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Several previous studies have attempted to investigate the regulatory mechanisms underlying gene expression in ankylosing
spondylitis (AS). However, the specific molecular pathways underlying this condition remain unclear. Previous research used
next-generation RNA sequencing to identify a series of differentially expressed genes (DEGs) in peripheral blood mononuclear
cells (PBMCs) when compared between patients with AS and healthy controls, thus implying that these DEGs may be related to
AS. Furthermore, by screening these DEGS, it may be possible to facilitate clinical diagnosis and optimize treatment strategies.
In order to test this hypothesis, we recruited 15 patients with AS and 15 healthy controls. We randomly selected five subjects
from each group of patients for RNA sequencing analysis. Sequence reads were generated by an Illumina HiSeq2500 platform
and mapped on to the human reference genome using HISAT2. We successfully identified 973 significant DEGs (p < 0.05) in
PBMCs. When compared with controls, 644 of these genes were upregulated (with a fold change (FC) >2) in AS patients and
329 were downregulated (FC < 0.5). Our analysis identified numerous genes related to immune response. Gene Ontology (GO)
analysis indicated that these DEGs were significantly related to the positive regulation of epidermal growth factor-activated
receptor activity, the positive regulation of the ERBB (erb-b2 receptor tyrosine kinase) signaling pathway, the differentiation of
trophoblast giant cells, oxygen transport, immune-related pathways, and inflammation-related pathways. The DEGs were also
closely related to the TNF and NF-«B signaling pathways. Six DEGs were verified by quantitative real-time polymerase chain
reaction (QRT-PCR). Receiver operating characteristic (ROC) curve analysis indicated that IL6 may represent a useful biomarker
for diagnosing AS. The development of new biomarkers may help us to elucidate the specific mechanisms involved in the
development and progression of AS.

(mean age: 25 years; range: 15-35 years) [2]. Chronic inflam-
mation of the spinal joints can lead to severe chronic pain

Ankylosing spondylitis (AS) is an immune-mediated chronic
inflammatory form of arthritis and is characterized by
chronic nonspecific inflammation and pathological bone for-
mation, the latter representing a common clinical form of
spondyloarthritis (SpA) [1]. The incidence of AS in China
is approximately 0.3% and predominantly affects adults

and stiffness, ultimately leading to bone stiffness in the spine;
this can also exert impact on several other systems [3]. AS is
characterized by chronic progressive and refractory charac-
teristics and can cause irreversible damage to the central axis
of the spine; this results in the spine fusing with the sacroiliac
joint, thus resulting in reduced spinal activity [4]. AS exerts
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serious effects on a patient’s quality of life and is associated
with a significant economic burden to society and families.
Previous research suggested that this disease is highly corre-
lated with the MHC (major histocompatibility complex)
class T gene, HLA-B27 [5]. However, the specific cause of
AS remains unclear, and therapeutic options for the treat-
ment of AS remain inadequate. Over the last decade, new
biological agents have been developed that have had a pro-
found effect on the success rates of AS treatment. However,
approximately 30% of patients fail to tolerate these drugs or
experience differing degrees of adverse reactions [6]. There-
fore, there is an urgent need to identify new biomarkers that
may act as diagnostic or prognostic indicators for AS. The
discovery of such biomarkers is likely to prove invaluable in
the prevention, treatment, and control of this disease.
Previous researches involving the identification of
molecular mechanisms and novel biomarkers associated
with cancer, stroke, and diabetes have involved mRNA
expression profiling performed by microarray analysis or
high-throughput RNA sequencing [7-10]. Other studies
have described the application of high-throughput technol-
ogy for autoimmune diseases, such as systemic lupus erythe-
matosus, autoimmune thyroid, and rheumatoid arthritis
[11-14]. High-throughput methodology has already been
used to study AS [15]; however, this previous study only
focused on synovial tissue [15]. In the present study, we used
RNA sequencing to construct a protein-coding gene regu-
lation network in peripheral blood mononuclear cells
(PBMCs) isolated from AS patients and healthy controls.

