea decreases the severity of clinical keratitis, 

increases IFN-α level in the corneal stroma, and accelerates viral clearance.

Collectively, we demonstrate that pDCs, a vital and distinct subset of BM-derived cells, 

reside in naïve corneas and play a unique role in viral elimination during HSV keratitis. 

Resident corneal pDCs contribute to immune responses against corneal HSV-1 infection by 

limiting viral load and dissemination by secretion of IFN-α through TLR9 signaling and 

promoting Treg survival. Further studies are paramount to reveal functions of pDCs in the 

cornea during homeostasis, as well as in other pathologic conditions.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Pedram Hamrah 

(pedram.hamrah@tufts.edu).

Materials Availability—All unique/stable reagents generated in this study are available 

from the Lead Contact.

Data and Code Availability—This study did not generate any unique datasets or code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—Six- to ten-week-old male WT C57BL/6 (Charles River Laboratories 

International, Wilmington, MA), DPE-GFP × RAG-1−/− (C57BL/6 background; kindly 

provided by Dr. Ulrich H. von Andrian, Harvard Medical School, Boston, MA) (Iparraguirre 

et al., 2008; Iannacone et al., 2010), BDCA2-DTR (C57BL/6 background; The Jackson 

Laboratory, Bar Harbor, ME; bred in house into homozygous) (Swiecki et al., 2010), 

CD11c-GFP-DTR mice (C57BL/6 background, The Jackson Laboratory; bred in house into 

homozygous) (Jung et al., 2002; Zhou et al., 2009), and Treg FM mice (generated by 

crossing Foxp3-eGFP/cre × Rosa-tdTomato mice; both from The Jackson Laboratory) (Zhou 

et al., 2009; Wang et al., 2012) were housed in specific pathogen-free conditions. BDCA2-

DTR mice carry a transgene encoding a simian Diphtheria toxin receptor under the control 

of the human BDCA2 promoter. Murine pDCs do not express BDCA2, yet the BDCA2 

promoter remains transcriptionally active in mice, which enables selective deletion of pDCs 

in these transgenic mice via exposure to DT (Swiecki et al., 2010). In Treg FM mice, eGFP 

and tdTomato are expressed under the control of the Foxp3 promoter. Thus, while Foxp3+ 

Tregs are Foxp3-eGFP+ tdTomato+, ex-Tregs which are Foxp3neg are converted to Foxp3-

eGFPneg tdTomato+ cells (Zhou et al., 2009; Wang et al., 2012). All protocols were approved 

by the Harvard Medical School, Immune Disease Institute, Schepens Eye Research Institute, 

Tufts Medical Center, and Tufts University School of Medicine Animal Care and Use 

Committees. Animals were treated in accordance with the Association for Research in 

Vision and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision 

Research and NIH Guidelines for Animal Care.

Virus—The triple plaque-purified HSV-1 strain McKrae (kindly provided by Dr. Homayon 

Ghiasi, Cedars-Sinai Medical Center, Los Angeles, CA), a neurovirulent, stromal disease-

causing strain, was used for ocular challenge (Sawtell et al., 1998; Ghiasi et al., 1999; Hu et 

al., 2015; Jiang et al., 2015). The McKrae HSV-1 strain was particularly chosen to enable 

survival studies, since less virulent strains, such as the KOS strain, generally do not cause 

mortality. For cell culture experiments, viruses were inactivated by exposure to 20 J UV 

light (15 minute [min] under biosafety cabinet UV transluminator; NuAire, Plymouth, MN) 

(Samudio et al., 2016).
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Cells—Vero cells (derived from African green monkey kidney, kindly provided by Dr. Judy 

Lieberman, Children’s Hospital Boston, Boston, MA) were used to propagated HSV-1. Vero 

cells were cultured in DMEM and supplemented by 10% FBS. Primary cells were isolated 

from WT or transgenic mice per below.

Human Corneas—Human corneas were donated by Eversight (Ann Arbour, MI) in 

storage medium. Corneal single cell suspensions from 3 donors (with the age range of 25–64 

years) were analyzed independently by flow cytometry within 7 days post mortem.

METHOD DETAILS

Animal Procedures—For all of the procedures other than MPM, animals were 

anesthetized with intraperitoneal injections of 100 mg/kg Ketamine and 20 mg/kg Xylazine. 

For MPM, intraperitoneal injection of mixture of 100 mg/kg Ketamine, 20 mg/kg Xylazine, 

and 3 mg/kg acepro-mazine was used. Following corneal thermal burn or suture placement 

(see below), erythromycin ophthalmic ointment was applied on the eyes. After corneal 

debridement, thermal burn, suture placement, HSV inoculation, animals were treated with 

subcutaneous buprenorphine 0.05–0.1 mg/kg, every 8–12 h for 48 h to relieve post-surgical 

pain. Mice were randomly assigned to study groups using a Random Number Table.

Bone Marrow Chimeric Mice—WT C57BL/6 mice were irradiated twice with 600 rads 

with 3 hours (h) intervals, while their heads were covered with lead shielding to protect the 

eyes. 4 h later, their BMs were reconstituted by intravenous administration of 5 × 106 BM 

cells obtained from femurs and tibias of BDCA2-DTR and Treg FM mice strains at a 2:1 

ratio (Brown and Reiner, 2000; Allen et al., 2010). Chimeric mice were then housed for 4 

weeks prior to further experimental procedures.

