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Simple Summary: Large granular lymphocyte (LGL) leukemia, a lymphoproliferative disease, is
characterized by an increased frequency of large-sized lymphocytes with typical expression of T-cell
receptor (TCR) αβ, CD3, CD8, CD16, CD45RA, and CD57, and with the expansion of one to three
subfamilies of the TCR variable β chain reflecting gene rearrangements. Molecular analysis remains
the gold standard for confirmation of TCR clonality; however, flow cytometry is time and labor
saving, and can be associated with simultaneous investigation of other surface markers. Moreover,
Vβ usage by flow cytometry can be employed for monitoring clonal kinetics during treatment and
follow-up of LGL leukemia patients.

Abstract: Large granular lymphocyte (LGL) leukemia is a lymphoproliferative disorder of mature T or
NK cells frequently associated with autoimmune disorders and other hematological conditions, such
as myelodysplastic syndromes. Immunophenotype of LGL cells is similar to that of effector memory
CD8+ T cells with T-cell receptor (TCR) clonality defined by molecular and/or flow cytometric
analysis. Vβ usage by flow cytometry can identify clonal TCR rearrangements at the protein level,
and is fast, sensitive, and almost always available in every Hematology Center. Moreover, Vβ
usage can be associated with immunophenotypic characterization of LGL clone in a multiparametric
staining, and clonal kinetics can be easily monitored during treatment and follow-up. Finally,
Vβ usage by flow cytometry might identify LGL clones silently underlying other hematological
conditions, and routine characterization of Vβ skewing might identify recurrent TCR rearrangements
that might trigger aberrant immune responses during hematological or autoimmune conditions.

Keywords: T large granular lymphocytic leukemia; clonality; flow cytometry; Vβ usage

1. Introduction

Large granular lymphocyte (LGL) leukemia is a chronic lymphoproliferative disor-
der arising from clonal expansion of mature T or Natural Killer (NK) cells, and accounts
for 2–5% of all cases of non-Hodgkin lymphomas (NHL) in Western countries [1]. LGL
leukemia is considered a bone marrow failure (BMF) syndrome because of its overlap-
ping pathogenesis with other immune-mediated diseases [2], and because LGLs can be
frequently found in patients diagnosed with BMF syndromes, such as pure red cell aplasia
(PRCA) and acquired aplastic anemia (AA) [3]. LGL leukemia of mature T cells is the most
common entity (85% of cases), usually occurring with an indolent clinical course, while
NK-LGL leukemia is rare but aggressive and frequently associated with Epstein–Barr virus
(EBV) infection in young Asian adults [1–8]. LGLs are large-sized (15–18 µm) lymphocytes
with an abundant cytoplasm containing azurophilic granules, and a round or reniform
nucleus with mature chromatin [1]. LGLs can also be found in reactive conditions; however,
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circulating granular lymphocyte frequency is typically < 300 cells/µL, while LGL count
is > 2000 cells/µL during LGL leukemia [1,4,5,9]. In the majority of cases, leukemic cells
display a characteristic phenotype with surface expression of TCR αβ, CD3, CD5dim, CD8,
CD16, CD45RA, and CD57, while cells are negative for CD4, CD27, CD28, and CD45RO,
resembling effector memory and terminal effector memory T cell phenotype [1,7,10]. In
other variants, neoplastic cells can be CD3+CD4+CD8dimCD57+ or CD3+CD4+CD8+CD57+

with various expression of CD56, CD57 and CD16, and in fewer cases leukemic cells are
TCR γδ+ [11–15]. In NK-LGL leukemia, LGLs are positive for CD2, CD3ε, CD8, CD16, and
CD56, while negative for sCD3, CD4, and TCR αβ [16]. T- and NK-LGL cells show restric-
tion (oligoclonality) of T-cell receptor (TCR) or killer immunoglobulin-like receptor (KIR)
repertoire that can be identified by flow cytometry, polymerase chain reaction (PCR), or
next-generation sequencing (NGS) [17]. Clinical features are not specific to LGL leukemia,
as the most common manifestations are neutropenia, anemia, and splenomegaly usually
occurring asymptomatically [1,18–20]. In case of severe neutropenia (absolute neutrophil
count < 0.5 cells/L), patients can experience recurrent oral ulcerations and infections, es-
pecially bacterial, less frequently viral and fungal infections [6,19,21]. In 6–22% of cases,
anemia can be severe (hemoglobin < 8 g/dL) and require transfusions, and can be associ-
ated with autoimmune hemolytic anemia (AIHA) or PRCA [6]. In addition, LGL leukemia
patients frequently have a history of autoimmune disorders, such as rheumatoid arthritis
(RA), or autoimmune endocrinopathies (e.g., thyroiditis) [19,22,23]. Conversely, CD4+ or
CD4+CD8+/− T-LGL leukemia has an indolent course and is frequently characterized by
lymphocytosis with normal hemoglobin and platelet count and by the presence of a second
neoplasms, especially B-cell NHL [24,25].