2. Material and Methods

2.1. Patients and Controls. Fifteen patients with AS were
recruited from the Department of Rheumatology of the First
Affiliated Hospital of Anhui University of Chinese Medicine.
These patients were diagnosed by visiting staff according to
the American College of Rheumatology (ACR) modified
New York criteria [16, 17]. In addition, we also recruited 15
age- and sex-matched healthy subjects as controls. None of
the patients or controls had any previous history of cardio-
vascular disease, diabetes, hepatitis, malignancy, or other
autoimmune and inflammatory illnesses. The study was
approved by the Medical Ethics Committee of the First Affil-
iated Hospital of Anhui University of Chinese Medicine
(2015AH-20).

2.2. RNA Extraction and Sequencing. PBMCs were isolated
from AS patients and healthy controls by Ficoll density
gradient centrifugation and Lymphoprep (Stemcell, USA).
Separated PBMCs were then lysed by a TRIzol Reagent (Invi-
trogen, USA) and stored at -80°C to await further processing.
Total RNA was then extracted using a mirVana miRNA Iso-
lation Kit (Ambion, Foster City, CA) in accordance with the
manufacturer’s instructions. A NanoDrop 2000 (Thermo
Fisher Scientific, Waltham, MA) was used to evaluate the
quantity of RNA, and an Agilent 2100 bioanalyzer (Agilent
Technologies, Santa Clara, CA) was used to assess RNA
quality. Purified libraries were prepared by Illumina TruSeq
Stranded Total RNA Sample Preparation Kits (Illumina, San
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TaBLE 1
PCR
Gene Primer sequences product
length (bp)

F: ACAACTTTGGTATCGTGGAAGG
GAPDH 101
R: GCCATCACGCCACAGTTTC

ILé F: ACTCACCTCTTCAGAACGAATTG 149
R: CCATCTTTGGAAGGTTCAGGTTG

F: TCCTCAGGCTTTGTATTTGAGC
TGFAIP3 124
R: TGTGTATCGGTGCATGGTTTTA

1B F: ATGATGGCTTATTACAGTGGCAA 132
R: GTCGGAGATTCGTAGCTGGA

CCR2 F: CCACATCTCGTTCTCGGTTTATC a8
R: CAGGGAGCACCGTAATCATAATC

F: GTTCCATCTCGCCATTCATGC
CXCL5 103
R: GCGGCTATGACTGAGGAAGG

GPR55 F: GAAAACCCTACAGTTTGCAGTCC 123
R: GAGGTGGCAGCATAATCGGG

Diego, CA) in accordance with the manufacturer’s instruc-
tions and quantified with a Qubit 2.0 Fluorometer (Life
Technologies, Carlsbad, CA) and an Agilent 2100 bioana-
lyzer. cBot software was used to generate a cluster from
libraries. The cluster was then sequenced on the Illumina
HiSeq 2500 platform (San Diego, CA). All sequencing
was performed by Origin-Biotech Inc. (Ao-Ji Bio-Tech,
Shanghai, China).

2.3. Analysis of DEGs. FastQC was used to perform quality
control assessments on raw sequence data arising from
high-throughput sequencing pipelines (http://bioinformatics
.babraham.ac.uk/projects/fastqc). Known Ilumina TruSeq
adapter sequences, poor reads, and ribosome RNA reads
were trimmed by seqtk (https://github.com/lh3/seqtk) and
mapped to the Homo sapiens reference genome (hg38) by
HISAT?2 software (version: 2.0.4) [18, 19]. Gene count was
then analyzed by StringTie [19, 20] and normalized by the
trimmed mean of M value (TMM) method [21]. We also
determined the number of fragments per kilobase of tran-
script per million mapped reads (FPKM) using Perl script
[22]. Differentially expressed genes (DEGs) were then deter-
mined by edgeR [23, 24] with a threshold of p <0.05 and
absolute values of log 2(fold change) > 1 [7, 25, 26].