Corneal Thermal Burn as a Model for Acute Inflammation—Mice underwent 

corneal thermal cautery to induce acute inflammation as previously described (Williamson et 

al., 1987). Briefly, five light burns were performed on the central 50% of the cornea via a 

handheld thermal cautery (Aaron Medical Industries Inc., St. Petersburg, FL) under an 

operating microscope.

Corneal Suture Placement as a Model for Chronic Inflammation—Corneal suture 

placement was carried out to induce chronic inflammation, as previously described (Yamada 

et al., 1998). Briefly, three 11–0 nylon sutures (Sharpoint; Vanguard, Houston, TX) were 

placed through the paracentral stroma in the mid-peripheral cornea without perforating the 

cornea, using aseptic microsurgical technique and an operating microscope.

Acute HSV-1 Keratitis—Corneas were scarified 5 (horizontal) × 5 (vertical) times using a 

30-gauge needle and topically inoculated with 103 or 2 × 106 PFU of HSV-1 strain McKrae 

in 10 μl DMEM culture media (Mediatech, Inc, Manassas, VA). Mice undergoing 

scarification and treatment with the same volume of virus-free DMEM constituted sham-

infected controls.
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Subconjunctival Injection—Local depletion of corneal pDCs was carried out via 

subconjunctival (subconj.) injections of 30 ng of DT (Sigma-Aldrich, St. Louis, MO) 

dissolved in 10 μl (5μl temporally and 5μl nasally) of phosphate buffered saline (PBS) in 

BDCA2-DTR or chimeric mice 2 days prior to HSV-1 inoculation, and repeated every 2 

days thereafter in order to maintain continuous depletion (Hu et al., 2015). WT C57BL/6 

mice treated with similar injections of DT or chimeric mice receiving PBS injections 

constituted the sham-controls. To block TLR9 activation, mice received subconj. injections 

of 10 mg oligonucleotide (ODN) 2088 (TLR9 antagonist; InvivoGen, San Diego, CA) or 

ODN 2088 Control (TLR9 antagonist control; InvivoGen) following HSV-1 inoculation with 

repeated injections every 48 h.

Ocular TLR9-Agonist Inoculation—Corneal epithelium of sham- or pDC-depleted 

mice were debrided using an Algerbrush II corneal rust ring (Alger Equipment Co, Lago 

Vista, TX) and either 20 μg phosphorothioate CpG 1826 oligonucleotide (CpG-ODN; a 

synthetic specific TLR-9 agonist; InvivoGen) or control oligonucleotide 1826 (Control 

ODN; InvivoGen) were topically administered on the eye.

Local Adoptive Transfer of pDCs—Following 24 h of culture, isolated splenic pDCs 

were resuspened in TISSEEL fibrin sealant (Baxter Healthcare Corporation, Deerfield, IL). 

Following debridement of the corneal epithelium using an Algerbrush II corneal rust ring, as 

above, 104 pDCs diluted in the fibrin sealant were placed in the center of the cornea. Mice 

receiving fibrin sealant only served as controls.

Survival Studies—BDCA2-DTR or C57BL/6 WT mice received subconj. injections of 

DT, 2 days prior to inoculation of 2 × 106 PFU of HSV-1. Subconj. injections were repeated 

every 48 h until day 6 p.i. (5 injections in total). Mice were monitored twice daily for 

survival for 20 days p.i. (n = 20/group). In addition to initial treatment after corneal 

scarification and viral inoculation, mice were given additional buprenorphine (0.1 mg/kg 

subcutaneously) to minimize suffering of any pain/distress (ocular swelling; red and 

discharge; inactivity; lack of food or water intake; changes in gait), if needed. In case of 

suffering from severe pain/distress (ruffled fur; hunched posture; crouching; shivering), mice 

were euthanized and were counted as endpoints (death).

Clinical Evaluation of Herpes Simplex Keratitis Severity—The severity of acute 

keratitis was assessed by a blinded observer by slit-lamp bio-microscopy as previously 

described (Inoue et al., 2000; Hu et al., 2015). Briefly, corneal opacification was scored 

using the following scoring: 0, normal; 1, corneal opacity confined to less than one quarter 

of the cornea with visible iris; 2, corneal opacity between one quarter and one half of the 

cornea with visible iris; 3, corneal opacity extended to greater than half of the cornea with 

partially invisible iris; and 4, maximal corneal opacity spread over the entire cornea and 

completely invisible iris.

Antibodies—The following antibodies (Abs) were obtained from BD Biosciences (San 

Jose, CA), eBioscience (San Diego, CA), BioLegend (San Diego, CA), or Miltenyi Biotec, 

(Bergisch Gladbach, Germany) unless otherwise noted: fluorochrome-labeled Ab (clone) 

against CD45 (30-F11 and HI30), PDCA-1 (927 and JF05–1C2.4.1), CD45R/B220 (RA3–
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6B2), Siglec-H (eBio440c), CD11c (HL3), Ly6C (HK1.4), Ly49Q (clone number 2000000; 

MBL International Corporation, Woburn, MA), Gr-1 (RB6–8C5), Ly6G (1A8), CD11b 

(M1/70), CD68 (FA-11), CD4 (RM4–5), CD3 (17A2), CD19 (6D5), IFN-γ (XMG1.2), 

F4/80 (BM8), BDCA-2 (201A), BDCA-4 (12C2), β-III-Tubulin (TuJ-1; R&D Systems, 

Minneapolis, MN), and HSV-1 (polyclonal; Dako, Carpinteria, CA). Fluorochrome-

conjugated rat IgG1, IgG2a, IgG2b, IgG2c, mouse IgG1, IgG2a, and Armenian hamster 

IgG1 were used as isotype-matched controls.