In this review, we focus on biological significance of LGL clonality and clinical utility
of TCR repertoire investigation by flow cytometry.

2. T-LGL Leukemia Pathogenesis

The exact pathogenesis of LGL leukemia is still unclear. The most accepted hypothesis
is a clonal drift of a T cell population after chronic antigen exposure, as suggested by
cross-reactivity to human T-cell lymphotropic virus 1 (HTLV-1) epitopes or a frequent
concomitant chronic viral infection in LGL leukemia patients, especially EBV, hepatitis
C virus (HCV), or cytomegalovirus (CMV), especially in CD4+ T-LGL [1,26–29]. Despite
there being no conclusive evidence that LGLs are activated by known viral antigens,
immunohistochemical studies report clusters of LGLs in close contact to bone marrow
(BM)-resident dendritic cells (DCs), supporting the hypothesis of a chronic self-antigen
stimulation [18,30,31]. Once activated, LGLs expand under interleukin (IL)-15 and platelet-
derived growth factor (PDGF) stimulation. IL-15, a proinflammatory cytokine, is overex-
pressed in LGL leukemia and drives clonal transformation of normal activated cytotoxic T
cells, likely through centrosome alterations, aneuploidy, and increased resistance to apop-
tosis [2,32–34]. In addition, IL-15 induces transcription of several anti-apoptotic proteins,
such as Bcl-2, while increases proteasome-mediated degradation of pro-apoptotic factors,
such as Bid, resulting in increased cell survival [35]. IL-15 also upregulates MYC, AURKA,
and AURKB, responsible for centrosome alterations, and DNMT3B, ultimately leading
to hypermethylation of tumor suppressor genes [36,37]. However, pathogenesis of LGL
leukemia is not driven only by chronic antigen and proinflammatory cytokine stimulation,
but also by constitutive activation of Janus kinase (JAK)-signal transducer and activator of
transcription (STAT) signaling pathway and resistance to Fas/Fas-ligand (Fas-L)-mediated
apoptosis [1,2,38]. IL-6, another proinflammatory cytokine increased in the sera of LGL
leukemia patients, is the main activator of STAT3, and is supposed to be mostly released by
DCs [39,40]. Upon chronic IL-6 stimulation, LGLs show augmented expression of Mcl-1,
an anti-apoptotic protein of the Bcl-2 family [40]. On the other hand, somatic mutations
in STAT3 gene can also induce constitutive activation of JAK/STAT pathway, as well as
mutations on the STAT5b gene, more frequently described in CD4+ T-LGL leukemia [41–43].
Soluble Fas-L (sFas-L), increased in the sera of LGL leukemia patients, especially those
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with CD8+CD16+CD56− LGLs and STAT3 hyperactivation, functions as a decoy receptor
preventing Fas-mediated apoptosis [38,44–46]. FasL is also involved in development of
neutropenia and its release is STAT3-dependent. Indeed, FasL expression is highly related
to STAT3 activation status and CD8 LGL phenotype, while negatively influenced by miR-
146b expression, frequently elevated in the plasma of AA and negatively correlated with
absolute reticulocyte count [47,48]. In LGL leukemia, the pro-/anti-apoptotic balance is
impaired in favor of increased resistance to cell death by neoplastic clones, also mediated
by enhanced phosphoinositide 3-kinase (PI3K)/Akt signaling pathway activation through
RANTES (also known as chemokine (C-C motif) ligand 5 or CCL5), IL-18, and macrophage
inflammatory protein (MIP)-1b stimulation [33,39]. In addition, activation of tumor necro-
sis factor–related apoptosis-inducing ligand (TRAIL) receptor induces NF-κB signaling
pathway, contributing to resistance to apoptosis in leukemic cells [49]. Neutropenia is a
frequent clinical finding in LGL leukemia patients; however, pathogenetic mechanisms are
still unclear and likely involve peripheral or intramedullary neutrophil destruction, such
as FasL-mediated neutrophil apoptosis [5,50]. Indeed, the BM is frequently hypercellular
with a left-shifted myeloid maturation, while less often hypocellular with reduced mature
neutrophils, suggesting a compensatory myelopoiesis because of increased destruction [50].