2.4. Functional Enrichment Analysis. Next, we aimed to gain
a better understanding of the functionality of the DEGs iden-
tified. To do this, we used the R package (v 3.5.1) [27] and
clusterProfiler to perform GO term enrichment analysis
[28, 29] and KEGG [30] pathway analysis.

2.5. Protein-Protein-Interaction (PPI) Network Construction
and Module Analysis. Next, we used the STRING tool
[31] to map PPIs for all DEGs with a composite interaction
score > 0.4.
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F1GURE 1: Volcano plot (a, blue and red indicate >twofold decreased and increased expression in AS, respectively) and scatter plot (b, blue and

red indicate >twofold decreased and increased expression in AS, respectively) of DEGs between the AS and control groups. Gray indicates no
significant difference.
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FiGURE 2: Hierarchical clustering of differentially expressed genes between the AS and control groups.

Cytoscape [32] was used to visualize the PPI network,
and modules were filtered by the Molecular Complex Detec-
tion (MCOD) plug-in [33] using the following parameters:
degree cut — off =2, k- core=2, nodescorecut - off =0.2,
and max depth =100. Functional enrichment within each
module was considered if the MCODE score was >4 and
the node frequency was >10. GO and KEGG enrichment
analysis for the DEGs within the four modules was per-
formed in clusterProfiler.

2.6. Validation of DEGs. Quantitative real-time polymerase
chain reaction (qRT-PCR) was used to verify the RNA
sequencing data using f-actin as the internal control. Rela-
tive mRNA expression was calculated by the 2*““" method
[34]. In total, the expression levels of six genes were quanti-
fied (TNFAIP3, IL1f, IL6, GPR55, CCR2, and CXCL5). The
primers used for qRT-PCR are shown in Table 1.

2.7. Statistical Analysis. Data are presented as the mean +
standard error of the mean. Data were analyzed using Stu-

dent’s t-test. p < 0.05 was considered to indicate a statistically
significant difference. Student’s t-test and ROC were ana-
lyzed by GraphPad Prism (version 8) and presented as the
mean * standard error of the mean.

3. Results

3.1. Screening of DEGs. In total, 973 DEGs were identified
between the AS and control groups, including 644 upregu-
lated DEGs and 329 downregulated DEGs. These DEGs are
represented by volcano and scatter plots in Figures 1(a) and
1(b), respectively. Figure 2 shows the hierarchical clustering
of DEGs. The most significant upregulated genes were T cell
differentiation protein 2 (MAL2) and myomesin 2 (MYOM).
The top 20 up- and downregulated DEGs are shown in
Tables 2 and 3.

3.2. GO and Pathway Enrichment Analysis. Next, we used
clusterProfiler to perform GO enrichment analysis for the
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TABLE 2
Gene name Description Test Control Log2FC p value Updown
ESRP1 Epithelial splicing regulatory protein 1 0.167880977 0.005006537 5.067482003 4.27E-16 Up
EFEMP1 EGF containing fibulin extracellular matrix protein 1 0.14670886  0.004273296 5.101462972 8.17E-12 Up
GPRC5A G protein-coupled receptor class C group 5 member A 0.080655708 0.002331394 5.112511817 1.65E-11 Up
TENM3 Teneurin transmembrane protein 3 0.050467249 0.001415242 5.156226587 7.20E-08 Up
SYT7 Synaptotagmin 7 0.084086967 0.002342832 5.165557022 3.91E-08 Up
TBX2 T-box 2 0.06419033  0.001648608 5.283036021 1.28E-08 Up
ACOD1 Aconitate decarboxylase 1 0.207837546  0.004784204 5.441033669 8.91E-05 Up
KRT18 Keratin 18 4.672652849 0.102993604 5.503615208 1.74E-51 Up
CYP24A1 Cytochrome P450 family 24 subfamily A member 1 0.10699757  0.002094784 5.674632992 6.53E-07 Up
SLC7A2 Solute carrier family 7 member 2 0.091208901 0.001686833 5.75678535 4.33E-14 Up
IGFBP5 Insulin-like growth factor binding protein 5 0.306887146 0.005578492  5.78168917  1.25E-20 Up
TPD52L1 Tumor protein D52 like 1 0.054860254  0.0009603  5.836132086 1.31E-10 Up
ASS1 Argininosuccinate synthase 1 0.498890617 0.008439794 5.885371886 1.55E-18 Up
NPNT Nephronectin 0.111594596 0.001448034 6.268027541 2.07E-13 Up
EMP2 Epithelial membrane protein 2 0.152045889 0.001923435 6.304677643 1.00E-13 Up
BCAM Basal cell adhesion molecule (Lutheran blood group)  0.134791483 0.001698518 6.310308799 2.55E-14 Up
MYH14 Myosin heavy chain 14 0.113204752  0.00130165  6.442449138 9.53E-17 Up
GFRA1 GDNF family receptor alpha 1 0.143605056 0.001274655 6.815855972 1.86E-22 Up
KRT8 Keratin 8 2.717254001 0.01760557  7.26997371  1.22E-64 Up
MAL2 MAL, T cell differentiation protein 2 (gene/pseudogene) 0.599737909 0.003393226 7.465531038 1.67E-23 Up
TABLE 3