Single Cell Suspension and Flow Cytometry—TGs, single human and pooled mice 

corneas were cut into pieces and digested via incubation with 2 mg/ml collagenase D 

(Roche, Indianapolis, IN) and 0.05 mg/ml DNase (Roche) to yield single cell suspensions. 

BM and dLN samples were filtered and underwent RBC lysis via incubation with 

Ammonium Chloride Potassium (ACK) RBC lysis buffer (Biofluids, Rockville, MD). LIVE/

DEAD Fixable Blue Dead Cell Stain kit, for UV (Thermo Fisher Scientific, Waltham, MA) 

was used to assess viable cells in murine corneal single cell suspensions. After blocking for 

15 min with 1% anti-CD16/CD32 Fc receptor (FcR) mAb (2.4G2; Bio × Cell, West 

Lebanon, NH) in 0.5% bovine serum albumin (BSA; Sigma-Aldrich) at 4°C, samples were 

labeled with combinations of Abs or their respective isotype controls. Intracellular staining 

of IFN-γ was performed using the Fixation/Permeabilization Solution Kit with BD 

GolgiPlug (BD Biosciences) according to the manufacturer’s instructions. Samples were 

then washed and analyzed with a BD LSR II flow cytometer (BD Biosciences). Data were 

analyzed with FlowJo V9.2 (FlowJo, LLC, Ashland, OR). Forward and side scatterplots 

were used to exclude dead cells, debris, and doublets. For each experiment on mice corneas, 

15–20 control corneas (naïve or sham-infected) or 4–8 inflamed (thermal cautery, suture 

placed, or HSV-1-infected) corneas were pooled.

Cell Sorting—For single cell PCR, the following cells were sorted: (1) corneal GFP-

tagged pDCs from pooled (n = 10) collagenase-digested naïve corneas of DPE-GFP × 

RAG-1−/− mice using WT C57BL/6 mice as controls for GFP sorting; (2) splenic pDCs from 

naïve WTC57BL/6 mice; and (3) splenic macrophages from naïve WT C57BL/6 mice. For 

Treg survival assays, splenic Tregs from naïve Treg FM mice and splenic pDCs from naïve 

WT C57BL/6 mice were sorted. For pDC culture and adoptive transfer studies, splenic GFP+ 

pDCs were sorted from DPE-GFP × RAG-1−/− mice. Briefly, spleens were harvested, 

mechanically dissociated and passed through a 40 μm cell strainer (BD Falcon) to yield 

single cell suspensions of splenic cells. Next, RBCs were lysed using ACK RBC lysis buffer. 

For isolating pDCs and macrophages from WT C56BL/6 mouse for single cell PCR 

experiments, splenocytes were stained with PDCA-1, CD45R/B220, Siglec-H, and F4/80 or 

their respective isotype controls. Triple-positive PDCA-1+ CD45R/B220+ Siglec-H+ pDCs 

and single positive F4/80+ macrophages were sorted. For Treg survival assays, PDCA-1+ 

CD45R/B220+ pDCs were sorted. All sortings were performed using MoFlo Astrios EQ 

(Beckman Coulter).

Immunofluorescence Staining and Confocal Microscopy—For 

immunofluorescence staining, corneas were excised and the epithelium was removed, as 

previously described (Hamrah et al., 2002). Briefly, freshly excised corneas were immersed 
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in PBS, containing 20 mM EDTA (Sigma-Aldrich) at 37°C for 30 min. Subsequently, the 

epithelium was removed with forceps and the stroma was washed in PBS. Samples were 

fixed in chilled acetone (Sigma-Aldrich) at room temperature (RT), and following three 

washes, were blocked in 2% BSA and 1% anti-CD16/CD32 FcR mAb (Bio × Cell) for 30 

min at RT, and incubated with combinations of primary Abs including CD45, PDCA-1, 

CD45R/B220, β-III-Tubulin, and HSV-1 or isotype controls overnight at 4°C or at RT for 2 

h. After washings, samples were mounted with DAPI-containing medium (Vector 

Laboratories Inc., Burlingame, CA) and imaged by confocal microscopy (Fluoview 

BX50WI microscope [Olympus, Japan] or a Leica TCS SP8 [Leica Microsystems, Wetzlar, 

Germany]). Corneas excised from chimeric mice were fixed in 4% PFA and corneas from 

DPE-GFP × RAG-1−/− mice were visualized freshly by either a Fluoview BX50WI or a 

Leica TCS SP8 microscope. Central and peripheral areas for each cornea were assessed 

separately, as previously described (Hamrah et al., 2002). Cell densities were quantified via 

IMARIS (Bitplane AG, Zurich, Switzerland) and quantification of corneal nerve density was 

performed using NeuronJ plugin (Meijering et al., 2004) for ImageJ software (NIH, 

Bethesda, MD) (Hu et al., 2015). To measure the percentage of infected nerves, double 

stained (β-III-Tubulin+ HSV-1+) nerve segments were considered as infected and their 

lengths were divided by the total nerve length.

pDC Culture—105 sorted splenic pDCs from DPE-GFP × RAG-1−/− mice (as described 

above) were seeded in 48-well plates and cultured with DMEM supplemented with 10% 

fetal bovine serum (FBS; Gemini Bioproducts, Woodland, CA), and 1% penicillin/

streptomycin (Life Technologies, Carlsbad, CA). Cells were treated with 1 μg/ml Control 

ODN, 1 mg/ml CpG-ODN and 10 mg/ml ODN 2088 Control, 1 μg/ml CpG-ODN and 10 

μg/ml ODN 2088,105 PFU UV-irradiated McKrae HSV-1 and 10 μg/ml ODN 2088 Control, 

or 105 PFU UV-inactivated McKrae HSV-1 and 10 μg/ml ODN 2088. Cells were harvested 

24 h after culture for analysis.