3. TCR Clonality

Reactive LGLs can be found at low frequencies in healthy subjects after viral infections;
however, in these cases, LGLs are polyclonal while neoplastic clones are oligo- or mono-
clonal [1]. The terms “polyclonal” or “oligo/monoclonal” refer to the diversity of TCR or
B-cell receptor (BCR) repertoire in T- or B-cell pool of an individual, respectively [51,52].
For T lymphocytes, oligoclonality is defined based on the diversity of TCR repertoire
based on distribution of variable (V) β and/or α chain rearrangements, or on skewing
of a particular region namely the complementarity-determining region (CDR) 3 [53–56].
In other words, clonality refers to the ability of a random pool of T cells, either CD4+ or
CD8+ lymphocytes, to recognize a large number of antigens (polyclonality) or limited
ones (oligoclonality) [57]. TCR Vβ repertoire can be infinitely diverse because T cells can
theoretically recognize any known or novel self- and non-self-antigens. The majority of
T cells carry a TCR composed by an α and a β chain assembled after a complex gene
locus rearrangement known as V(D)J rearrangement [57–64]. In this process, a random
Vβ locus out of 52 available (grouped in 22 functional families) is sequentially rearranged
with the Dβ1 locus, a random Jβ1 out of six, a Cβ1 and a Dβ2 loci, a random Jβ2 region
out of seven available, and a Cβ2 locus. After this complex rearrangement, additional
random modifications are added by a terminal deoxynucleotidyl transferase (TdT) en-
zyme between the end of the Vβ1 and the beginning of Jβ1 (the CDR3 region) [62–64].
V(D)J recombination and TdT modifications ideally produce up to 1018 diverse TCRs
meaning that an individual might recognize up to 1018 diverse antigens [65]. In early
phases of infections, polyclonal CD4+CD28+ and CD8+CD28+ T cells are activated and
expand to increase the chance of having a functional antigen-specific immune clone that
can fight pathogens [66,67]. If this clone can efficiently clear the infectious agent, high
antigen-specific CD8+CD28−CD57+ effector memory T cells become immunodominant
and constitute an oligoclonal pool of memory T cells [67]. Oligoclonal expansion of CD8+

T lymphocytes is observed in several autoimmune diseases and cancers and is related to
poor survival [68,69]. Moreover, oligoclonality strongly suggests an antigen-driven T cell
activation, as also described in AA, where CD8+ effector memory cells show oligoclonality
with 1–3 immunodominant clones private to the disease [53,70–72]. Those clonotypes can
be also present at very low frequencies in healthy individuals, supporting the hypothesis
of an immune response to common epitopes [53]. Interestingly, LGL phenotype resembles
the immunophenotype of effector memory T cells with CD3, CD4 or CD8, CD57 positivity,
clonal expansion of a particular immunodominant clone, and gene expression profiling
similar to that reported in healthy counterpart [73]. TCR clonality mirrors the oligoclonal
drift that characterized T-LGL cell expansion likely driven by chronic antigen stimulation,
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IL-15 and PDGF overstimulation, and acquisition of somatic mutations in STAT3 or STAT5b
genes [1,32,33]. Despite common epitopes are believed to trigger autoimmune responses
against hematopoietic stem and progenitor cells (HSPCs) in T-LGL leukemia and other
marrow failure syndromes, lack of recurrent Vβ family or CDR3 sequence expansion
among patients suggests that clonotypes are private to each disease and that uncommon
elusive chronic antigens might drive monoclonal expansion of leukemic cells [74,75]. CDR3
sequences might be shared within patients with marrow failure syndromes and between
patients with different diseases and healthy subjects at very low frequencies, as described
for paroxysmal nocturnal hemoglobinuria (PNH)-related clonotypes found at very low
frequencies in patients with AA and healthy controls [53]. Therefore, TCR clonality in
effector memory-like T cells indicates a chronic antigen stimulation in disease initiation;
however, whether a common or an elusive infrequent antigen triggers this expansion
remains an open question.