Gene name Description Test Control Log2FC pvalue  Updown
MYOM2 Myomesin 2 0.083396198 2.342960807 -4.812207394  1.32E-10 Down
CCL14 C-C motif chemokine ligand 14 0.00720548 0.153612496 -4.414057235  7.88E-07 Down
PPARGCIA PPARG coactivator 1 alpha 0.000951005 0.017674014 -4.216033153 0.001331584 Down
LUM Lumican 0.003716002 0.067922087 -4.192057583 0.009079935 Down
FABP4 Fatty acid binding protein 4 0.011695583 0.173777145 -3.893202651 0.001508377 Down
SMIM17 Small integral membrane protein 17 0.013930292 0.201150581 -3.851978548 0.035328047 Down
FUT2 Fucosyltransferase 2 0.002487863 0.035674354 -3.841908383 0.019476857 Down
GPR20 G protein-coupled receptor 20 0.019006288 0.264915922 -3.800985884 0.000574724 Down
HCRT Hypocretin neuropeptide precursor 0.029753156 0.396891741 -3.737630912 0.02520749  Down
COL1A2 Collagen type I alpha 2 chain 0.001038445 0.013406383 -3.690423438 0.007386025 Down
SCN5A Sodium voltage-gated channel alpha subunit 5 0.001175881 0.014594963 -3.633657068 0.011433094 Down
SRPK3 SRSF protein kinase 3 0.002625025 0.030372663 -3.532370079 0.016367701 Down
cepcadny Celled-coil domain Contail?ligg 144 family, N-terminal- 001791893 0.04874123 -3.505456706 0.047045652 Down
CROCC2 Ciliary rootlet coiled-coil, rootletin family member 2 0.007272199 0.075178624 -3.369858992 0.000103433 Down
SLC18A1 Solute carrier family 18 member Al 0.004546282 0.045121799 -3.311065599 0.022179777 Down
OXCT2 3-Oxoacid CoA-transferase 2 0.017775459 0.174884534 -3.298443983 0.00139065 Down
PLSCR2 Phospholipid scramblase 2 0.015226302 0.124444283 -3.030862467 0.001263976 Down
BTN1Al Butyrophilin subfamily 1 member Al 0.006703082 0.054223075 -3.016010489 0.038536757 Down
HYDIN HYDIN, axonemal central pair apparatus protein ~ 0.002046295 0.016428267 -3.005094491 0.021563849 Down
HSPB9 Heat shock protein family B (small) member 9 0.015111578 0.119979888 -2.989066346 0.028712686 Down

973 DEGs. GO analysis placed the DEGs into 53 subclasses;
Figure 3 shows the top 30 subclasses.

GO analysis revealed that the identified DEGs were pre-
dominantly associated with a range of biological processes,

including positive regulation of the epidermal growth
factor-activated receptor activity, positive regulation of the
ERBB signaling pathway, the differentiation of trophoblast
giant cells, and oxygen transport. In terms of cellular



Top 30 of GO enrichment
1 p value

Vocalization behavior 4 e-: -+ « « « ..