Treg Survival Assay—105 sorted splenic Tregs were sorted from Treg FM mice and were 

cultured with different densities of sorted splenic pDCs from WT C57BL/6 mice (at 1:0, 

1:10, and 1:1 Treg:pDC ratios) under treatment with with 105 PFU UV- irradiated McKrae 

HSV-1 for 3 days in DMEM, supplemented with 10% fetal bovine serum, 1% penicillin/

streptomycin, and 1 ng/ml TGF-β1 (eBioscience). Cells then underwent 

immunofluorescence staining for PDCA-1 followed by flow cytometry (as above).

Multi-photon Microscopy—An upright commercial Ultima two-photon microscope 

(Bruker Corporation, Billerica, MA) equipped with tunable Mai Tai Ti:sapphire lasers 

(Spectra-Physics/Newport Company, Santa Clara, CA) was used for multiphoton excitation. 

MPM was performed on freshly excised, unstained and unfixed corneas of DPE-GFP × 

RAG-1−/− or CD11c-GFP-DTR mice at an excitation wavelength of 880 nm. For 3D 

analysis, stacks of 60 optical x-y sections with 1-μm z spacing were acquired with electronic 

zooming to 1.0–3.0 × through a 20 × /0.95 numerical aperture water-immersion objective 

lens (Olympus, Center Valley, CA). Emitted fluorescence and second-harmonic signals were 

detected through 400/40 nm, 450/80 nm, 525/50 nm and 630/120 nm bandpass filters with 

non-descanned detectors to generate multi-color images. For assessing kinetics, stacks of 
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multiple x-y sections with 3 μm z spacing were acquired every 60 s for at least 30 min to 

provide image volumes of at least 130 μm in depth. Three-dimensional reconstruction of z 

stacks was performed by Volocity (PerkinElmer, Waltham, MA). IMARIS (Bitplane AG) 

was used for 4D image analysis and movie production. Background subtraction, noise 

reduction, brightness/contrast adjustment, compression and size adjustment were primarily 

performed and the files were rendered as maximum-intensity projection providing a realistic 

4D movie. GFP+ cells were pointed as individual spots and corneal collagen was used for 

delineation of stroma. The following kinetic parameters were generated: 3D mean speed 

(μm/min), track length (total distance traveled by a single spot, μm), track displacement 

length (the shortest length connecting initial and final spatial location of a single spot, μm), 

meandering index measured by dividing displacement length by total track length. Presented 

track displacements were adjusted to reflect cell displacement in 1 h 4D movies.

Transmission Electron Microscopy—WT C57BL/6 corneas were fixed in Karnovsky 

solution. After three washes in cacodylate buffer, samples were post-fixed in 1% osmium 

tetroxide for 1.5 h. Next, samples were washed with water, stained in aqueous 2% uranyl 

acetate, dehydrated, and embedded in Epon. Samples were sectioned at 6 nm and imaged by 

a transmission electron microscope (410 TEM; Philips, Eindhoven, Netherlands).

Corneal Viral Titers—Corneas were homogenized using gentleMACS Dissociator 

(Miltenyi Biotec) and HSV-1 viral load was determined by standard virus plaque assay on 

Vero cells. In brief, 100 mL serial dilutions of corneal homogenates were plated on Vero cell 

monolayers cultured in 6-well plates and incubated at 37°C for 1 h. Monolayers were rinsed, 

overlaid with 0.5% methylcellulose (Sigma-Aldrich) in DMEM supplemented with 5% FCS, 

and incubated at 37°C for 2–3 days. Subsequently, plates were stained with 1% crystal violet 

(Sigma-Aldrich) and plaques were counted.

RNA Isolation, cDNA Synthesis, and Quantitative Real-time PCR—For 

experiments with application of ODNs in mice and adoptive transfer of pDCs, the corneal 

epithelium was separated from the stroma as described above. RNA was extracted from TGs, 

dLNs, whole corneas, and corneal stromas with RNeasy Plus Universal Mini kit (QIAGEN, 

Germantown, MD). For in vitro experiments, cells were collected after 24-h culture and 

RNA was extracted via SingleShot Cell Lysis (Bio-Rad Laboratories, Hercules, CA). cDNA 

was synthetized using iScript cDNA synthesis kit (Bio-Rad Laboratories). For samples 

obtained from in vitro culture and adoptive transfer studies, cDNA was pre-amplified using 

SsoAdvanced PreAmp Supermix (Bio-Rad Laboratories) according to the manufacturer’s 

instructions. For single cell qRT-PCR, 100 corneal GFP+ pDCs, naïve splenic pDCs, and 

macrophages were lyzed via REPLI-g Cell WGA & WTA kit (QIAGEN) according to 

manufacturer’s instructions. qRT-PCR was carried out in triplicates using the SYBR Premix 