4. Flow Cytometric Vβ Usage

The diagnostic definition of clonality is still challenging because current technologies
alone cannot conclusively define TCR oligo/monoclonality or cannot be applied in rou-
tine diagnostic settings [74–76]. For example, Southern blot has been the gold standard
until a few decades ago, because it can ideally identify every TCR gene rearrangement
if appropriate probes and restriction enzymes are used; however, Southern blot is time
and labor consuming and high-quality DNA is required [77,78]. PCR cannot cover all
possible TCR αβ gene rearrangements and is usually applied for the detection of a limited
number of sequences, or for TCR gamma (TCRG) rearrangements, which are more limited
than those of TCRB gene [79,80]. Sanger sequencing and spectratyping of CDR3 are also
old-fashioned techniques because of their impracticability to individual sequencing or
on a large number of T cell clones [75]. In recent years, deep next-generation sequencing
(NGS) has completely changed the analysis of TCR repertoire because a single clone with a
unique rearrangement and CDR3 sequence can be detected, even at very low frequency;
however, TCR repertoire by NGS is still expensive and requires high-quality DNA and
bioinformatics competence for analysis of high-throughput data [53,75,81–83]. Therefore,
despite its relevance in research settings, TCR repertoire by NGS is not yet applicable
to routine diagnostic analysis. The introduction of TCR Vβ monoclonal antibodies has
markedly improved diagnostic definition of clonality in LGL leukemia [76,84,85]. Current
Vβ antibodies cover more than 65% of all Vβ domains and can be grouped in 22 families
(Table 1) [86,87].

Table 1. Antibodies for each Vβ family.

Vβ Clone Manufacturer Vβ (IMGT)

Vβ1 BL37.2 Beckman Coulter (Brea, CA, US),
BioLegend (San Diego, CA, US) TRBV9

Vβ2
MPB2/D5 Beckman Coulter

TRBV20-1REA654 Miltenyi Biotec (Auburn, CA, US)

Vβ3

CH92 Beckman Coulter

TRBV28
JOVI.3 BD Biosciences (Franklin Lakes, NJ, US)

1C1 Invitrogen (Waltham, MA, US)
8F10 Abcam (Cambridge, UK)

Vβ4 WJF24 Beckman Coulter TRBV29-1

Vβ5.1

LC4 Beckman Coulter

TRBV5-1
MEM-262 BioLegend
IMMU157 BD Biosciences, Invitrogen
REA1062 Miltenyi Biotec
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Table 1. Cont.

Vβ Clone Manufacturer Vβ (IMGT)

Vβ5.2
4H11 T-cell Sciences (Newburyport, MA, US)

TRBV5-636213 Beckman Coulter
MEM-262 BioLegend

Vβ5.3

4H11 T-cell Sciences

TRBV5-5
3D11 Beckman Coulter

MEM-262 BioLegend
REA670 Miltenyi Biotec

Vβ6.1 CRI304.3 Immunotec (Vaudreuli-Dorion, Canada)
Vβ6.7 OT145 Gentaur (Kampenhout, Belgium)

Vβ7.1
Zoe Beckman Coulter TRBV4-1,

TRBV4-2,
TRBV4-3

ZOE5.1 BioLegend
REA871 Miltenyi Biotec

Vβ7.2
ZIZOU4 Beckman Coulter

TRBV4-3REA677 Miltenyi Biotec

Vβ8
56C5.2 Beckman Coulter

TRBV12-3,
TRBV12-4

JR-2 BioLegend, BD Biosciences. Invitrogen
MX-6 Invitrogen

Vβ9
FIN9 Beckman Coulter

TRBV3-1MKB1 BioLegend
AMKB1-2 Invitrogen

Vβ11
C21 Beckman Coulter

TRBV25-1REA559 Miltenyi Biotec

Vβ12
VER2.32 Beckman Coulter

TRBV10-3S511 Invitrogen

Vβ13.1

BAM13 T-cell Sciences
TRBV6-5,
TRBV6-6,
TRBV6-9

IMMU222 Beckman Coulter
H131 BioLegend, Invitrogen, Abcam

REA560 Miltenyi Biotec
Vβ13.2 H132 Beckman Coulter, BioLegend, Invitrogen TRBV6-2
Vβ13.3 BAM13 T-cell Sciences

Vβ13.6
JU74.3 Beckman Coulter

TRBV6-6REA554 Miltenyi Biotec

Vβ14
CAS1.1.3 Beckman Coulter

TRBV27REA557 Miltenyi Biotec

Vβ16
TAMAYA1.2 Beckman Coulter

TRBV14REA553 Miltenyi Biotec

Vβ17
E17.5F3 Beckman Coulter

TRBV19REA915 Miltenyi Biotec
Vβ18 BA62.6 Beckman Coulter TRBV18
Vβ20 ELL1.4 Beckman Coulter TRBV30