Trophoblast giant cell differentiation 1 - -. o
rophoblast giant cell differentiation 0.0020
Regulation of insulin-like growth factor receptor signaling pathway

Regulation of epidermal growth factor—activated receptor activity -

Protein binding involved in cell-cell adhesion - . -

Positive regulation of receptor biosynthetic process +

Positive regulation of insulin-like growth factor receptor signaling p etc..

Positive regulation of ERBB signaling pathway " -

Positive regulation of epidermal growth factor—activated receptor acti etc... -
Positive regulation of epidermal growth factor receptor signaling path etc... 4" -*
Positive regulation of cell size | " +* 0.0015

Oxygen transporter activity -
Oxygen transport 4
Ovulation

Negative regulation of peptidyl-threonine phosphorylation - «--

Negative regulation of lipopolysaccharide-mediated signaling pathway 4 «-.
Metanephric tubule development

ic nephron tubule d j

Mesenchymal cell apoptotic process -

Lung epithelial cell differentiation {ff).

0.0010
I-kappaB/NF-kappaB complex { -

Hemoglobin complex { -

Epidermal growth factor receptor binding -.

Endocardial cushion morphogenesis 43

CXCR chemokine receptor binding 4

Chondrocyte proliferation 4

Cell differentiation involved in embryonic placenta development - €
Cartilage morphogenesis J - -«

Carbonate dehydratase activity - 0.0005

Bronchus development 4

6 8 1012 14
Enrich factor

GO_domain
® Biological_process
A Cellular_component

B Molecular_function

diff_gene_count
o 4

e 5

® s

@’

@®:

@

(@

Arrhythmogenic right ventricular cardiomyopathy (ARVC) 4 = - -

AGE-RAGE signaling pathway in diabetic complications

BioMed Research International

Top 30 of pathway enrichment palue
Type I diabetes mellitus Soomcomao 5
TNF signaling pathway 4 - - - - . - - e = =50 = oo 0.0020

Thyroid cancer 4
Salmonella infection 4 + ~ - - - @ - - - - o o o
Rheumatoid arthritis 4 : - - - - @ - <

Prion diseases 4 : - - . o
PPAR signaling pathway - :
PI3K-AKkt signaling pathway
Phenylalanine metabolism — *
Pertussis
NOD-like receptor signaling pathway 4 0.10
Nitrogen metabolism
NE-kappa B signaling pathway - ]
Malaria 5
Legionellosis 4 - - - - - - - -

Hypertrophic cardiomyopathy (HCM) - .

Hematopoietic cell lineage
Graft-versus-host disease -
Glycosphingolipid biosynthesis-globo series -
Focal adhesion
Epithelial cell signaling in Helicobacter pylori infection 4 :
ECM-receptor interaction o
Cytokine-cytokine receptor interaction 4 : - -
Cell adhesion molecules (CAMs) - © - - 0.05

Bladder cancer 4 :

Arginine biosynthesis 4

Amoebiasis 4 -

African trypanosomiasis

Enrich factor

diff_gene_count
e 10
® 20
@ 30

(®)
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components, the NF-«B complex was dominant. With regard
to molecular function, our analyses identified epidermal
growth factor receptor binding and CXCR chemokine recep-
tor binding (Figure 3(a)).

Pathway analysis showed that the pathways most closely
related to the DEGs were the TNF signaling pathway, the
PI3K-Akt signaling pathway, cytokine-cytokine receptor
interaction, and the NF-xB signaling pathway (Figure 3(b)).

3.3. PPI Network Analysis. The DEGs identified in our anal-
ysis were then used to build a PPI network based on string
databases (Figure 4(a)). The PPI network consisted of 768
nodes and 3824 edges. Network analysis showed that hun-
dreds of genes were able to interact with 10 more other genes.
In particular, IL6, EGF, and CDH1 were shown to interact
with more than 100 genes; node distribution is shown in
Figure 4(b). In total, 29 modules were identified by MCODE,
operating with default criteria. Table 4 lists these modules in
descending order according to MCODEscores >2. We

selected five modules (modules 1, 2, 3, 4, and 5) with an
MCODE score > 3 and >10 nodes for module network visu-
alization (Figure 5).