EX TaqII (Takara, Japan) or SsoAdvanced Universal SYBR Green Supermix (Bio-Rad 

Laboratories), and analyzed using a Bio-Rad iCycler iQ thermocycler (Bio-Rad 

Laboratories). The sequence of primers used is available in Table S1. Relative fold changes 

are reported using delta-delta cycle threshold (ΔΔCt) method.
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Corneal ELISA—For experiments using ODN, the epithelium was removed. Whole 

corneas and corneal stromas were lysed in tissue protein extraction reagent T-PER (Thermo 

Fisher Scientific) and homogenized by gentleMACS Dissociator (Miltenyi Biotec). IFN-α 
protein levels were measured via mouse IFN-α ELISA kit (BMS6027; eBioscience).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using SPSS 16.0 (SPSS Inc., Chicago, IL). Student’s t test 

was used for comparing means between two groups and one-way ANOVA with Bonferroni’s 

or LSD post hoc test was used for comparisons among three or more groups, where 

appropriate. Chi-square test was used for comparing qualitative variables. Kaplan-Meier 

curve with log-rank test was used in survival analysis. The number of experiments and mice 

are indicated in the individual Figure Legends. p < 0.05 was considered statistically 

significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The cornea, as a peripheral barrier, hosts resident pDCs during steady state

• Local pDC depletion enhances HSV-1 keratitis severity, nerve damage, and 

viral spread

• pDCs secrete IFN-α via TLR9 and preserve Tregs in the dLNs in acute 

HSV-1 keratitis

• pDCs may protect the cornea from clinical signs of primary HSV-1 corneal 

infection
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Figure 1. Presence of pDCs in Naïve Corneas and Alterations in Their Density upon Sterile 
Inflammation and Acute HSV-1 Keratitis
(A and B) Flow cytometric analysis of pooled corneal single-cell suspensions of naïve mice 

(n = 15–20 corneas) and 3 days post-thermal cautery (n = 4–8 corneas). (A) Flow cytometry 

density plots illustrating PDCA-1+ CD45R/B220+ cells among CD45+ cells in naïve and 

inflamed corneas. Numbers represent the frequency of CD45+ PDCA-1+ CD45R/B220+ 

cells among total corneal single cells, and parentheses show the relative frequency of CD45+ 

PDCA-1+ CD45R/B220+ cells among CD45+ cells. (B) Flow cytometric histograms on the 

phenotype of CD45+ PDCA-1+ CD45R/B220+ cells in naïve and inflamed corneas. Depicted 

flow cytometry data are representative of three independent experiments.

(C and D) Representative confocal micrograph of freshly excised unfixed corneas of DPE-

GFP × RAG-1−/− mice with GFP-tagged pDCs in the center (C) and periphery (D) of naïve 

corneas. Images are representative of n = 3 mice.
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(E) Flow cytometric histograms showing phenotype of GFP-tagged cells in the cornea of 

DPE-GFP × RAG-1−/− mice on day 3 following thermal cautery. Depicted flow cytometry 

data are representative of three independent experiments.

(F) TEM of a resident corneal pDC in a naïve WT C57BL/6 mouse (magnification 7,500x). 

White arrowhead, cell body; N, nucleus; white asterisk, cell processes extending from cell 

body.

(G-I) MPM of freshly excised corneas. (G) Stub-like extensions from cell bodies (asterisks) 

depicted in naïve DPE-GFP × RAG-1−/− mice. (H) A corneal cDC in a naïve CD11c-GFP-

DTR mouse. (I) MPM of freshly excised inflamed cornea 3-days post-thermal cautery in 

DPE-GFP × RAG-1−/− mice. Dendritiform processes (white arrows) and cell body (white 

arrowheads) are depicted. Another population of pDCs with round cell bodies without 

dendritiform processes (red arrowheads) is depicted as well.

(J) Single-cell PCR on GFP-tagged pDCs from naïve corneas of DPE-GFP × RAG-1−/− 

mice in comparison with naïve WT C57BL/6 splenic PDCA-1+ CD45R/B220+ Siglec-H+ 

pDCs and F4/80+ macrophages for mRNA levels of TLR7 and 9. Data represent three 

independent experiments.

(K and L). Flow cytometric analysis of single-cell suspension of corneas of sham-infected (n 

= 15–20 pooled corneas) and HSV-1-infected (n = 4–8 pooled corneas) mice. (K) Density 

plots showing PDCA-1+ CD45R/B220+ cells among CD45+ cells. Numbers represent the 

frequency of CD45+ PDCA-1+ CD45R/B220+ cells among total corneal single cells, and 

parenthesis demonstrate relative frequency of CD45+ PDCA-1+ CD45R/B220+ cells among 

CD45+ cells. (L) Flow cytometric histograms on the phenotype of CD45+ PDCA-1+ 

CD45R/B220+ cells. Depicted flow cytometry data are representative of three independent 

experiments.

Scale bars: 50 μm (C, D, and I), 12 μm (G and H), and 5 μm (F). pDC, plasmacytoid 

dendritic cell; N, cell nucleus; G, Golgi apparatus; white asterisk, thick process; white 

arrowhead, elongated cell body; red arrowhead, round cell body; white arrow, thin 

dendritiform process. Bars denote SD. *p < 0.05, **p < 0.01, and ***p < 0.001.
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Figure 2. Assessment of the Kinetics of pDCs in Naïve Corneas and following Sterile 
Inflammation and HSV-1 Keratitis
(A) Representative tracking of GFP-tagged pDCs generated by offline analysis of 4D 

intravital microscopy on naïve corneas, 3 days post-thermal cautery, 7 days following suture 

placement, and 5 days after 2 × 106 PFU McKrae HSV-1-inoculated corneas of DPE-GFP × 

RAG-1−/− mice (n = 3–5/condition). Scale bar: 50 μm.