Vβ21.3
IG125 Beckman Coulter

TRBV11-2REA894 Miltenyi Biotec
Vβ22 IMMU546 Beckman Coulter TRBV2

Vβ23
AF23 Beckman Coulter

TRBV13αHUT7 BioLegend
REA497 Miltenyi Biotec

In available kits, antibodies are conjugated to fluorescein isothiocyanate (FITC), phy-
coerythrin (PE), or tandem FITC/PE; therefore, sample acquisition requires instruments
equipped just with a blue laser (488 nm excitation) and sensors for detection of FITC and
PE emission wavelengths (peaks at 525 nm and 574 nm, respectively) [45,68]. Vβ usage
by flow cytometry also allows absolute clone count and simultaneous characterization of
TCR Vβ distribution in different lymphocyte subsets using appropriate antibody combi-
nations [74]. For example, TCR Vβ usage has been studied on CD3+, CD4+, and CD8+ T
cells [74,88,89] in LGL leukemia patients, or in naïve, effector, and memory lymphocytes in
healthy subjects [57], or in total CD4+ and CD8+, effector CD4+CD28+ and CD8+CD28+,
and effector memory CD4+CD28−CD57+ and CD8+CD28−CD57+ cells in AA [53,70,71].
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When a known immunodominant clone has to be monitored (e.g., during treatment or
follow-up), immunophenotype of LGLs can be combined with conjugated antibody cor-
responding to the expanded Vβ family in a multiparametric staining [74]; however, the
fluorophore choice for some Vβ family is constrained, as Vβ4 is conjugated only with
tandem FITC/PE, Vβ6.1, Vβ6.7, Vβ12, Vβ13.3, and Vβ20 only with FITC, and Vβ13.2
only conjugated with PE (Figure 1). Antibodies conjugated with fluorophores excited by
violet (405 nm) and ultraviolet (320 nm) lasers are available for Vβ3, Vβ5.1, and Vβ8, and
conjugated in VioBlue (excitation 400 nm/emission 452 nm) for Vβ2, Vβ11, Vβ13.1, and
Vβ21.3. Recombinant antibodies are also available for Vβ2, Vβ5.1, Vβ5.3, Vβ7.1, Vβ7.2,
Vβ11, Vβ13.1, Vβ13.6, Vβ14, Vβ16, Vβ17, Vβ21.3, and Vβ23. The advantages of recom-
binant antibodies are reduced lot-to-lot variability and higher purity, because antibodies
are produced using a specific DNA sequence for one type of heavy and light chain using
mammalian cell lines. Moreover, constant region is the same specifically mutated IgG1
sequence requiring only one type of isotype control [90].
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Figure 1. Conjugated antibodies for each Vβ family available for flow cytometry and relative fluorophores (X).

The presence of 1–3 immunodominant Vβ clones does not prove clonality and the
diagnosis of LGL leukemia, because flow cytometry results should be validated by DNA
sequencing of both Vα and Vβ regions and supported by clinical manifestations and
immunophenotype compatible with LGL leukemia [1,74,91]. Vβ skewing can be also fre-
quently found in elderly (more than 40% of healthy subjects aged 45 years and older) caused
by infections occurring during the lifetime without any clinical significance [53,92–94].
Therefore, Vβ usage by flow cytometry should be defined based on mean Vβ frequencies
detected in a pool of healthy subjects used as a reference range, and skewing should be
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defined when the frequency of a particular Vβ family is higher than the mean + 3 standard
deviations (SDs) in healthy subjects [53,74]. Despite those limitations, flow cytometric Vβ
usage analysis could be a rapid and effective screening tool for identification of clonal
LGLs, especially for differential diagnosis with other clonal benign disorders or reactive
conditions [1,74]. Moreover, once clonality is confirmed by molecular analysis that is time
and labor consuming and performed in specialized laboratories, flow cytometry Vβ usage
could be employed for monitoring the leukemic clone expansion during treatment and
follow-up using a fast and specific technique that is commonly available in the majority of
Hematology Centers [74].

5. Literature Search

Relevant literature using the key word “large granular lymphocyte leukemia” was
searched in PubMed database from 1977 to July 2021. Limiting factors were “large granular
lymphocyte leukemia”, and full text available in English language. Two investigators
independently reviewed the reference list for potential eligible manuscripts, and selected
articles were then reviewed independently for inclusion in the analysis. Studies were
included when: (1) the year of publication was between 2011 and 2021; (2) the studies were
conducted on humans and reported clinical data and Vβ usage by flow cytometry; and
(3) the studies were on T-LGL leukemia (Figure 2).
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Pubmed. After identification of 1172 articles, records were screened by year of publication, title, and
text eligibility. A total of 20 articles were eligible for further analysis.