3.4. Verification of DEGs by qRT-PCR. Compared with the
control group, qRT-PCR detected significantly higher levels
of expression for TNFAIP3, IL1f, and IL6, in the group of
AS patients (Figure 6). AS patients also had lower expression
levels of GPR55, CCR2, and CXCLS5; this was consistent with
the results derived from RNA sequencing, thus indicating
that the QRT-PCR verification was reliable.

3.5. Receiver Operating Characteristic (ROC) Curve Analysis
of Confirmed mRNAs in PBMCs. ROC curve analysis was
used to evaluate the potential diagnostic value of differen-
tially expressed mRNAs that showed statistical significance.
Our analysis showed that the levels of TNFAIP3, IL1j, IL6,
GPR55, and CXCL5 could discriminate between AS patients
and controls. Analysis showed that IL6 had the highest area
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TABLE 4

Cluster Score Nodes Edges

Node IDs

CXCLS, CSF3, TLR3, SELE, ICAM1, GNGI12, GPR55, ADRA2C, SUCNRI1, HCAR1, ADRA2A,

TAS2R3, TAS2R4, S1PR5, CXCR6, CCL4L1, CXCL3, CXCL5, CCL3, CXCL12, CXCL2, PTGS2,

CCR2, CCL20, CXCL1, EGF, CCL4, IL6, MMP9, IL1A, IL1
TIMP1, TMEM132A, SPARCL1, VWAL, FAM20A, TNC, IGFBP5, STC2, MFI2, LAMBI1, APOLI,

APOA2, NOTUM, PRSS23, TNFAIP3, CCRL2, CCL7, NLRP3, IFNB1, SOCS3, NFKBIA, IL1RN,
VEGFC, MMP1, PLAUR, PLAU

SNAI1, CLDN3, EPCAM, CD1A, CD83, CD1B, MMRN1, PROS1, ORM1, A2M, SRGN, SDC1, TROAP,

DEPDC1, CDKN3, NEK2, CDCAS5, SPC25, PBK, CDCA3, CDC25C, CCND1, KRT7, SOX9, COL26A1,

COLI12A1, PLOD2, COL10A1, BMP2, BMP7, SPARC, NES, TEK, AREG, MET, KRT19, KRT18, KRT8
OSM, MUCI, F3, FOSL1, SOD2, CD69, RELB, NFKB2, BCL2A1, FASLG, TBX21, SERPINB2, HIF1A,

1 11.129 31 345
2 4.654 26 121
3 3.395 38 129
4 3.25 28 91
5 3.071 14 43
6 2.857 7 20
7 2.154 13 28

FGF13, KITLG, EDN1, CDHI, LOX, COL4A3, COL4A2, ITGA11, ITGBS, ITGA10, COL6A3, ITGA2B,

ITGB3, COL1A2, COL1A1

HCRT, EDN2, UTS2, HRH1, P2RY11, GPR84, SNAP25, CD177, MCEMP1, CEACAMS, FCAR,
FRMPD3, GPR68, HCRTR1

SOCS6, SPSB4, ASB1, FBX027, FBXO17, KBTBD6, UBE3D

RORC, ULBP3, ULBP2, KLRC2, KIR3DL1, KLRB1, CALB1, ELAVL3, TBR1, MAP2,
ENSG00000258947, FABP7, EOMES

under the curve (AUC: 0.9533; 95% confidence interval [CI]:
0.8872-1.019; p <0.0001), followed by ILIB (AUC: 0.92;
95% CI: 0.8231-1.017; p <0.0001), GPR55 (AUC: 0.9089;
95% CI: 0.8041-1.014; p=0.0001), CXCL5 (AUC: 0.8778;
95% CI: 0.7508-1.005; p=0.0004), and TNFAIP3 (AUC:
0.7511; 95% CI: 0.5731-0.9291; p =0.0191). Therefore, our
analyses suggested that IL6 (p < 0.0001) may be more valuable
than the other four mRNAs as a biomarker for AS diagnosis
(Figure 7).