(B-D) Representative trajectories of individual pDCs following the alignment of their 

starting positions (B). Track displacement length (C) and mean speed (D) of pDCs in 

aforementioned conditions. Each dot represents one cell.

Bars denote SD. **p < 0.01 and ***p < 0.001.
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Figure 3. Local pDCs Depletion Is Associated with Severe HSV-1 Keratitis, Increased Corneal 
Damage, and Corneal Nerve Infection
(A and B) Representative image of naïve cornea (left), sham-depleted HSV-1-infected 

(middle), and pDC-depleted HSV-1-infected (right) corneas on day 5 post-inoculation (A). 

Quantification of clinical keratitis severity (n = 5/time point; B).

(C-F) Representative confocal micrographs of whole-mounted corneas stained with pan-

leukocyte marker CD45 on day 5 post-inoculation (C) and neuronal marker β-III-tubulin on 

day 1 post-inoculation (E) in naïve cornea (left), sham-depleted HSV-1-infected (middle), 

and pDC-depleted HSV-1-infected (right). Quantification of confocal micrographs 

presenting the density of immune cells (D) and corneal nerves (F) (n = 5/time point).
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(G and H) Confocal micrograph of sham- and pDC-depleted corneas depicting co-

localization of HSV-1 and corneal nerves on day 1 post-inoculation (G). Quantification of 

co-localized HSV-1 and corneal nerves at day 1 post-infection (n = 5/group; H).

Scale bars: 100 μm (C, E, and G). Bars denote SD. ***p < 0.001.
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Figure 4. Local pDC Depletion Is Associated with Increased Local HSV-1 Load, Viral 
Transmission to the Trigeminal Ganglion and Draining Lymph Nodes, and Reduced Survival
(A) Viral titers in corneal homogenates of sham- and pDC-depleted corneas (n = 5/time 

point).

(B and C) HSV-1 gB RNA levels in TG (B) and dLN (C) of sham- and pDC-depleted mice 

(n = 6/time point).

(D) Survival analysis of sham- and pDC-depleted mice following HSV-1 inoculation (n = 

20/group).

Bars denote SD. **p < 0.01 and ***p < 0.001.
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Figure 5. pDCs Secrete High Levels of IFN-α in the Cornea via TLR9 Signaling and Promote 
Treg Survival during Acute HSV-1 Keratitis
(A and B) IFN-α mRNA (A) and protein (B) levels in whole corneal homogenates of naïve , 

sham-infected, and HSV-1-infected WT C57BL/6 mice (n = 5/time point).

(C-F) IFN-α mRNA (C) and protein (D) levels on day 3 post-HSV-1 infection in whole 

corneas of naïve, sham-depleted, and pDC-depleted corneas (n = 5/group). IFN-α mRNA 

(E) and protein (F) levels in the corneal stroma of sham- and pDC-depleted corneas 24 h 

after inoculation with 20 μg control ODN or synthetic TLR9 agonist CpG-ODN (n = 5/

group).

(G) In vitro culture of splenic GFP+ pDCs obtained from DPE-GFP × RAG-1−/− mouse 24 h 

after the following treatments: (1) 1 μg/mL control oligonucleotide 1826, (2) 1 μg/mL CpG-

ODN (TLR9 agonist) and 10 μg/mL ODN 2088 control (TLR9 antagonist control), (3) 1 
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μg/mL CpG-ODN and 10 μg/mL ODN 2088 (TLR9 antagonist), (4) 105 PFU UV-irradiated 

McKrae HSV-1 and 10 μg/mL ODN 2088 control, and (5) 105 PFU UV-irradiated McKrae 

HSV-1 and 10 μg/mL ODN 2088. Data represents three independent experiments.

(H and I) Relative mRNA levels of IFN-α (H) and gB (I) in the cornea on day 3following 

HSV-1 inoculation and subconjunctival administration of 10 μg ODN 2088 control (TLR9 

antagonist control) or 10 μg ODN 2088 (TLR9 antagonist; n = 3 or 4/group).

(J and K) Representative confocal micrographs of corneal whole mounts of BDCA-2-DTR 

and Treg FM chimeric mice presenting infiltration of both Foxp3-eGFP+ tdTomato+ Tregs 

(white arrows) and Foxp3-eGFPne9 tdTomato+ ex-Tregs (J). Quantification of ex-Tregs in 

the corneas (n = 7 or 8/group) (K).

(L and M) Representative flow cytometry dot plots of the dLNs of BDCA-2-DTR and Treg 

FM chimeric mice in pDC-depleted mice compared with control chimeric mice receiving 

subconjunctival PBS (L). Representative flow cytometric histograms indicating expression 

of IFN-γ by Foxp3-eGFPneg tdTomato+ ex-Tregs in the dLNs of pDC-depleted and control 

chimeric mice (M).

(N) In vitro co-culture of splenic Tregs and pDCs obtained from Treg FM and WT mice, 

respectively with 105 PFU UV-irradiated McKrae HSV-1 and 1 ng/mLTGF-β1 for 3 days.

Flow cytometry plots are representative of three independent experiments. Scale bar: 50 μm. 