From selected articles (n = 20), data were collected into a standardized form including
publication year, source, number of total patients and divided by sex, number of subjects
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with autoimmune disorders, hematological malignancies, or cancers, and Vβ usage by flow
cytometry (Table 2) [41,42,46,75,76,88–107]. A total of 533 T-LGL leukemia patients were
evaluable for Vβ usage analysis, and sex was available in 524 subjects: 308 of them were
males (58.8%) and 216 females (41.2%) with a male:female ratio of 1.4, as already described
in smaller cohorts [1]. Autoimmune disorders were reported in 136 subjects (25.5% of
cases) and hematological disorders or cancers in 189 patients (35.5%). RA was diagnosed
in 24 subjects (4.5% of total cases and 17.6% of patients with autoimmune disorders), and
positivity for anti-nuclear antibodies (ANA) or rheumatoid factor (RF) was reported in
58 (10.9% of total cases and 42.6% of subjects with autoimmune disorders) and 16 subjects
(3% of total cases and 11.8% of patients with autoimmune disorders), respectively. Other
autoimmune disorders were collagenosis, myositis, autoimmune thyroiditis (n = 6; 1%
of total cases), and autoimmune polyglandular syndrome type 1. Among hematological
diseases, PRCA was the most frequent disorder associated with T-LGL leukemia (n = 45;
8.4% of total cases), followed by plasma cell disorders (n = 25; 4.7% of total cases), espe-
cially monoclonal gammopathy of uncertain significance (MGUS), and myelodysplastic
syndromes (MDS; n = 21; 3.9% of total cases). Other reported hematological conditions
associated with T-LGL leukemia were: AIHA (n = 10; 1.9% of total cases); T- and B-cell NHL
(n = 9; 1.7% of total cases); acute leukemias, both myeloid and lymphoblastic; immune
thrombocytopenic purpura (ITP); or AA. Solid neoplasms were also frequently associ-
ated with T-LGL leukemia (n = 52; 9.8% of total cases). Reported frequencies are slightly
higher especially for AIHA, ITP, and RA likely because Vβ usage by flow cytometry is not
routinely performed, and TCR clonality is mostly confirmed by PCR without indicating
expanded Vβ family but only reporting LGL phenotype and clinical manifestations [18].

Table 2. Characteristics of included studies.

Study Year Journal Total Cases M/F
Autoimmune

Disorders
(n)

Hematological
Disorders

(n)

Langerak et al. [76] 2001 Blood 23 13/10 N.R. N.R.
Stalika et al. [95] 2010 Hematology Oncology 1 1/- MCL = 1

Garban et al. [96] 2012 Annals of Oncology 12 N.R.
AIL-T = 1

PTCL-NOS = 1

Hsieh et al. [89] 2012
International Journal of
Laboratory Hematology 17 12/5

RF = 2
RA = 1

Koskela et al. [97] 2012 New England Journal of Medicine 77 52/25 RA = 9
PRCA = 5
MGUS = 5

Others = 4 CLL = 1
Clemente et al. [75] 2013 Blood 11 7/4 RA = 1 N.R.

Andersson et al. [98] 2013 Blood Cancer Journal 3 2/1 None MGUS = 1
Rajala et al. [41] 2013 Blood 4 2/2 Collagenosis = 1 AIHA + MGUS = 1

Papalexandri et al. [99] 2013 Bone Marrow Transplantation 2 1/1
AML = 1
ALL = 1

Stalika et al. [100] 2014 Leukemia and Lymphoma 2 2/- ANA = 1 NHL = 1
Andersson et al. [42] 2016 Blood 11 4/7

Singleton et al. [101] 2015
American Journal of
Clinical Pathology 54 27/27

RA = 5
NHL = 8
MDS = 5

ANA = 1
MPN = 2
AML = 1

Others = 2
AA = 1

Others/cancers = 7

Andersson et al. [88] 2016 Leukemia 4 2/2 Hypergam-
maglobulinemia = 1

Qiu et al. [102] 2016 Oncotarget 36 20/16
RF = 3

PRCA = 18ANA = 7
Peng et al. [103] 2016 Hematology 10 9/1 PRCA = 10

Awada et al. [104] 2019 British Journal of Haematology 15 9/6

NHL = 3
ALL = 1
AA = 1

CML = 1

Zhu et al. [105] 2020 Leukemia Research 108 51/57
RF = 11 ITP = 3
RA = 3

PRCA = 22ANA = 49

Minish et al. [106] 2020 Cureus 1 1/-
Melanoma +

squamous cell
carcinoma = 1

Barilà et al. [46] 2020 Leukemia 129 72/50

Autoimmune
thyroiditis = 6

AIHA = 9
Plasma cell

disorders = 11
RA = 5 MDS = 7

APS-1 = 2 HCL = 1
Others = 22 Cancers = 44
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Table 2. Cont.