4. Discussion

In the present study, we used high-throughput RNA
sequencing to analyze protein-coding mRNA expression
profiles in PBMCs isolated from AS patients and controls.
We successfully identified 973 DEGs and then performed a
range of analyses (GO, KEGG pathway, PPI, and PPI mod-
ule) in an attempt to identify novel mechanisms for AS.

GO and pathway enrichment analysis revealed that
numerous genes, associated with immune or inflammatory
responses, may play a key role in AS. PPI results further dem-
onstrated that the related genes have high degree. Our analy-
sis also revealed that a number of GO terms were enriched,
including positive regulation of acute inflammatory response
(p = 3.170e-03), acute inflammatory response (p = 7.623e-05),
positive regulation of inflammatory response (p = 1.247¢-03),
regulation of acute inflammatory response (p =8.621e-03),
regulation of inflammatory response (p=1.988e-05), in-
flammatory response (p = 3.196e-09), negative regulation of
inflammatory response (p = 3.462¢-02), immune system pro-
cess (p =4.903¢-03), T cell differentiation involved in immune
response (p = 7.247e-03), negative regulation of immune sys-
tem process (p =7.468e-03), type 2 immune response (p =
8.962¢-03), regulation of immune system process (p=
9.386€-03), immune system development (p=1.139¢-02),
response to immobilization stress (p = 1.267e-02), regulation
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of type 2 immune response (p = 1.693e-02), T cell activation
involved in immune response (p = 1.993e-02), leukocyte acti-
vation involved in immune response (p = 4.212e-02), and cell
activation involved in immune response (p = 4.525e-02) [35-
37]. We also identified several pathways that were enriched,
including the NF-«B signaling pathway (p=3.288e-05),
TNF signaling pathway (p =2.309e-05), NOD-like recep-
tor signaling pathway (p=3.995¢-03), Salmonella infec-
tion (p=7.149¢e-04), rheumatoid arthritis (p =9.785e-04),
cytokine-cytokine receptor interaction (p =4.056e-06), cell
adhesion molecules (CAMs) (p = 5.342e-04), focal adhesion
(p =4.886¢-03), and the chemokine signaling pathway (p =
1.994¢-02) [38-40]. Some clinical drugs have been reported
to target TNFA (tumor necrosis factor alpha) [38, 39];
Figure 8(a) shows the results of our analysis related to the
TNF signaling pathway. The present study demonstrated
that AS patients are associated with cytokine disorders,
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pathway2.html).

excessive activation of NF-«B signaling pathways, increased
secretion of inflammatory cytokines, immune complex depo-
sition, and immune-mediated inflammation [41]. Our screen-
ing results for the NF-xB signaling pathway are shown in
Figure 8(b). We hypothesize that AS could lead to immune
disorders by regulating the differentiation and activation of
T cells and other modes of immunization. Further research
is now warranted to identify the specific function of these
processes in AS.

In addition, we used qRT-PCR to identify several genes that
are related to AS, including TNFAIP3, IL1p, IL6, GPR55, and
CXCLS. The results of our qRT-PCR provided further verifi-
cation that our high-throughput sequencing results were
reliable. Our results also suggest that these genes could effec-
tively distinguish between samples from AS patients and nor-
mal controls, thus providing a useful diagnostic tool.

5. Conclusions

Collectively, our findings provide clinically useful informa-
tion relating to the mRNA profile of PBMCs in patients with
AS. In addition, bioinformatic methodology was used to pre-
dict the potential functional roles of DEGs and explore their
possible roles in the pathogenesis of AS. This information is
likely to provide us with a better understanding of the path-
ogenic processes leading to AS. Future research should be
aimed at investigating the specific biological functions and
molecular mechanisms underlying the roles of these DEGs
in the pathogenesis of AS.
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