Bars denote SD. *p < 0.05, **p < 0.01, and ***p< 0.001.
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Figure 6. Presence of pDCs Prevents Corneal Manifestation following Inoculation with a Low 
Dose of HSV-1 but Does Not Totally Abolish Viral Transfer to the Trigeminal Ganglion
(A and B) Representative clinical image of sham- and pDC-depleted corneas on day 5 

following low-dose HSV-1 inoculation (A). Quantification of clinical severity of HSV-1 

keratitis (n = 8–12/group) (B).

(C and D) HSV-1 gB RNA in corneal stroma (C) and TG (D) of sham- and pDC-depleted 

corneas on day 5 following low-dose HSV-1 inoculation (n = 3 or 4/group).

Bars denote SD. *p < 0.05, **p < 0.01, and ***p < 0.001.
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Figure 7. Schematic Diagram of Currently Identified Populations of Antigen-Presenting Cells in 
Naïve and Inflamed Corneas.
Distribution of cDCs, macrophages, and pDCs in the anterior stroma of murine corneas 

under steady state as well as following corneal inflammation.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE DENTIFIER

Antibodies

anti-CD16/CD32 Fc receptor (FcR) mAb (2.4G2) Bio × Cell Cat. # BE0307; RRID: AB_2736987

Anti-mouse CD45 (30-F11) BioLegend Cat. # 103106; RRID: AB_312971

Anti-mouse CD45 (30-F11) BioLegend Cat. # 103124; RRID: AB_493533

Anti-mouse CD45 (30-F11) BioLegend Cat. # 103126; RRID: AB_493535

Anti-mouse CD45 (30-F11) BioLegend Cat. # 103108; RRID: AB_312973

Anti-human CD45 (HI30) BioLegend Cat. # 304005; RRID: AB_314393

Anti-mouse PDCA-1 (JF05-1C2.4.1) Miltenyi Biotech Cat. # 130-102-260; RRID: AB_2659966

Anti-mouse PDCA-1 (927) BioLegend Cat. # 127010; RRID: AB_1953285

Anti-mouse PDCA-1 (927) BioLegend Cat. # 127014; RRID: AB_1953289

Anti-mouse/human CD45R/B220 (RA3-6B2) BioLegend Cat. # 103222; RRID: AB_313005

Anti-mouse/human CD45R/B220 (RA3-6B2) BioLegend Cat. # 103205; RRID: AB_312990

Anti-mouse Siglec-H (eBio440c) eBioscience Cat. # 11-0333-82; RRID: AB_837163

Anti-mouse F4/80 (BM8) BioLegend Cat. # 123120; RRID: AB_893479

Anti-mouse F4/80 (BM8) BioLegend Cat. # 123123; RRID: AB_893487

Anti-mouse CD11c (HL3) BD Biosciences Cat. # 561045; RRID: AB_10562385

Anti-mouse Ly6C (HK1.4) BioLegend Cat. # 128011; RRID: AB_1659242

Anti-mouse Gr-1 (RB6-8C5) BioLegend Cat. # 108428; RRID: AB_893558

Anti-mouse Gr-1 (RB6-8C5) BioLegend Cat. # 108423; RRID: AB_2137486

Anti-mouse Ly6G (1A8) BioLegend Cat. # 127616; RRID: AB_1877271

Anti-mouse Ly49Q (clone number 2000000) MBL International 
Corporation,

Cat. # D160-4; RRID: AB_592121

Anti-mouse/human CD11b (M1/70) BD Biosciences Cat. # 553310; RRID: AB_394774

Anti-mouse CD68 (FA-11) BioLegend Cat. # 137015; RRID: AB_2562947

Anti-mouse CD4 (RM4-5) BioLegend Cat. # 100530; RRID: AB_389325

Anti-mouse CD3 (17A2) BioLegend Cat. # 100237; RRID: AB_2562039

Anti-mouse CD19 (6D5) BioLegend Cat. # 115539; RRID: AB_11203538

Anti-mouse IFN-γ (XMG1.2) BioLegend Cat. # 505821; RRID: AB_961361

Anti-human BDCA-2 (201A) BioLegend Cat. # 354217; RRID: AB_2571982

Anti-human BDCA-4 (12C2) BioLegend Cat. # 354507; RRID: AB_2561556

Anti-mouse β-III-Tubulin (TuJ-1) R&D Systems Cat. # NL1195V; RRID: AB_1241877

Anti- HSV-1 (polyclonal) Dako Cat. # F0318; This antibody is no longer available. 
The only one that is available from Dako/Agilent is a 
unconjugated, concentrated form. The available 
antibody details are here: https://www.agilent.com/
store/productDetail.jsp?catalogId=B011402-2

Rat IgG1, κ isotype control BioLegend Cat. # 400425; RRID: AB_893689

Rat IgG2b, κ isotype control BioLegend Cat. # 400608; RRID: AB_326552

Rat IgG2b, κ isotype control BioLegend Cat. # 400627; RRID: AB_493561

Rat IgG2b, κ isotype control BioLegend Cat. # 400626; RRID: AB_389343

Rat IgG2a, κ isotype control BioLegend Cat. # 400522; RRID: AB_326542

Armenian hamster IgG1,λ2 isotype control BD Biosciences Cat. # 553953; RRID: AB_395157
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REAGENT or RESOURCE SOURCE DENTIFIER