Study Year Journal Total Cases M/F
Autoimmune

Disorders
(n)

Hematological
Disorders

(n)

Durrani et al. [107] 2020 Leukemia 13 11/2
AML = 4
MDS = 8

CMML = 1

Abbreviations. N.R., not reported; MCL, mantle cell lymphoma; AIL-T, angioimmunoblastic T-cell lymphoma; PTCL-NOS, peripheral
T-cell lymphoma not-otherwise specified; RF, rheumatoid factor; RA, rheumatoid arthritis; PRCA, pure red cell aplasia; MGUS, monoclonal
gammopathy of uncertain significance; CLL, chronic lymphocytic leukemia; AIHA, autoimmune hemolytic anemia; AML, acute myeloid
leukemia; ALL, acute lymphoblastic leukemia; ANA, anti-nucleus antibodies; NHL, non-Hodgkin lymphomas; MDS, myelodysplastic
syndromes; MPN, myeloproliferative neoplasms; AA, aplastic anemia; CML, chronic myeloid leukemia; ITP, immune thrombocytopenic
purpura; HCL, hairy cell leukemia; CMML, chronic myelomonocytic leukemia. APS-1, autoimmune polyglandular syndrome type 1.

6. Vβ Usage in T-LGL Leukemia

TCR clonality is a major criterion for LGL leukemia diagnosis and can be defined using
a molecular or flow cytometric analysis, as described above, and clonal kinetics have shown
clinical utility in monitoring disease progression and responsiveness to treatment [74]. TCR
repertoire is heterogeneous among patients, and there is no recurrent Vβ expansion across
studies [53,75]. However, because of the lack of a consensus on TCR clonality detection
methodology, comparison of Vβ skewing among cohorts, case series, or case reports is
difficult, especially when clonality is reported as the nucleotide length distribution by PCR
without reporting specific TCRBV or TCRBJ genes involved. Indeed, among more than
700 studies between 2001 and 2021, only 20 were selected for data comparison of Vβ usage
by flow cytometry. When studies were analyzed independently, no recurrent Vβ family was
found between LGL leukemia patients. Of total 533 evaluable patients, the presence of at
least one immunodominant clone by flow cytometry was described in 265 subjects (49.7%),
and 1–3 Vβ subgroups were expanded in 12 of them (4.5% of cases). Among studies, the
most frequent expanded Vβ family was the Vβ13.1 (n = 33; 12.5% of cases), followed by
Vβ3 (n = 29; 10.9%), Vβ17 (n = 24; 9.1%), and Vβ2 and Vβ14 (both n = 22; 8.3% of total cases)
(Figure 3). Vβ8 represented the immunodominant clone in 6.8% of cases (n = 18), and Vβ1
in 5.7% (n = 15). Other Vβ families were expanded in less than 5% of cases, and in less than
1% of subjects (case reports) for Vβ5.2, Vβ5.3, Vβ6.1, Vβ6.7, Vβ11, and Vβ13.3. Of total
cases, the immunophenotype of LGLs was detailed only in 520 subjects, and 89 cases (17.1%)
were CD4+ T-LGLs, 19 (3.7%) CD4+CD8+/dim, and the remaining cases were CD8+ T-LGLs.
Of the total CD4+ T-LGL leukemia cases, in 48 of them, Vβ usage was described in detail,
and there was no Vβ skewing in most cases (n = 20; 41.7%) or Vβ13.1 expansion (n = 16;
33.3%). Other reported expanded Vβ families were: Vβ3; Vβ8; Vβ17; and anecdotical Vβ1,
Vβ2, Vβ5.2/5.3, Vβ12.2, Vβ14, and Vβ22. Of the total 33 cases with expanded Vβ13.1,
16 of them (48.5%) were CD4+ T-LGLs, three (9.1%) were CD4+CD8+, and the remaining
14 cases (42.4%) were CD8+ T-LGLs. These cumulative data are similar to those reported in
single case series showing a preferential Vβ13.1 expansion in CD4+ T-LGL leukemia [46,75].
Vβ13.1 family expansion is recurrent also during infectious diseases, especially CMV and
human immunodeficiency virus (HIV) [108–110]. In the latter, Vβ13.1 expansion is more
frequently found in CD4+CD8dim T cells expressing the killer lectin-like receptor NKG2D,
a CD4+ T cell subset present in RA, human T-lymphotropic virus 1-associated myelopathy,
and Wegener granulomatosis [108,111]. Interestingly, these CD4+CD8dimNKG2D+ T cells
bearing the HLA-DRB1*0701 allele and restricted to Vβ13.1 have a highly homogeneous
TCR repertoire [110]. Moreover, CD4+CD8dimNKG2D+ T cells can produce FasL while
protected from Fas-mediated growth arrest because of NKG2D protective functions [112].
Therefore, the presence of Vβ13.1 expansion in CD4+ leukemic cells might add evidence to
the antigen-driven clonal drift pathogenetic theory in T-LGL leukemia.
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An exact association between Vβ usage and underlying hematological disease rather
than T-LGL leukemia was identified in only 32 subjects out of 189 patients (16.9% of
hematological cases). There was no recurrent Vβ expansion, despite Vβ14 represented the
immunodominant clone in six cases (18.8% of hematological cases). Vβ14 was not asso-
ciated with a specific disease, as it was expanded in subjects with MDS, acute leukemias,
NHL, or chronic myeloid leukemia; however, the number of evaluable patients was too
small to draw any significant conclusion. Conversely, these data could be a starting point
for implementing Vβ usage analysis by flow cytometry in subjects with hematological
conditions with concomitant increased LGL count. Indeed, case series report concomitant
Vβ skewing in MDS patients [107]; however, the number of studied patients is still lim-
ited for identification of a recurrent Vβ expansion in a specific MDS group, or if clonal
kinetics might be related to disease progression to acute myeloid leukemia (AML). The
concept that Vβ skewing is patient- or disease-specific is probably an evolving concept,
especially in the NGS era. Sequencing can identify even one TCR rearrangement, and
has shown that, despite clonotypes being private to each disease (e.g., T-LGL leukemia
or AA), those expanded CDR3 sequences might be found at very low frequencies even in
healthy subjects [53,75]. For example, PNH-related clonotypes have been described at low
frequencies in both AA and healthy subjects supporting the hypothesis of an autologous
immune attack against a self-antigen on hematopoietic stem cells [53,113].

7. Conclusions

LGL leukemia is classified as a lymphoproliferative disorder of mature T or NK cells;
however, this clinical entity is considered among other BMF syndromes and is frequently
associated with autoimmune disorders and other benign and malignant hematological con-
ditions, such as PRCA or acute leukemias [1–3]. The immunophenotype of leukemic cells
resembles that typical of effector memory CD8+ T cells with aberrancy and TCR clonality,
mostly TCR αβ and less commonly TCR γδ clonal rearrangements [1,73]. Demonstration of
TCR clonality by molecular and/or flow cytometric analysis together with clinical manifes-
tations and increased LGL count by cytology is required for the correct diagnostic definition
of this disease, as LGLs can also be present in reactive conditions without any clinical
significance [74,92–96]. Molecular analysis is more accurate and can identify every TCR
rearrangement, even at very low frequencies, by using novel deep sequencing technologies
(e.g., NGS or TCR repertoire coupled with single-cell RNA sequencing) [75,114]. However,
these methods are time and labor consuming and high-quality DNA is required [74,75]. Vβ
usage by flow cytometry can identify clonal TCR rearrangements at protein level by recog-
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nition of 22 Vβ protein families without differentiating within multiple rearrangements that
can occur in each given family [53,75]. Despite flow cytometry not being explored as deeply
in TCR repertoire analysis as NGS, this technique is fast, sensitive, and almost always
available in every Hematology Center, and can be associated with immunophenotypic
characterization of the neoplastic clone in a multiparametric staining [53,70–72,74,88,89].
Therefore, Vβ usage by flow cytometry might help in quickly identifying clonality and
confirming clinical, cytological, and molecular findings; however, the absence of clonal
expansion by flow cytometry cannot exclude TCR clonality that might be detected with
more sensitive techniques, such as NGS. Moreover, a lack of Vβ skewing might be related to
a small T-LGL clone and Vβ usage analysis performed on total CD3+CD8+ T cells. Indeed,
small T-LGL clonotypes might be diluted on total CD8+ T cells that appear polyclonal, as
elegantly described in AA by both flow cytometry and NGS [53]. In addition, once identi-
fied, the immunodominant clone can be easily monitored during treatment and follow-up
and can identify disease progression or relapse early, even under clonal drift, as NGS or
TCR sequencing are still expensive techniques that cannot be routinely and frequently
applied in clinical practice [74]. Finally, the presence and frequency of LGLs should be
routinely checked in patients with autoimmune and hematological diseases because of their
frequent association, and Vβ usage by flow cytometry might identify some subgroups of
hematological conditions with a profound immune dysregulation that might benefit from
immunomodulatory or immunosuppressive therapy [107]. Therefore, Vβ usage analysis
should be implemented to better clarify the role of LGLs, either reactive or clonal, in other
benign and malignant conditions, and to possibly identify recurrent TCR rearrangements
for prediction of possible self-antigens triggering the autologous T cell expansion during
LGL leukemia and other autoimmune and hematological or neoplastic diseases.
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