Rat IgG2c, κ isotype control BiolLgend Cat. # 400723; RRID: AB_2864281

Rat IgG2b, κ isotype control BioLegend Cat. # 400631; RRID: AB_893693

Rat IgG2b, κ isotype control BD Biosciences Cat. # 553988; RRID: AB_479619

Rat IgG2b, κ isotype control BioLegend Cat. # 400649; RRID: AB_2864282

Rat IgG2a, κ isotype control BioLegend Cat. # 400525; RRID: AB_2864283

Rat IgG2a, κ isotype control BioLegend Cat. # 400526; RRID: AB_2864284

Rat IgG2a, κ isotype control BioLegend Cat. # 400527; RRID: AB_2864285

Rat IgG2a, κ isotype control BioLegend Cat. # 400531; RRID: AB_2864286

Rat IgG2a, κ isotype control BioLegend Cat. # 400539; RRID: AB_11126979

Rat IgG2b, κ isotype control BioLegend Cat. # 400623; RRID: AB_326565

Rat IgG2b, κ isotype control eBioscience Cat. # 17-4031-81; RRID: AB_470175

Rat IgG2a, κ isotype control BioLegend Cat. # 400505; RRID: AB_2736919

Mouse IgG1, κ isotype control BioLegend Cat. # 400107; RRID: AB_326429

Mouse IgG2a, κ isotype control BioLegend Cat. # 400234; RRID: AB_2864287

Mouse IgG2a, κ isotype control BioLegend Cat. # 400231; RRID: AB_2864288

Bacterial and Virus Strains

HSV-1 strain McKrae Gift from Dr. H. Ghiasi (Mott et al., 2007)

Biological Samples

Human corneas Eversight N/A

Chemicals, Peptides, and Recombinant Proteins

LIVE/DEAD Fixable Blue Dead Cell Stain kit, for UV Thermo Fisher Scientific Cat. # L34961

Diphtheria toxin Sigma-Aldrich Cat. # D0564-1MG

TISSEEL fibrin sealant Baxter Healthcare 
Corporation

Cat. # 1506079

Collagenase D Roche Cat. # 11088866001

DNase Roche Cat. # 10104159001

Cytofix/Cytoperm Fixation/Permeabilization Solution 
Kit with BD GolgiPlug

BD Biosciences Cat. # 555028

TGF-β1 eBioscience Cat. # 14-8342-62

Methylcellulose Sigma-Aldrich Cat. # M0512-100G

Crystal violet Sigma-Aldrich Cat. # C3886-25G

Ethylenediaminetetraacetic acid (EDTA) disodium salt 
solution Disodium Salt

Sigma-Aldrich Cat. # E7889

Critical Commercial Assays

IFN-α ELISA kit eBioscience Cat. # BMS6027

RNeasy Plus Universal Mini kit QIAGEN Cat. # 73404

SingleShot Cell Lysis kit Bio-Rad Laboratories Cat. # 1725080

iScript cDNA synthesis kit Bio-Rad Laboratories Cat. # 1708891

SsoAdvanced PreAmp Supermix Bio-Rad Laboratories Cat. # 1725160

REPLI-g Cell WGA & WTA kit QIAGEN Cat. # 150052

SsoAdvanced Universal SYBR Green Supermix Bio-Rad Laboratories Cat. # 1725272

SYBR Premix EX TaqII Takara Cat. # RR081A

Tissue protein extraction reagent (T-PER) Thermo Fisher Scientific Cat. # 78510
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REAGENT or RESOURCE SOURCE DENTIFIER

gentleMACS Dissociator M Tubes Miltenyi Biotec 130-093-236

Experimental Models: Cell Lines

Vero cells Gift from Dr. J. 
Lieberman

(Palliser et al., 2006)

Experimental Models: Organisms/Strains

DPE-GFP × RAG-1−/− Gift from Dr. U. von 
Andrian

(Iparraguirre et al., 2008)

BDCA2-DTR The Jackson Laboratory Stock #: 014176; IMSR_JAX:014176

CD11c-GFP-DTR The Jackson Laboratory Stock #: 004509; IMSR_JAX:004509

Foxp3-eGFP/cre The Jackson Laboratory Stock #: 023161; IMSR_JAX:023161

Rosa-tdTomato The Jackson Laboratory Stock #: 007914; IMSR_JAX:007914

WT C57BL/6 Charles River 
Laboratories International

Strain Code # 027; IMSR_CRL:027

Oligonucleotides

Oligonucleotide 2088 InvivoGen Cat. # tlrl-2088

Oligonucleotide 2088 Control InvivoGen Cat. # tlrl-2088c

Phosphorothioate CpG 1826 oligonucleotide InvivoGen Cat. # tlrl-1826

Control oligonucleotide 1826 InvivoGen Cat. # tlrl-1826c

Primers for qRT-PCR see Table S1 Integrated DNA 
Technologies, Inc.

N/A

Software and Algorithms

FlowJo v9.2 FlowJo LLC. https://www.flowjo.com/; SCR_008520

ImageJ (Schneider et al., 2012) https://imagej.nih.gov/ij/; SCR_003070

NeuronJ (Meijering et al., 2004) https://imagescience.org/meijering/software/neuronj/; 
SCR_002074

Volocity PerkinElmer https://www.perkinelmer.com; SCR_002668

IMARIS Bitplane AG https://imaris.oxinst.com/; SCR_007370

SPSS 16.0 SPSS Inc. Current company: https://www.ibm.com/analytics/
spss-statistics-software; SCR_002865
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